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Abstract: This paper reports on a dual-axial tool servo diamond turning method for the one-step
fabrication of hierarchical micro-nano-structured surfaces. With respect to the dual-axial servo
motion (XZ), the z-axis motion can generate the primary surface with a complex shape, and the
x-axis motion is used to synchronously form the secondary structure via controlling the residual
tool marks. The toolpath determination algorithm for the developed turning method is described
in detail, and the effect of the machining parameters on the basic feature and sizes of the generated
secondary structures is investigated through conducting the numerical simulation for both toolpath
and surface generation. The simulation result indicates that the additional x-axial motion is effective
for the deterministic generation of a variety of secondary structures. Finally, taking advantage of an
ultra-precision lathe with a self-developed tri-axial FTS, a hierarchical surface with high accuracy is
practically generated.

Keywords: hierarchical surface; diamond turning; fast tool servo; toolpath determination

1. Introduction

Due to superior features like color dispersion [1], super-hydrophobicity [2] and corro-
sion inhibition [3], the hierarchical surface is widely applied in optics, energy, electronics,
etc. [4]. There are many techniques reported to fabricate successfully the hierarchical
surface, including laser writing [5], chemical etching [6], electrical discharge machining [7],
extremophile bacteria [8] and mould pressing [9]. However, due to their limitations like
specified material and expensive costs, the diamond cutting with better accuracy and
flexibility gets a lot of attention in the researches on fabricating hierarchical micro-nano-
structured surfaces [10].

The hierarchical surface is generally comprised of the primary surface and the sec-
ondary micro/nano structures. As for the primary surface, lots of developed diamond
cutting technologies have been published, like the ultra-precision diamond turning [11]
and the fly cutting [12]. Especially for the diamond cutting process with the FTS, the
various complex primary surface can be fabricated efficiently [13]. The developments of
toolpath determination [14] and error compensation [15] also further improve the machin-
ing precision of the primary surface. On this basis, fly cutting has been able to fabricate the
pyramid secondary structures via removing materials from different directions. The de-
signed cross toolpaths form specific residual tool marks, namely the pyramid secondary
structures, the topography of which can be adjusted by redesigning the toolpath spacing
and the cutting direction [16]. The rotary ultrasonic diamond cutting also has the capacity
to fabricate the hierarchical surface. The single point diamond mounted the ultrasonic
spindle can periodically enter and leave the machined primary surface, resulting in that
the micro dimples are favorably formed on the primary surface [17]. Even so, the above
technologies still take a great deal of time to determinate complicated toolpath, which must
meet the requirements of fabricating the primary surface and the secondary structures at
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the same time. Obviously, one technique for fabricating the hierarchical surface with better
flexibility and compatibility should be developed.

The vibration-assisted machining has conspicuous advantages in fabricating hierar-
chical micro-nano-structured surfaces. For most cutting technologies of fabricating the
primary surface, exerting the assisted vibration can naturally induce periodic residual tool
mark on the machined surface, namely the secondary structure. In addition, there are some
reports revealing that the vibration-assisted machining can reduce the cutting force [18]
and increase the fatigue life of workpiece [19]. For the ultra-precision diamond turning,
the positions of the diamond tool and the workpiece can be interchanged to constitute the
fly cutting. Via the application of assisted vibration, the corresponding toolpaths just focus
on improving the machining accuracy of the primary surface, while nano dimples can be
generated naturally [20]. The assisted vibration also can be employed in the rotary ultra-
sonic diamond cutting. By means of the spindle generating high-frequency longitudinal
vibration in the spindle axis, micro/nano sinusoidal textures can be formed on the inner
surface of linear groove [21]. Different from single assisted vibration, the micro milling com-
bining orthogonal assisted vibrations has been developed to generate various micro/nano
textures, which observably change the surface wettability [22], via adjusting orthogonal
vibration parameter. The elliptical vibration is one specific assisted vibration mode adding
elliptical trajectories on the tooltip, which significantly reduces the chip thickness and
has a great advantage in the optical surface fabrication of the brittle material. The core of
elliptical vibration is the synergy between the machining and vibration parameters, which
decides the secondary structure shape, like dimple arrays or step textures [23,24].

The collocations between machining and vibration parameters have significant im-
pacts on the secondary structure shape. With the performance improvement of the vibration
generator, various collocations can be achieved [25]. Therefore, the modulated assisted
vibration has the potential to fabricate various secondary structures [26]. For instance,
the ultra-precision diamond turning can be modulated into the process like milling for
fabricating the micro/nano channels with different bottom surface [27]. The micro/nano
sculpturing with modulated elliptical vibration can form grooves with several waves [28],
and the variational secondary structures may bring functional differences for different
areas of the primary surface [29]. Obviously, the vibration modulation improves effectively
matching attributes between the primary surface and the secondary structure. Whereas,
for different diamond cutting technologies, the relationship between the secondary struc-
tures and the modulated assisted vibration still needs to be further studied and established.

