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Abstract: Nowadays, micro-machining techniques are commonly used in several industrial fields,
such as automotive, aerospace and medical. Different technologies are available, and the choice
must be made considering many factors, such as the type of machining, the number of lots and the
required accuracy specifications in terms of geometrical tolerances and surface finish. Lasers and
electric discharge machining (EDM) are widely used to produce micro-components and are similarly
unconventional thermal technologies. In general, a laser is particularly appreciated by the industry
for the excellent machining speeds and for the possibility to machine essentially any type of materials.
EDM, on the other hand, has a poor material removal rate (MRR) but can produce microparts on only
electrically conductive workpieces, reaching high geometrical accuracy and realizing steep walls. The
most common micro-application for both the technologies is drilling but they can make also milling
operations. In this work, a comparison of femto-laser and EDM technologies was made focusing on
micro-milling. Two features were selected to make the comparison: micro-channels and micro-pillars.
The depth was varied on two levels for both features. As workpiece material, aluminum, stainless
steel and titanium alloy were tested. Data regarding the process performance and the geometrical
characteristics of the features were analyzed. The results obtained with the two technologies were
compared. This work improves the knowledge of the micro-manufacturing processes and can help
in the characterization of their capabilities.

Keywords: femto-laser; micro-EDM; micro-milling

1. Introduction

Recent years have seen a growing interest in micro-machining. Important industrial
sectors such as biomedical and automotive are the protagonists of this trend and have
invested in these processes. Micro-machining finds applications in the manufacture of a
wide variety of products such as medical components, micro-molds, electronics equipment,
micro-electrical-mechanical system (MEMS), fluidic circuits and components, micro-valves,
filters, actuators and subminiature motors.

Micro-machining includes the machining of parts or molds with overall dimensions
less than 10 mm and dimensions of individual features less than 0.1 mm. With these
dimensions, the smallest variation in the machining process due to the material machined,
to the characteristics of the tool, to thermal variations in the machine or to vibrations can
have a devastating impact on the process.

Micro-laser and micro-electrical discharge machining (EDM) are two very important
technologies widely used in micro-machining.
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They have several aspects in common. First of all, both use thermoelectric energy to
remove material from the workpiece; they are non-contact processes, which makes them
easy to produce micro-parts without distortion due to physical forces. The number of
process parameters is relevant for both technologies. The laser can process many types of
materials, from electrically conductive materials to non-conductive, while EDM can only
process conductive materials. As regards milling applications, generally, a layer-by-layer
removal process strategy is adopted for both technologies.

The laser technology represents a competitive solution for applications, such as micro-
drilling, cutting, milling and texturing, thanks to the rapid development of short and
ultra-short pulse laser technology (nano-pico and femtosecond regime), providing different
operating wavelengths (from IR to UV) and excellent beam quality (TEM00 mode) [1].
Depending on the chosen wavelength and configuration, laser sources are capable of
directly machining a wide range of micron-scale features in a large range of materials,
including metals, semiconductors, ceramics, hard materials, polymers and glasses [2].

In recent years, ultrafast-pulse lasers (pulse duration shorter than a few picoseconds)
were developed, offering advantages, especially in micro-machining. The use of ultrafast-
pulse laser permits realizing the so-called “cold” ablation, which avoids thermal diffusion
in the surrounding of the irradiated area, limiting the heat-affected zone, resulting in a
very precise ablated volume without debris, damages and microcracks. Overall, therefore,
ultrashort laser ablation of metals leads to a much higher quality compared to longer
pulses [3–5]. The laser milling technique allows for the ablation of a workpiece in order to
realize on its surface cavities or features with various sizes and shapes in a controllable
manner [6].

In detail, a layer-by-layer removal process is realized by repeating a predefined
scanning pattern a sufficient number of times until the required depth is reached. The
micro-machining setup is schematically represented in Figure 1.
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Figure 1. Schematic representation of the femtosecond laser micro-machining setup: the laser beam
is directed with a mirror (M) on a polarizer waveplate (λ/4) and expanded with a beam expander
(BE). A galvanometric scanner (G) and a F-Theta (f -θ) lens are used to scan the laser beam on the
work piece.

