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Abstract: Catastrophic tool failure due to the low flexural stiffness of the micro-tool is a major concern
for micromanufacturing industries. This issue can be addressed using high rotational speed, but the
gyroscopic couple becomes prominent at high rotational speeds for micro-tools affecting the dynamic
stability of the process. This study uses the multiple degrees of freedom (MDOF) model of the cutting
tool to investigate the gyroscopic effect in machining. Hopf bifurcation theory is used to understand
the long-term dynamic behavior of the system. A numerical scheme based on the linear multistep
method is used to solve the time-periodic delay differential equations. The stability limits have been
predicted as a function of the spindle speed. Higher tool deflections occur at higher spindle speeds.
Stability lobe diagram shows the conservative limits at high rotational speeds for the MDOF model.
The predicted stability limits show good agreement with the experimental limits, especially at high
rotational speeds.
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1. Introduction

Micromilling can create complex miniature 3D features with sub-micron accuracy in
various engineering materials, such as metals, ceramics, polymers, and composites. The
micromilling process is extensively used in many high-technology sectors like biomedical,
defense, and aerospace. However, in micromilling, self-excited vibration or chatter may
cause catastrophic tool failure and damage the spindle and workpiece. Chatter vibration is
detrimental to the dimensional accuracy and surface finish of the workpiece.

The dynamic interaction between the tool and cutting process causes chatter in ma-
chining. Regenerative chatter occurs during the cutting process when a flexible tool leaves
behind a wavy surface on the workpiece in the preceding cut. The phase difference between
the waviness of the current and the preceding passes can result in a condition where the
amplitude of the vibration grows rapidly. In the micromilling process, the key reason
behind the occurrence of the regenerative chatter is the limited flexural stiffness of the
small end mills. Very high spindle speeds can counter the limited flexural stiffness resulting
in lower chip loads and cutting forces. However, the spindle dynamics can influence the
chatter at high rotational speeds due to gyroscopic effects, especially for low stiffness
tools (≤100 µm in diameter and high length to diameter ratio). Therefore, it is essential to
investigate the impact of the gyroscopic couple on stability in high-speed machining.

The adverse effects caused by chatter vibration have inspired researchers to develop
different models for predicting and avoiding the chatter in conventional milling and
micromilling. Tobias [1] and Tlusty [2] presented the mechanism of chip regeneration
and stability charts for single-point metal cutting that provides stable depths of cut as a
function of spindle speed. Minis and Yanushevsky [3] proposed a theoretical approach
based on Fourier analysis and the transfer function. They have developed a comprehensive
mathematical model for a milling process with two orthogonal degrees-of-freedom (DOF).

J. Manuf. Mater. Process. 2021, 5, 130. https://doi.org/10.3390/jmmp5040130 https://www.mdpi.com/journal/jmmp

https://www.mdpi.com/journal/jmmp
https://www.mdpi.com
https://orcid.org/0000-0002-4021-4199
https://doi.org/10.3390/jmmp5040130
https://doi.org/10.3390/jmmp5040130
https://doi.org/10.3390/jmmp5040130
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jmmp5040130
https://www.mdpi.com/journal/jmmp
https://www.mdpi.com/article/10.3390/jmmp5040130?type=check_update&version=2


J. Manuf. Mater. Process. 2021, 5, 130 2 of 16

Budak and Altintas [4,5] analytically predicted the stability limits in the frequency domain.
They also proposed a multi-frequency solution to improve the prediction at small radial
immersions where the process is highly intermittent. Insperger et al. [6,7] performed
stability analysis in the discrete time domain, including the periodically varying parameters.
It is important to note that these studies have considered single or two DOF systems to
predict the stability limits.

Several researchers have studied the occurrence of bifurcation during the machining
process. Bifurcation is the qualitative behavior of the solutions as the control parameters
in a system are varied [8,9]. Davies et al. [10] used the Poincare sectioning technique
to characterize and identify chatter in high-speed milling. Zhao and Balachandran [11]
developed a time-domain model for both regenerative and loss of contact effects in a milling
system. They studied the bifurcations diagrams for parameters, such as axial depth of cut.
Schmitz and Honeycutt [12] presented the extended milling bifurcation diagram using
time-domain simulation and once-per-revolution sampling. They found both stability
behavior such as Hopf and period-n bifurcations in bifurcation diagrams. Consequently,
it is crucial to understand the system behavior with a control parameter of interest using
bifurcation analysis.