Although a great number of methods have been developed to fabricate hierarchi-
cal micro-nano-structured surfaces, most of them cannot achieve one-step machining.
The vibration assisted machining is a popular technique for fabricating synchronously the
primary surface and secondary structures. However, the assisted vibrations are usually ap-
plied along cutting depth direction to generate random and imprecise secondary structure.
In this paper, a dual-axial tool servo diamond turning method for ductile materials is pro-
posed to develop the vibration-assisted machining through applying additional vibration
along the direction that is perpendicular to the cutting depth direction. The z-axis tool servo
motion is used to fabricate the primary surface as the common diamond turning, and the
x-axis motion is added to generate the secondary structure and perform the tool setting
error compensation. Via changing the x-axis motion amplitude and period, the feature
and size of the secondary structure can be controlled precisely. Thus the modulation of
the machining parameter is also investigated to obtain desired secondary structure. More
details are written below, and this paper is organized as follows: the basic principle of the
proposed approach is explained in Section 2. The toolpath determination including the
error compensation and the interference detection is introduced in Section 3. The numerical
simulation results of the toolpath and demonstrating the effects of machining parameters
on the secondary structure geometry are revealed in Section 4. The proposed method is
verified by a machining experiment for copper cylinders in Section 5. Finally, Section 6
concludes the paper.
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2. Dual-Axial Tool Servo Diamond Turning Mechanisms

Figure 1a shows the basic principle for fabricating hierarchical micro/nano-structured
surfaces via the proposed dual-axial tool servo diamond turning method. Based on com-
mon ultra-precision diamond turning, a FTS with at least x- and z-axis degrees of freedom
is installed between the slide of ultra-precision lathe and the diamond tool to achieve better
driving performance. The z-axis degree of freedom is used to ensure that the tool edge is
tangent to the machined primary surface like common diamond turning, and the x-axis
degree of freedom can provide the harmonic motion to control residual tool marks, namely
the secondary structures.

(a)

𝒛

𝒙

𝒚

𝒐

(b)

Figure 1. Dual-axial tool servo diamond turning: (a) Basic principle; (b) Fabricating the secondary structures.

In view of the fact that the FTS motion depends on the spindle rotation angle c,
the x-axis tool servo motion can be preliminarily expressed as:

xFTS = A sin(cn) (1)

where A is the motion amplitude, and n is a coefficient determining the motion frequency.
Note that the secondary structure generation is easily affected by various factors like
spindle speed s and feed per revolution f , etc. As illustrated in Figure 1b, only when
the amplitude A equal to f /2 and coefficient n achieving the phase difference π between
adjacent toolpaths are performed, adjacent toolpaths can be tangent to each other, resulting
in uniform fusiform secondary structures. In this case, assume that the used tool radius is
RT , the width w and the height h of single fusiform secondary structure can be calculated as:

w = 4A (2)

h = RT −

√
RT

2 − w2

4
. (3)

Since the feed per revolution f , the amplitude A and the tool radius RT are constant,
the width w and the height h of secondary structure are invariable. As for the length l of
single secondary structure, it can be approximatively calculated as:

l = 2πρa/n (4)

where ρa is the distance between the secondary structure and spindle centres. Obviously, ρa
and l decrease continuously in the ultra-precision turning, thus the cutting radius should
depend on the design range of the structure length.

In addition to the above fusiform secondary structures, through using the amplitude A
far smaller than feed per revolution f or zero phase difference between adjacent toolpaths,
the proposed method also can fabricate micro/nano-channel or sinusoidal textures. On the
contrary, if the amplitude A is larger than f /2, there will be difform secondary structures
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synchronously formed on the primary surface. Thus, for forming desired secondary
structures, the x-axis motion should be modulated to adapt other machining parameters,
and more detailed modulation method will be discussed in Section 4.

3. Toolpath Determination for Dual-Axial Tool Servo Diamond Turning

Although different machining parameters may be applied in the turning process,
the basic principles of the toolpath determination algorithm still are the same [24,27]. In ad-
dition, the toolpath generated in this paper is smooth, and the used motion frequency is
far less than the elliptical vibration. Therefore, the dynamic effect is slight and ignorable.
The universal toolpath determination, including a description of the diamond tool, deter-
mination of cutter location point (CLP), error compensation and interference detection,
can be minutely explained in this section. To conveniently describe the relative locations
and the geometries of the workpiece and the diamond tool, the workpiece coordinate
system oW-xWyWzW and the tool coordinate system oT-xTyTzT are respectively established,
as shown in Figure 1.