The laser spot is moved over the scanning pattern in the x-y plane by a galvanometer
scan head governed by a software system [7]. The milling strategy, in terms of scanning
geometry, has to be designed accordingly to the final geometry to be realized on the
specimen [8,9].

The overall laser milling process involves a great number of parameters to be selected
in order to assure a high-quality final processed material. They include the laser parameters,
such as the operating wavelength, the pulse duration, the laser fluence and the repetition
rate [10,11], and then the process parameters, such as the scanning speed, the overlap, the
number of repetitions and the kind of scan pattern [12].
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Due to the inherent configuration of the laser milling process, the actual geometry
achievable on the workpiece will inevitably feature a positive taper angle. This side effect
can be partially tuned by applying special techniques and pieces of equipment (such as
static beam inclination or dynamic precession mode ablation) [13].

As regards micro-EDM technology, the material is removed by a series of rapid electric
spark discharges between the cutting tool (electrode) and the workpiece. It is able to
machine complex micro-parts of only conductive materials that traditional processes are
unable to create [14]. In fact, being a contactless process, there are very small machining
forces between the electrode and the workpiece. This makes it easy to produce micro-parts
without distortion due to physical forces. EDM is an ideal process for obtaining burr-free
micro-size machined parts with a high aspect ratio using different materials. Micro-EDM
milling can be applied to the production of 3D micro-cavities [15,16].

A scheme for EDM milling is reported in Figure 2. The cylindrical tool, namely an
electrode, follows a straight path to create straight profile channels with rectangular or
square cross-sections. Unlike the laser technique, the EDM technique is affected by the
electrode wear that must be taken into account. In fact, at the end of each milling path, the
tool wears out, causing the tapering of the channel and a reduction in channel depth in the
exit section compared to the entry section. Tool wear compensation techniques are used to
obtain the correct path geometry [17–19]. Moreover, during the machining, the electrode
tip changes shape assuming a non-uniform radial dimension for a certain length. This is
called electrode shape deformation. It was demonstrated that, from the point of view of
the electrode changing shape, different phases occur during the erosion process due to
the change in the position of the highest intensity of the electrical field [20]. Moreover, the
transversal wear of the electrode causes a taper rate in machining. The taper increases as
the electrode diameter increases, as reported in [21].
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Figure 2. Representation of EDM milling operation.

Not only straight channels can be precisely machined using the EDM milling operation,
but also particular micro-features can be machined. Semi-circular, circular, zigzag and
free-form micro-features are also possible through CAD integration with the CAM system
to generate the required toolpath plan [22,23].

Several parameters both electrical and not electrical are involved in the EDM process
(Figure 3) [24]. The process performance is evaluated using indicators, such as the mate-
rial removal rate (MMR), the tool wear ratio (TWR), the taper rate (TR) and the surface
characteristics (surface roughness, remelting layer thickness, thermally altered zone).
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Figure 3. Parameters involved into the EDM process.

The influence of the process parameters on the performance in micro-EDM machining
is widely dealt with in the literature, while the comparison between machining technologies
is poorly reportedSome studies on this topic are available but are focused primarily on
micro-drilling [25,26]. In these studies, the influence of the process parameters for both
laser and EDM on the micro-drilling performances was underlined. Moreover, it was found
that laser is more competitive than EDM as regards MRR despite the accuracy of the micro-
holes in terms of dimensional accuracy (overcut, taper rate and circularity). As regards
the micro-geometrical characteristics of the inner surface of micro-holes, the smoothness
of the generated surfaces is better using ultrashort pulsed laser than micro-EDM [27].
Some authors proposed hybrid solutions using both technologies to increase efficiency in
micro-drilling applications [28,29].

A wider comparison among different technologies for micro-machining was made
in [30], but EDM was considered only for drilling applications.

The aim of this work is to compare laser and EDM technologies in a micro-milling
application. A femto-laser and a micro-EDM system were used for this scope. Two different
milling geometries were selected as case studies: micro-channel and micro-pillar at two
aspect ratios. The tests were executed on stainless steel, titanium alloy and aluminum.
The selection of the process parameters for both technologies was made after preliminary
tests. The performance was evaluated considering the machining time and the macro- and
micro-geometrical characteristics of the obtained features. The comparison of the results
underlined the strengths and weaknesses of the two technologies. This work can contribute
to improving the knowledge of the capability of femto-laser and EDM in a micro-milling
application and can assist the decision-making stage of the selection of technology in the
production field as a function of the characteristics of the micro-components that have to
be produced.