It may be noted that the gyroscopic effect on dynamic stability becomes more pro-
nounced in high-speed micromachining. Movahhedy and Mosaddegh [13] used finite
element analysis to determine the modal properties of the spindle system and its fre-
quency response function (FRF). They assumed rigid connections between the tool, tool
holder, and spindle. They predicted speed-dependent stability boundaries and observed
that the gyroscopic effects become significant only at very high speeds. Bediz et al. [14]
used a custom-made impact excitation system to obtain speed-dependent dynamics of
high-speed spindles through experimental modal analysis. They noticed that the spindle
speed affected the dynamic response significantly, especially at higher spindle speeds.
Cao et al. [15] investigated the effect of the gyroscopic moment and centrifugal forces on
spindle dynamics. They used the Nyquist stability criterion to generate the stability lobe
diagram of high-speed milling. They observed a speed-dependent shift in stability lobes.
Xiong et al. [16] investigated the gyroscopic effect of the rotating spindle on the stability
characteristics of the conventional milling system and found that it makes the stability
prediction less conservative. Wan et al. [17] investigated the effect of gyroscopic couple
on the stability. They used speed-dependent FRFs of the tool. They considered the effect
of runout on the stability. Mokhtari et al. [18] investigated the effects of rotary inertial
dynamics on prediction of chatter in the milling operation. They considered a 3D rotating
cantilever Timoshenko beam for modeling the cutting tool. They found that without the
rotary inertial dynamics, significant errors are in the prediction of chatter limits at high
rotational speeds. Lu et al. [19] obtained the FRF of the spindle system based on the rotating
Timoshenko beam theory and the receptance coupling substructure analysis (RCSA). They
investigated the centrifugal force and gyroscopic effect caused by the high-speed rotation of
the micro-milling spindle. Jalili et al. [20] modeled a cutting tool as a rotating clamped-free
beam which is excited by cutting forces. They investigated various kinds of resonances in
milling operation using a 3-D nonlinear dynamic model of the milling process including
both structural and cutting force nonlinearities, gyroscopic moment, and rotary inertia.
Totis [21] introduced additional rotational degrees of freedom in the stability analysis of
the conventional milling process. However, the effect of the gyroscopic couple was not
investigated in this study. Very few studies have investigated the gyroscopic effect on
stability limits in high-speed machining. These models have not explicitly considered the
rotational degrees of freedom along with the translational degrees of freedom.

Hence, this study is focused on understanding and modeling the gyroscopic effect in
a compliant micro-tool (at high rotational speeds) on the stability boundaries via a rotor
dynamics-based analysis with the cutting forces at one end. A MDOF model includes
rotational degrees of freedom with the translational degrees of freedom to investigate the
effect of gyroscopic moment. Bifurcation analysis was performed to understand the system
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behavior for a control parameter in the MDOF system. The time-periodic delay differential
equations governing the dynamics of the MDOF milling system were numerically solved
using a linear multistep (LMS) method. The stability charts and bifurcation diagrams
were constructed along with a comparison of displacement profiles at different depths
of cut and spindle speeds. Poincare maps were also developed to observe phase space
trajectories. The predicted stability limits were validated at different rotational speeds and
depths of cut. This study will be beneficial to understand the long-term dynamic behavior
of the micromilling system, which is affected by gyroscopic moment especially, at high
rotational speeds.

2. Equations of Motion for MDOF Stability Model

For a low flexural stiffness end mill, the effect of the gyroscopic couple will be promi-
nent at high rotational speeds. Both rotational and translational degrees of freedom have
been considered in the stability model in the authors’ previous work [22] to capture the
effect of gyroscopic couple on stability. This model considers a micro end mill with mass
‘m’ a rotor, as shown in Figure 1. Flexible supports at the ends (clamping end and tooltip
end) of the micro end mill are assumed. The center of mass is located at distance ‘a’ and
‘b’ from the clamping end and the tool tip-workpiece interface, respectively. The micro
end mill has a fixed frame of reference ‘XYZ’ and a rotating frame of reference ‘xyz’. The
micro end mill is rotating around the z-axis with spindle speed ‘ω’. The center of mass
has orthogonal translational degrees of freedom in xG and yG, and rotational degrees of
freedom in θx and θy rotations about the x and y axes, respectively. x1, y1 and x2, y2 are
the displacements at the clamping end and tooltip end, respectively, which can be defined
in terms of xG, yG, θx and θy by,

x1 = xG − aθy; x2 = xG + bθy
y1 = yG + aθx; y2 = yG − bθx

(1)
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Figure 1. Micro end mill as a rotor with flexible bearing supports.