In general, the workpiece and the diamond tool are described in the workpiece and
tool coordinate systems, respectively. In the workpiece coordinate, the primary surface
can be described as zW = f (xW , yW). In the turning process, the workpiece also can be
described in the cylindrical coordinate system, and the primary surface can be expressed as:

xW = ρW cos ϕW

yW = ρW sin ϕW

zW = gW(xW , yW)

(5)

where ρW denotes the distance between primary surface point and spindle centres, and ϕW
is corresponding spindle rotating angle.

3.1. Cutter Location Point Determination

Assume that the nose radius and the rake angle of the diamond tool are respectively
RT and γ0, the used tool edge can be described in the spherical coordinate by:

xT = RT cos θ

yT = −RT sin θ sin γ0, θ ∈ [θmin, θmax]

zT = −RT sin θ cos γ0

(6)

where θmin and θmax are the lower and upper angle boundary of the cutting edge. To cal-
culate the distance between tool edge and machined surface, the tool edge is uniformly
discretized into (N0 + 1) points. The m-th point at the edge is Pm

T (xm
T , ym

T , zm
T ), and the

corresponding tangent vector can be expressed as:
−→
Tm = (

∂xT
∂θ

,
∂yT
∂θ

,
∂zT
∂θ

)|θ=θm

θm = θmin +
(θmax − θmin)(m− 1)

N0
, m = 1, 2, 3 · · · (N0 + 1)

(7)

Since the spindle speed is constant in the turning process, the rotational angle of
spindle also can be uniformly discretized into NS points. In the cylindrical coordinate,
the l-th point in the k-th revolution of spindle can be expressed as:

ϕk,l = 2π(k +
l − 1
NS

)

ρk,l = ρmax −
ϕk,l f
2π

+ xFTS

(8)

where ρk,l is the workpiece radius, and f is the feed per revolution of lathe. xFTS denotes
the x-axis tool servo motion, the determination of which will be detailedly explained in
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Section 4. Via the rotation transformation, the m-th tool edge point Pm
T can be described in

the workpiece coordinate by:xm
k,l

ym
k,l

zm
k,l

 =

cos ϕk,l − sin ϕk,l 0
sin ϕk,l cos ϕk,l 0

0 0 1

xm
T + ∆ρk,l

ym
T

zm
T + RT

 (9)

where
∆ρk,l = ρmax − ρk,l (10)

The normal vector of the primary surface at the projection of the m-th point at the
edge can be expressed by:

−→
Vk,l

m = (
∂ fW
∂x

,
∂ fW
∂y

,−1)|x=xk,l
m ,y=yk,l

m
(11)

Assume that the tool is located at the CLP, then the cutting edge should be tangential
to the primary surface. Therefore, the tangent vector of the cutter contact point (CCP)
should be perpendicular to the normal vector of its projection on the primary surface,
and the CCP can be approximatively determined by:

Pk,l
C := arg

Pm
T

min{|
−→
Vk,l

m
−→
Tm|, ∀m}. (12)

On this basis, the determination of CLP can be regarded as calculating the minimum
distance between tool edge discrete point PT and corresponding profile on the primary
surface which is projected along the zW-axis. Therefore, the l-th CLP in the k-th revolution
of spindle can be described as:

xk,l
CLP = ρk,l cos φk,l

yk,l
CLP = ρk,l sin φk,l

zk,l
CLP = fW(xk,l , yk,l)− zC

T + RT

(13)

3.2. Tool Setting Error Compensation

Different from the ideal situation, there are often tool setting errors along the x- and
y-axis directions in the actual machining process. As shown in Figure 2, due to the angle
discrepancy α, the tool setting error will lead to the distortion of micro/nano-structure.
Thus, the error compensation is essential for obtaining a high-precision surface. By means
of the ultra-precision lathe with the slow tool servo (STS), the x-axis tool setting error can
be readily eliminated. As for the y-axis error, the x-axis tool motion xFTS needs to be tuned
for countering the effect of angle discrepancy α.