2. Experimental Plan

A comparison between the femtosecond laser micro-machining and the EDM technol-
ogy was made on two different milling geometries, as schematically represented in Figure 4.
The first one, reported in Figure 4a, consists of a micro-channel milled on stainless steel
AISI316L, titanium alloy Ti6Al4V and aluminum Al5754-H111 with a length L0 = 10 mm, a
width of about t0 = 0.1 mm and depth of about ∆ = 0.1 mm. The second one consists of a
matrix of micro-pillars, based on the geometry reported in Figure 4b, milled on AISI316L
and Ti6Al4V. The pillars featured a top diameter D0 = 2r0 = 0.05 mm and two different
heights of about ∆ = 0.05 mm and ∆ = 0.1 mm.

As already discussed in the Introduction, the actual geometry achievable on the
workpiece has a positive taper angle that, for the geometries reported in Figure 4, translates
into the geometries depicted in Figure 5.
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and (b) micro-pillar.

Table 1 summarizes the details of the experimental campaign.

Table 1. Map of the tested experimental conditions comparing the two technologies.

Feature Geometrical Data Material

Micro-channel
L0 = 10 mm AISI316L
t0 = 100 µm Ti6Al4V
∆ = 100 µm Al5754-H111

Micro-pillar D0 = 50 µm AISI316L
∆ = 50 µm, 100 µm Ti6Al4V

The femto-laser tests were performed at the company Kirana (Trento, Italy). The laser
milling was carried out using a femtosecond laser system featuring a Pharos PH1 (Light
Conversion, Vilnius, Lithuania) laser source with a 260 fs pulse duration, fundamental
wavelength λ = 1030 nm and maximum repetition rate of 606 kHz. The laser beam was
focused on the workpieces by using an excelliSCAN 14 (SCANLAB, Puchheim, Germany)
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with an F-Theta lens (focal length f = 100 mm). With the system thus configured, the
laser spot focused on the samples has a diameter of 20 µm. The spot overlap was set to
60% because this value ensures a high ablation efficiency and, in the meantime, a high-
quality sample, avoiding surface thermal damage [10]. Generally, the optimum fluence
to be applied to operate in a highly efficient ablation regime has to be about 7.5 times the
threshold fluence [10]. Considering this and the need to perform the layer-by-layer ablation
in a gentle regime, to maintain a good surface quality [31], the operating mean laser fluence
applied in the process is for aluminum, steel and titanium alloy 0.65, 0.6 and 0.55 J/cm2,
respectively. The laser ablation was performed in air at room temperature.

The tests executed using the EDM machine were made at the Laboratory of Micro
Technologies of the University of Bergamo. The Sarix-SX200 is available as a micro-EDM
system using hydrocarbon oil as the dielectric. EDM is characterized by several process
parameters, and the optimization phase plays a key role in obtaining, in general, good
performance. In general, EDM system constructors give suggestions for the selection of the
parameters. In this work, several preliminary tests were made to optimize the machining
conditions. One of the most important parameters is the Energy that defines the impulse
shape and the level of violence of erosion—in other words, the adopted strategy to remove
material (roughing, finishing, fine finishing). The choice of the energy is a tradeoff between
the machining accuracy and the machining time. The type of erosion affects both the
performance in terms of material removal rate (MRR) and tool wear ratio (TWR) and the
accuracy of the machining. Considering the types of applications studied, in this test,
it was decided not to test big impulses (roughing) but the fine ones (finishing). Other
important parameters are peak current, voltage, frequency, width, which is the time the
transistor remains active, gain, which is a parameter that controls the gain of the reaction
block, and gap, which is a value proportional to the distance between the electrode and the
workpiece during erosion. Finally, regulation identifies a certain regulation management
algorithm defined by the machine manufacturer. As the electrode, a cylinder tungsten
carbide electrode was chosen with a diameter equal to 0.1 mm. The optimized process
parameters used in the EDM experiments are reported in Table 2.

Table 2. EDM process parameters.