𝒙

𝒐𝐖 𝜶

𝝆𝒌,𝒍

𝒆𝒚

𝑷′𝑳
𝒌,𝒍

𝑷𝑳
𝒌,𝒍

Rake face 𝒆𝒙

𝒚

Figure 2. Schematic of the tool setting error compensation.
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Compared to the ideal situation, the compensated tool motion should be hysteretic,
and the Equation (1) can be written as:

xe
FTS = A sin[(c− α)n] (14)

with
α = arcsin

ey

ρk,l
(15)

where ey is the tool setting error in y-axis direction. Note that the angle discrepancy α
indirectly causes the location error ex in the x-axis direction, and the location error ex can
be calculated as:

ex = ρk,l cos α− ρk,l (16)

To counter the x-axis location error ex, Equation (14) should be written as:

xe
FTS = A sin[(c− α)n] + ex. (17)

Substituting xe
FTS to Equation (8), the generated toolapth can avoid the surface topog-

raphy error caused by the tool setting error.

3.3. Tool-Workpiece Interference Detection

The tool interference will result in overcut and tool damage. To obtain high-precision
machined surface, the interference detection should be employed in the toolpath determi-
nation. When the tool move between adjacent CLPs, the x- and y-axial tool displacements
can be approximatively expressed as:xd = ρk,l − ρk,l−1

yd =
2π

NS
ρk,l−1

(18)

In order to avoid the machining interference, the angle between the cutting velocity
and the y-axis should be less than the tool clearance angle. Therefore, the tool clearance
angle κ needs to meet:

κ ≥ max arctan(
ρk,l − ρk,l−1

2πρk,l−1
NS), ∀k, l (19)

When total CLPs meet Equation (19), the generated toolpath can be applied in the
actual machining.

Based on the above discussion, the toolpath determination algorithm for the developed
turning method can be indicated in Figure 3. The tool setting error compensation is first
carried out by delaying the x-axis motion. Then the CLP coordinate can be respectively
confirmed via calculating the minimum distance between tool edge discrete point and
its corresponding profile on the primary surface. After obtaining all CLP coordinates,
the interference detection is performed to ensure that there is no interference between the
diamond tool and workpiece.
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Figure 3. Flow chart for the toolpath determination.

4. Numerical Simulation

Surface simulation is an effective way for predicting the surface topography and
verifying the toolapth feasibility. Taking advantage of numerical count software, the de-
sired toolpath and the machined surface can be simulated through the formulas derived
in Sections 2 and 3. To definitely demonstrate the effects of machining parameters on
the secondary structures, the surfaces fabricated by three kinds of parameter combina-
tions are simulated in this section. According to the discussion in Section 2, the core of
forming the secondary structure is controlling the toolpath spacing via amplitude and
period of the x-axis motion. Only when the amplitude of the x-axis motion and the phase
difference between adjacent toolpaths are, respectively f /2 and π, the toolpaths are tan-
gent. Considering the performances of lathe and self-designed FTS, the machining and
x-axis motion parameters listed in Tables 1 and 2 were used in the simulation to generate
different modes of toolpaths. In addition, the availability of error compensation in the
toolpath determination is also verified via the comparison between non-compensated and
compensated toolpaths.
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Table 1. The machining parameters used in the simulation.

s (rpm) f (µm/r) ρmax (µm) RT (µm)

30 10 600 100

Table 2. The x-axis motion parameters used in the simulation.

Amplitude A (µm) Coefficient n

1 10 50
2 5 50.5
2 10 50.5

4.1. Prediction of Toolpath and Surface Topography

As shown in Figure 4, there are three modes of toolpaths generated by the method
proposed in this paper, including non-contact-, contact- and cross-modes. As for the
non-contact-mode toolpath shown in Figure 4a, zero phase difference between adjacent
toolpaths leads to the toolpath spacing identically equal to the value of f , and the variation
of amplitude A cannot change the scallop height. Thus, the non contact-mode toolpath
can be used in the fabrication of sinusoidal textures shown in Figure 5a. If the feed per
revolution f is large enough to generate the desired scallop height, the non contact-mode
toolpath also can fabricate micro/nano-channel. Assume that the phase difference between
adjacent toolpaths is not zero, the amplitude A smaller than f /2 still can generate the
non-contact-mode toolpath with varying spacing.

In Figure 4b, the keys of generating the contact-mode toolpath are the phase difference
π between adjacent toolpath and the amplitude A exactly equal to f /2. Under this param-
eter combination, the width w depends on the amplitude A and the feed per revolution
f , while the length l is decided together by the coefficient n and the distance between
the structure and spindle centers. If the amplitude A is larger than f /2, the adjacent
toolpaths will cross each other and generate the toolpath shown in Figure 4c. Although the
cross-mode toolpath also can fabricate the hierarchical surface like Figure 5c, the formed
secondary structures are non-uniform, and the structure geometry control is more compli-
cated than the contact-mode toolpath. In contrast, the secondary structures fabricated by
the contact-mode toolpath in Figure 5b are more unified, the size of which can be controlled
as the method described in Section 2.