Workpiece ∆ [µm] Feature Energy Gap I (Index) V (V) W (µs) F (kHz) Gain

Al5754-H111 100 Channel 100 20 100 100 5 140 350
AISI316L 100 Channel 100 20 100 100 5 150 350
Ti6Al4V 100 Channel 100 20 100 100 5 150 150
AISI316L 50 Pillar 100 72 100 100 5 140 350
AISI316L 100 Pillar 100 72 100 100 5 140 350
Ti6Al4V 50 Pillar 100 75 100 102 5 150 150
Ti6Al4V 100 Pillar 100 75 100 102 5 150 150

3. Analysis of the Results

In this section, the results for both technologies are descripted. Data about the per-
formance of the process and the geometrical characteristics of the obtained features are
reported. The geometrical characterization was made using a Zeiss EVO 40 scanning elec-
tronic microscope (SEM) and a white light interferometer. The white light interferometry
permits reconstructing the 3D shape of the specimens, and the analysis was performed
with a SmartWLI interferometer (GBS, Ilmenau, Germany) featuring a 20× Mirau objective
with a numerical aperture NA = 0.4 and a resolution of 10 nm along the vertical axis and
0.48 µm in the x-y plane.

3.1. Femto-Laser

Table 3 reports the geometrical data of the channel realized on the three different
samples through the laser milling technique. Moreover, it shows the calculated MRR, taper
and the bottom profile roughness Ra.
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Table 3. Data of the laser channels.

Workpiece ∆ (µm) MRR (mm3/s) t0 (µm) tc (µm) Taper (-) Ra (µm)

Al5754-H111 100 8.42 × 10−4 129 60 0.56 0.33
AISI316L 100 3.04 × 10−4 127 71 0.57 0.29
Ti6Al4V 100 3.06 × 10−4 123 66 0.56 0.22

The machining time depends on the milling strategy and also on the specific physical
and electronical characteristics of the machined specimen. Among these properties, the
material density covers a determinant role. Indeed, in this case, the lower machining
time occurs for aluminum, allegedly due to its low density (2.75 g/cm3), whereas the
maximum machining time occurs for steel (8.0 g/cm3), followed by the titanium alloy
(4.5 g/cm3). Since the ablated volumes of materials are quantitatively comparable, the
MRR of aluminum results to be almost more than twice that of the other two metals.

As regards the geometrical characteristics, the taper rate is not negligible as the walls
of the channels come with an angle of about 16◦ for the three machined samples. This is an
inherited feature of the laser engraving process, which causes the side walls to deviate from
the expected orthogonal direction and present an inclination. The formation of inclined
sidewalls is ascribable to a series of factors that characterize the process, as the divergence
of the laser beam [32], the overlap [33], and the gaussian beam profile [13]. This side-
effect can be reduced by properly optimizing the process parameters [32] but cannot be
completely eliminated unless optical components are used to vary the angle of incidence of
the laser beam on the cavity walls [13].

The roughness of the bottom layer depends on the process parameters, as a too high
applied fluence can induce the presence of fused areas with bumps, or a too low overlap can
produce ripples on the surface. The laser milling process has been optimized to reduce the
machining time, reach the highest efficiency and maintain a good surface quality. A good
agreement was found by maintaining the bottom profile roughness of less than 0.35 µm for
the three machined samples.

Figure 6 shows optical microscopy images of the channel for the three materials, and
Figure 7 shows the 3D reconstruction of the aluminum sample.
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The three channels present a clean and precise profile at the top, and the bottom is
uniform and mainly flat. Their profiles were sampled with white light interferometer, and
the resulting curves are shown in Figure 8.
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Figure 8. Profiles acquired with the white light interferometer of the channels realized with laser milling on (a) Al5754-H111,
(b) AISI316L and (c) Ti6Al4V.

The aluminum channel profile presents a more rounded curve compared to those of
steel and titanium, where a well-defined trapezoidal shape is visible. In these last two, the
profile presents some steps in the order of 2–3 µm; these constitute a slight deviation from
the ideal profile.

Arrays of pillars with different heights, respectively, of about 50 µm and 100 µm were
realized on steel and titanium specimens. Their characteristic geometrical values, as well
as, taper and MRR are shown in Table 4.
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Table 4. Data of the laser pillars.

Workpiece ∆ (µm) 2r0 (µm) 2rc (µm) Taper (-) MRR (mm3/s)

AISI316L 50 48.4 122.6 1.48 9.25 × 10−4

AISI316L 100 51.38 181.95 1.31 8.11 × 10−4

Ti6Al4V 50 51.86 123.95 1.44 1.02 × 10−3

Ti6Al4V 100 50.61 188.25 1.38 8.87 × 10−4

As seen in the previous case, comparing the two materials, titanium needs less time to
be machined (approximately 10% less) for both the 0.05 mm and the 0.1 mm depth.

The pillars present a well-defined circular top face with a diameter of about 50 µm, as
highlighted in the SEM images reported in Figure 9 and in the 3D shape reconstruction
in Figure 10. Additionally, for this geometry, the pillar walls present a positive taper; this,
as previously discussed, is an intrinsic side effect of the laser-milling micro-machining
process. The walls slop remains constant, and the perimeter of the bottom face of the
pillar enlarges as the height increases, leading to a smaller calculated taper for the higher
pillars. In conclusion, the two specimens subjected to this micro-machining process show a
comparable MRR value as found for the micro-channels.
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Figure 10. Three-dimensional reconstruction of pillars on AISI 316L, with a depth of about (a) ∆ = 50
µm and (b) ∆ = 100 µm, obtained using a femto-laser.

3.2. Micro-EDM

Table 5 reports the EDM process performance in terms of material removal rate and
the electrode wear. Geometrical data are also reported.

Table 5. Data of the EDM channels.

Workpiece ∆ (µm) MRR
(mm3/s)

Electrode
Wear (mm) t0 (µm) tc (µm) Taper

(-) Ra (µm)

Al5754-H111 100 5.3 × 10−5 0.491 112 90 0.16 0.38
AISI316L 100 2.1 × 10−5 4.465 119 78 0.46 0.18
Ti6Al4V 100 2 × 10−5 6.552 124 91 0.40 0.24

Figure 11 shows optical microscopy images for the three materials. Among the three
materials, the maximum MRR occurs for aluminum, while stainless steel and titanium
alloy reach a similar value. These differences are mainly due to the physical and electrical
properties of the workpiece material. The machined workpiece influences the entity of the
electrode wear that seems to be proportional to the erosion time. The machining gap and
the run-out of the electrode produces differences among the samples’ widths. Additionally,
the taper rate is almost very low, and the walls of the channels are vertical. The edges
are sharp and well defined; only in one case, the resolidified material on the surface is
present (see titanium). Stainless steel and titanium alloys have a higher taper rate (over
0.4) than aluminum. This result can be justified considering two aspects. First of all, the
machinability of the material: increasing the machinability of the workpiece material, in
other words decreasing the machining time, the side sparks that enlarge the holes are less.
Second, the electrode wear: when decreasing the machining time, the tip of the electrode is
affected by a lower shrinkage. As regards the roughness, this index can be related to the
dimensions of the craters that could be influenced by the thermal and physical properties of



J. Manuf. Mater. Process. 2021, 5, 125 11 of 18

the workpiece material. Melting point and thermal conductivity are higher for aluminum,
and the craters are larger despite of the roughness index.
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The samples were characterized with white light profilometer, and the reconstructed
3D of the aluminum samples and the profiles of the three specimen are, respectively,
reported in Figures 12 and 13.
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As regards the pillars, Table 6 shows the data obtained using EDM technology. The
geometric data are the mean value. Figure 14 shows SEM images of the pillars for each
tested conditions, and in Figure 15, two 3D reconstructions of the pillars realized on the
titanium alloy are reported. With a fixed workpiece material, the effect of the depth of
the pillars is clear: the electrode wear is proportional to the machine depth, as the MRR is
almost constant; increasing the depth, the material removal occurs with the same feed, and
the top and bottom dimensions of the pillars are similar; therefore, the taper rate is around
the double at a depth of 50 µm than 100 µm.
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Figure 13. Reconstructed profile of the channels machined with EDM technology (a) Al5754-H111, (b) AISI316L and
(c) Ti6Al4V.

Table 6. Data of EDM pillars.