According to the above simulation results, to obtain the desired secondary structures
mode, the x-axis tool servo motion should be modulated and adapt to the lathe motion.
The phase difference of adjacent toolpaths decided by the coefficient n and the compatibility
between the amplitude A and the feed per revolution f have a significant impact on the
secondary structure mode. Besides, the lathe and FTS motions should be synchronized up-
dated to achieve the desired secondary structure size. Otherwise, the secondary structures
may change dramatically. For all the toolpath modes, the cutting radius decreases with the
cutting time, resulting in the change of secondary structures size under constant machining
parameter combination. Using a large cutting radius and small feed per revolution can
minimize the variation of secondary structures size.

4.2. Prediction of Compensated Toolpath

For the lathe without multi-axial FTS, the tool setting error is hardly avoided in the
machining process. Thus, the error compensation should be employed in the toolpath
determination. Assume that the tool setting error ey is 10 µm, the non-compensated and
compensated contact-mode toolpaths are shown in Figure 6. Obviously, the tool setting
error leads to the deviation of the theoretical toolpath, while the compensated toolpath
can achieve better position accuracy. The deviation caused by the tool setting error ey
can be divided into two parts including the angle discrepancy α and the location error ex.
The angle discrepancy α is the leading cause resulting in the deviation, so the hysteretic
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x-axis motion can effectively improve the position accuracy. Compared with the angle
discrepancy α, the effect of location error ex on the toolpath is tiny. Whereas, when the
cutting radius decreases with the cutting time, the location error ex increases significantly.
For the fabrication of large-area hierarchical surface, the compensation of location error ex
should be interpolated into the tool motion to further improve the position accuracy.

A -10
n -50

(a)

A -5
n -50.5

(b)

A -10
n -50.5

(c)

Figure 4. The toolpath simulations with three kinds of parameters combinations: (a) Non-contact-mode toolpath; (b) Contact-
mode toolpath and (c) Cross-mode toolpath.
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(a) (b)

(c)

Figure 5. The corresponding hierarchical surface simulation:(a) Non-contact-mode surface; (b) Contact-mode surface and
(c) Cross-mode surface.

Figure 6. The effects of compensation on the toolpath.

5. Experiment Results and Discussion

As shown in Figure 7a, via a four-axis ultra-precision lathe (Moore Nanotech 350FG,
USA) with self-designed tri-axial FTS [30], one machining experiment was performed to
verify the validity of the proposed method. The loopshaping tuned PID controller with
a feedforward compensator and a damping controller are employed in FTS to improve
the trajectory tracking accuracy. Through the closed-loop control, the planar and vertical
following errors of FTS are about ±1.29% and ±1.23% for tracking harmonics with fre-
quencies of 20 Hz and 50 Hz, respectively. Since the toolpaths similar to non-contact- and
cross-modes have been reported in Ref. [24], only the contact-mode toolpath was used in
the experiment. According to Section 4, the amplitude A should be equal to f /2, and the
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phase difference between adjacent toolpaths should be π. Thus, the machining parameters
listed in Table 3 finally were employed in the experiment. Besides, as listed in Table 4,
the radius of used diamond tool is 20 µm, and the cylindrical copper part was clamped on
the air-bearing spindle via the vacuum chuck.

(a) (b)

(c) (d)

B-B ProfileA-A Profile

A

A

B

B

Air-bearing spindle

Copper cylinder 

Tri-axis FTS

Figure 7. The experiment facility and results: (a) Four-axis ultra-precision lathe with self-designed
tri-axial FTS; (b) Machined hierarchical surface; (c) A-A profile; (d) B-B profile.

Table 3. The parameters used in the experiment.

s (rpm) f (µm/r) A (µm) n

15 8 4 35.5

Table 4. The workpiece and tool used in the experiment.

Workpiece Material Tool Material Tool Radius Rake Angle Clearance Angle

Copper Diamond 20 µm 0◦ 10◦

After cutting, the part of the generated hierarchical surface shown in Figure 7b were
captured by the Optical Surface Profiler (Zygo Nexview). In Figure 7c,d, the blue and red
curves denote the profiles of machined surface and designed primary surface, respectively.
According Figure 7b,c, the fusiform secondary structures are successfully formed on the
primary surface. Since the cutting radius is about 1 mm, the theoretical and formed
structure sizes can be listed in Table 5. Compared the theoretical values calculated as
Equations (2)–(4), the errors of length, width and height respectively are 5.79%, 4.25% and
7.18%. There are many inevitable factors having the capacity to affect the experiment result,
like material plastic deformation, FTS motion and measurement errors. The copper is softer
material easily causing plastic deformation especially on the re-cutting area, resulting in
that residual materials of structure ends are hardly captured. The noise also has significant
impacts on the FTS accuracy. In addition, the primary surface used in the experiment is the
sinusoidal surface, resulting in some measurement errors. Considering the above factors,
there is actually a good agreement between the desired and experimental hierarchical
surfaces. Therefore, the experiment results indicate that the method proposed in this paper
is effective.
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Table 5. The secondary structure size fabricated in the experiment.

Length l (µm) Width w (µm) Height h (µm)

Theory 176.99 16 1.67

Experiment 187.24 16.68 1.55

Error 5.79% 4.25% 7.18%

6. Conclusions

A dual-axial tool servo diamond turning is developed in this paper for fabricating
hierarchical micro-nano-structured surfaces. Through adopting an additional x-axis tool
motion with the z−axis motion, the primary complex surface with superimposition of the
secondary micro/nano-structures can be generated simultaneously. The main conclusions
are drawn as follows:

(a) The toolpath determination algorithm is developed for the dual-axial tool servo
diamond turning with compensation for the tool geometry. Furthermore, considering
the tool setting error, a compensation strategy for the setting error is also included
with further verification through the numerical simulation.

(b) The simulation results for surface generation suggests that the modulated machining
parameters have the capacity to create secondary nanostructures with a variety of
special features and sizes. When the phase difference between adjacent toolpaths
is zero, the spacing between two adjacent nano-structure will be constant. With a
phase difference of π, an amplitude A of f /2 will lead to a contact-mode cutting.
Meanwhile, an amplitude larger than, namely A > f /2, the toolapth will be crossed
and generate non-uniform structures.

(c) A hierarchical micro-nano-structured surface is practically turned, and a kind of
fusiform secondary structures are formed on the primary surface. The length, width,
and height of the secondary structure are, respectively, about 187.24 µm, 16.68 µm,
and 1.55 µm. Compared with the theoretically predicted values, a maximum deviation
of less than 7.2% is obtained.

Author Contributions: X.P.: methodology, formal analysis, data curation, investigation, writing—original
draft preparation. Z.Z. (Zihui Zhu), L.C. and P.H.: methodology, validation, data curation. Y.W.:
writing—review and editing. Z.Z. (Zhiwei Zhu): conceptualization, supervision, writing—review
and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the State Key Laboratory of Digital Manufacturing Equipment
and Technology (DMETKF2020017). National Natural Science Foundation of China (U2013211).

Data Availability Statement: Data available on request due to restrictions eg privacy or ethical.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liang, Y.; Qin, H.; Mehra, N.; Zhu, J.; Yang, Z.; Doll, G.L.; Ye, C.; Dong, Y. Controllable hierarchical micro/nano patterns on

biomaterial surfaces fabricated by ultrasonic nanocrystalline surface modification. Mater. Des. 2018, 137, 325–334. [CrossRef]
2. Li, C.; Yang, L.; Liu, N.; Yang, Y.; Zhao, J.; Yang, P.; Cheng, G. Bioinspired surface hierarchical microstructures of Ti6Al4V alloy

with a positive effect on osteoconduction. Surf. Coat. Technol. 2020, 388, 125594. [CrossRef]
3. Fu, Y.; Zhao, Z.; Yip, W.; To, S. Novel fabrication of a hierarchical structured surface with improved corrosion inhibition by using

hydrothermal synthesis and ultraprecision machining. Surf. Coat. Technol. 2020, 385, 125432. [CrossRef]
4. Hu, S.; Reddyhoff, T.; Puhan, D.; Vladescu, S.C.; Shi, X.; Dini, D.; Peng, Z. Droplet manipulation of hierarchical steel surfaces

using femtosecond laser fabrication. Appl. Surf. Sci. 2020, 521, 146474. [CrossRef]
5. El-Khoury, M.; Alamri, S.; Voisiat, B.; Kunze, T.; Lasagni, A.F. Fabrication of hierarchical surface textures using multi-pulse direct

laser interference patterning with nanosecond pulses. Mater. Lett. 2020, 258, 126743. [CrossRef]
6. Jheng, Y.S.; Lee, Y.C. Fabrication of micro/nano hierarchical structures with analysis on the surface mechanics. Appl. Surf. Sci.