Workpiece ∆ (µm) Electrode Wear (mm) 2r0 (µm) 2rc (µm) Taper (-) MRR (mm3/s)

AISI316L 50 2.75 41.76 59.12 0.347 3.28 × 10−5

AISI316L 100 5.018 35.78 53 0.172 3.64 × 10−5

Ti6Al4V 50 1.536 51.77 74.98 0.464 6.56 × 10−5

Ti6Al4V 100 2.823 52.52 79.51 0.27 6.30 × 10−5

Comparing the two materials, titanium needs less time to be machined, and conse-
quently, the electrode wear is also lower than that obtained when stainless steel is machined.
The taper rate is higher for the titanium. This behavior can be explained considering the
side discharges that have a lower time to erode the lateral surfaces.

To conclude, in all cases, the top pillars show a good circularity and very low taper.
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4. Comparison Femto-Laser and EDM Performance

In this section, a comparison of the femto-laser and EDM performance obtained to
fabricate micro-channels and micro-pillars was made. Figures 16–18 regard the 100 µm
channels machining in terms of MRR, taper rate and roughness bottom profile, respectively.
From the point of view of the MRR, the laser removes the material one order of magnitude
faster than EDM. EDM permits obtaining a machining that has better geometrical char-
acteristics than laser. It can be noted that when stainless steel and titanium is machined,
the difference of the taper rate between the two technologies is not high, but it is useful
to remark that, in these cases, channels EDM present a lower depth compared to those
realized via the femto-laser technique, causing a higher taper rate. Finally, as regards the
surface roughness, the workpiece material affects the comparison of the two technologies:
when stainless steel is machined, EDM reaches a better surface finishing, while for the
other materials, the values are similar.
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In Figures 19 and 20, the performance comparison of the pillars machining is reported
in terms of MRR and taper, respectively. The trend found for the machining of micro-
channel is confirmed also for the pillar’s geometry: laser, with respect to EDM, realizes a
fast material removal. In terms of geometrical accuracy, the pillar taper rate is smaller for
the EDM, and it can be seen that for higher pillar depth, the taper tends to decrease.
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of the manufacturing production. The optimal choice of the manufacturing system is a 
function of the geometries and tolerances of the feature to realize. 
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These results give a contribution in the definition of the capabilities of the femto-
laser and EDM in micro-milling applications. In fact, from this analysis, the limits and
the strengths of a femto-laser and EDM in micro-milling applications were highlighted.
Both the technologies ensure a good accuracy of the machining. The femto-laser permits
obtaining very fast machining despite the walls tapering, while EDM is the opposite. The
results showed that the proper technology selection contributes to improving the quality
of the manufacturing production. The optimal choice of the manufacturing system is a
function of the geometries and tolerances of the feature to realize.

5. Conclusions

This paper compares two different technologies, femto-laser and EDM, to realize two
micro-features on different metals: channels and pillars. Both the technologies use thermal
energy to remove material, but the removal material mechanism is different. The milling
geometries were machined at two aspect ratios when it was possible on three workpiece
materials: aluminum, stainless steel and titanium alloy. The performance was evaluated
considering the material removal rate and the geometrical characteristics of the obtained
micro-features. In both the features, laser reaches an MRR an order of magnitude faster
than EDM but with a lower geometrical accuracy in terms of the walls’ tapering.

The EDM technique, in the range of the performed test, is not limited in the sample
reachable depth. Conversely, the maximum depth achievable by means of the femto-
laser milling method is strongly dependent on the positive taper angle that affects the
cavity walls: the feasible geometries have to present an aspect ratio that considers this
characteristic in order to be realized.

If the specimen to be machined is conductive, the choice between the two techniques
to be applied in an industrial context has to be done by taking into account the results of
the research. The factors that have to be analyzed are the amount of material to be ablated,
the required geometrical accuracy as well as the time at the disposal for the machining. If a
high accuracy of the machined sample is required, and the necessary machining time is
acceptable for the amount of the volume to be removed, the choice can fall in the EDM
technique. In contrast, whether the processing involves a higher volume to be removed,
and in the meantime, the sidewalls taper is acceptable for the required geometry, the
femto-laser milling technique can be applied.
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This paper highlights the limits and the strengths of femto-laser and EDM, improv-
ing their knowledge in specific applications. The presented results could help the actors
involved in the micro-machining to select the best technology as a function of the spe-
cific target.
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