2016, 384, 393–399. [CrossRef]

http://doi.org/10.1016/j.matdes.2017.10.041
http://dx.doi.org/10.1016/j.surfcoat.2020.125594
http://dx.doi.org/10.1016/j.surfcoat.2020.125432
http://dx.doi.org/10.1016/j.apsusc.2020.146474
http://dx.doi.org/10.1016/j.matlet.2019.126743
http://dx.doi.org/10.1016/j.apsusc.2016.05.048


J. Manuf. Mater. Process. 2021, 5, 58 13 of 13

7. He, Z.; Luo, S.; Liu, C.; Jie, X.; Lian, W. Hierarchical micro/nano structure surface fabricated by electrical discharge machining for
anti-fouling application. J. Mater. Res. Technol. 2019, 8, 3878–3890. [CrossRef]

8. Díaz-Tena, E.; Rodríguez-Ezquerro, A.; López de Lacalle Marcaide, L.; Gurtubay Bustinduy, L.; Elías Sáenz, A. A sustainable
process for material removal on pure copper by use of extremophile bacteria. J. Clean. Prod. 2014, 84, 752–760. [CrossRef]

9. Shrestha, R.; Yu, B.; Yang, Q.; Gong, W.; Shen, S. Hierarchical Micro-Nanostructured Surfaces for IsotropicAnisotropic Liquid
Transport. Langmuir 2020, 36, 1569–1573. [CrossRef]

10. Zhang, J.; Cui, T.; Ge, C.; Sui, Y.; Yang, H. Review of micro/nano machining by utilizing elliptical vibration cutting. Int. J. Mach.
Tools Manuf. 2016, 106, 109–126. [CrossRef]

11. Li, Z.; Fang, F.; Chen, J.; Zhang, X. Machining approach of freeform optics on infrared materials via ultra-precision turning.
Opt. Express 2017, 25, 2051–2062. [CrossRef] [PubMed]

12. He, Y.; Zhou, T.; Dong, X.; Liu, P.; Zhao, W.; Wang, X.; Hu, Y.; Yan, J. Generation of high-saturation two-level iridescent structures
by vibration-assisted fly cutting. Mater. Des. 2020, 193, 108839. [CrossRef]

13. Liu, Q.; Li, Q.; Zhou, X.; Liu, Z.; Lu, M. Fabrication of anti-reflective surfaces by 3-DOF fast tool servo diamond turning.
Int. J. Adv. Manuf. Technol. 2018, 95, 2875–2883. [CrossRef]

14. Yu, D.P.; Hong, G.S.; Wong, Y.S. Profile error compensation in fast tool servo diamond turning of micro-structured surfaces.
Int. J. Mach. Tools Manuf. 2012, 52, 13–23. [CrossRef]

15. Huang, P.; Wu, X.; To, S.; Zhu, L.; Zhu, Z. Deterioration of form accuracy induced by servo dynamics errors and real-time
compensation for slow tool servo diamond turning of complex-shaped optics. Int. J. Mach. Tools Manuf. 2020, 154, 103556.
[CrossRef]

16. Jiang, J.; Luo, T.; Zhang, G.; Dai, Y. Novel tool offset fly cutting straight-groove-type micro structure arrays. J. Mater. Process. Technol.
2021, 288, 116900. [CrossRef]

17. Xu, S.; Shimada, K.; Mizutani, M.; Kuriyagawa, T. Development of a novel 2D rotary ultrasonic texturing technique for fabricating
tailored structures. Int. J. Adv. Manuf. Technol. 2017, 89, 1161–1172. [CrossRef]

18. Shamoto, E.; Suzuki, N.; Hino, R. Analysis of 3D elliptical vibration cutting with thin shear plane model. CIRP Ann.
2008, 57, 57–60. [CrossRef]

19. Suárez, A.; Veiga, F.; Lacalle, L.; Polvorosa, R.; Lutze, S.; Wretland, A. Effects of Ultrasonics-Assisted Face Milling on Surface
Integrity and Fatigue Life of Ni-Alloy 718. J. Mater. Eng. Perform. 2016, 25, 5076–5086. [CrossRef]

20. Zhang, J.; Suzuki, N.; Wang, Y.; Shamoto, E. Ultra-precision nano-structure fabrication by amplitude control sculpturing method
in elliptical vibration cutting. Precis. Eng. 2015, 39, 86–99. [CrossRef]

21. Xu, S.; Shimada, K.; Mizutani, M.; Kuriyagawa, T. Fabrication of hybrid micro/nano-textured surfaces using rotary ultrasonic
machining with one-point diamond tool. Int. J. Mach. Tools Manuf. 2014, 86, 12–17. [CrossRef]

22. Chen, W.; Zheng, L.; Xie, W.; Yang, K.; Huo, D. Modelling and experimental investigation on textured surface generation in
vibration-assisted micro-milling. J. Mater. Process. Technol. 2019, 266, 339–350. [CrossRef]

23. Guo, P.; Ehmann, K.F. An analysis of the surface generation mechanics of the elliptical vibration texturing process. Int. J. Mach.
Tools Manuf. 2013, 64, 85–95. [CrossRef]

24. Yuan, Y.; Zhang, D.; Jing, X.; Zhu, H.; Zhu, W.L.; Cao, J.; Ehmann, K.F. Fabrication of hierarchical freeform surfaces by 2D
compliant vibration-assisted cutting. Int. J. Mech. Sci. 2019, 152, 454–464. [CrossRef]

25. Guo, P.; Ehmann, K.F. Development of a tertiary motion generator for elliptical vibration texturing. Precis. Eng. 2013, 37, 364–371.
[CrossRef]

26. Wang, J.; Yang, R.; Gao, S.; Weng, F.; Wang, Y.; Liao, W.H.; Guo, P. Modulated vibration texturing of hierarchical microchannels
with controllable profiles and orientations. CIRP J. Manuf. Sci. Technol. 2020, 30, 58–67. [CrossRef]

27. Zhu, Z.; To, S.; Tong, Z.; Zhuang, Z.; Jiang, X. Modulated diamond cutting for the generation of complicated micro/nanofluidic
channels. Precis. Eng. 2019, 56, 136–142. [CrossRef]

28. Suzuki, N.; Yokoi, H.; Shamoto, E. Micro/nano sculpturing of hardened steel by controlling vibration amplitude in elliptical
vibration cutting. Precis. Eng. 2011, 35, 44–50. [CrossRef]

29. Wang, J.; Wang, Y.; Yang, Y.; Yang, R.; Liao, W.H.; Guo, P. Fabrication of structurally colored basso-relievo with modulated
elliptical vibration texturing. Precis. Eng. 2020, 64, 113–121. [CrossRef]

30. Zhu, Z.H.; Chen, L.; Niu, Y.; Pu, X.; Huang, P.; To, S.; Zhu, L.; Zhu, Z. Tri-axial Fast Tool Servo Using Hybrid Electromagnetic-
Piezoelectric Actuation for Diamond Turning. IEEE Trans. Ind. Electron. 2021, 1. [CrossRef]

http://dx.doi.org/10.1016/j.jmrt.2019.06.051
http://dx.doi.org/10.1016/j.jclepro.2014.01.061
http://dx.doi.org/10.1021/acs.langmuir.9b03800
http://dx.doi.org/10.1016/j.ijmachtools.2016.04.008
http://dx.doi.org/10.1364/OE.25.002051
http://www.ncbi.nlm.nih.gov/pubmed/29519053
http://dx.doi.org/10.1016/j.matdes.2020.108839
http://dx.doi.org/10.1007/s00170-017-1421-8
http://dx.doi.org/10.1016/j.ijmachtools.2011.08.010
http://dx.doi.org/10.1016/j.ijmachtools.2020.103556
http://dx.doi.org/10.1016/j.jmatprotec.2020.116900
http://dx.doi.org/10.1007/s00170-016-9133-z
http://dx.doi.org/10.1016/j.cirp.2008.03.073
http://dx.doi.org/10.1007/s11665-016-2343-6
http://dx.doi.org/10.1016/j.precisioneng.2014.07.009
http://dx.doi.org/10.1016/j.ijmachtools.2014.06.005
http://dx.doi.org/10.1016/j.jmatprotec.2018.11.011
http://dx.doi.org/10.1016/j.ijmachtools.2012.08.003
http://dx.doi.org/10.1016/j.ijmecsci.2018.12.051
http://dx.doi.org/10.1016/j.precisioneng.2012.10.005
http://dx.doi.org/10.1016/j.cirpj.2020.04.002
http://dx.doi.org/10.1016/j.precisioneng.2018.11.008
http://dx.doi.org/10.1016/j.precisioneng.2010.09.006
http://dx.doi.org/10.1016/j.precisioneng.2020.03.021
http://dx.doi.org/10.1109/TIE.2021.3060635

	Introduction
	Dual-Axial Tool Servo Diamond Turning Mechanisms
	Toolpath Determination for Dual-Axial Tool Servo Diamond Turning
	Cutter Location Point Determination
	Tool Setting Error Compensation
	Tool-Workpiece Interference Detection

	Numerical Simulation
	Prediction of Toolpath and Surface Topography
	Prediction of Compensated Toolpath

	Experiment Results and Discussion
	Conclusions
	References