The dynamic equations of motion of the center of mass in the translational and
rotational directions can be determined using a Lagrangian formulation described in
Mittal et al. [22] as,

m
..
xG + α′x

.
xG + αxxG − γ′x

.
θy − γxθy = Fx (2)

m
..
yG + α′y

.
yG + αyyG + γ′y

.
θx + γyθx = Fy (3)

Ix
..
θx + Izω

.
θy + γ′y

.
yG + γyyG + δ′y

.
θx + δyθx = −bFy (4)
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Ix
..
θy − Izω

.
θx − γ′x

.
xG − γxxG + δ′x

.
θy + δxθy = bFx (5)

where
αq = kq,1 + kq,2, α′q = cq,1 + cq,2

γq = kq,1a− kq,2b, γ′q = cq,1a− cq,2b
δq = kq,1a2 + kq,2b2, δ′q = cq,1a2 + cq,2b2; q = x, y

where Ix and Iz are the transverse and the axial moments of inertia, respectively, kx1, kx2, ky1,
ky2 are the stiffness values of the flexible bearing supports in x and y directions, cx1, cx2, cy1,
cy2 are the damping coefficients of the flexible bearing supports in x and y directions, and Fx
and Fy are the cutting forces in the x and y directions. It may be noted that in Equations (4)

and (5), Izω
.
θy and Izω

.
θx are the gyroscopic moment acting about x and y axes, respectively.

The derived set of equations of motion for a higher-order multiple degrees of freedom
stability model consists of translational and rotational degrees of freedom can be expressed
in the following matrix form,

M
..
Φ + C

.
Φ + KΦ = F (6)

where M, C, and K are the mass matrix, damping matrix with the gyroscopic component,
and stiffness matrix, respectively. Φ is the displacement vector and F is the force matrix,
determined using dynamic force modeling. M, C, K, Φ, and F are defined as,

M =


m 0 0 0
0 m 0 0
0 0 Ix 0
0 0 0 Ix

; C =


α′x 0 0 −γ′x
0 α′y γ′y 0
0 γ′y δ′y Izω

−γ′x 0 −Izω δ′x

;

K =


αx 0 0 −γx
0 αy γy 0
0 γy δy 0
−γx 0 0 δx

 ; Φ =


xG
yG
θx
θy

 : F =


Fx
Fy
−bFy
bFx


(7)

A mechanistic force was used to determine the dynamic cutting forces Fx and Fy
in terms of dynamic chip thickness (as shown in Figure 2) as described by Budak and
Altintas [4].
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The dynamic chip thickness is given by,

h
(
φj
)
=
[
∆x2(t) sin

(
φj
)
+ ∆y2(t) cos

(
φj
)]

(8)

where ∆x2(t) and ∆y2(t) are the difference between the dynamic displacement during the
present (j) and previous (j − 1) cut.
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The cumulative cutting forces in matrix form are expressed as,

{F(t)} =
[

Fx
Fy

]
=

1
2

apKtc

[
axx axy
ayx ayy

][
∆x2
∆y2

]
(9)

where axx, axy, ayx, and ayy are the directional factors.
By substituting Fx and Fy and ∆x2 and ∆y2 in terms of xG, yG, θx, and θy, the force

matrix F can be expressed as,

F =


Fx
Fy
−bFy
bFx

 =
1
2

apKtc


axx axy −baxy baxx
ayx ayy −bayy bayx
−bayx −bayy b2ayy −b2ayx
baxx baxy −b2axy b2axx




∆xG
∆yG
∆θx
∆θy

 (10)

Equation (10) can be rewritten as

{F(t)} = 1
2

apKtc[A(t)]{∆(t)} (11)

where ∆(t) is given as {∆(t)} = {Φ−Φ0}, Ktc is cutting force coefficient in tangential
direction and A(t) is the directional factor matrix.

By substituting force matrix in Equation (6), the dynamic equations of motion for a
micro end mill system can be expressed in matrix form as,

M
..
Φ + C(ω)

.
Φ + KΦ =

1
2

apKtc[A(t)]{Φ(t)−Φ(t− T)} (12)

3. Stability Analysis Using Linear Multistep Method (LMM)-Based
Numerical Scheme

The multiple degrees of freedom model has been expressed in terms of the periodic
delay-differential equation where A(t) is a time-periodic term (A(t) = A(t + T). The
frequency-domain approach will not predict the stability limits as accurately as the time-
domain approach. Therefore, in this study, the periodic delay differential equations have
been solved numerically using the fourth-order Explicit Adams–Bashforth method, a linear
multistep method (LMM) [23,24]. Further, the stability limits have been identified using
numerical solutions at different rotational speeds. The dynamic equations of motion for a
micro end mill system can be expressed in matrix form as second-order delay differential
equation (Equation (12)),

M
..
Φ + C(ω)

.
Φ + KΦ =

1
2

apKtc[A(t)]{Φ(t)−Φ(t− T)}

where M, C, K, A(t), and Φ are the matrices of mass, damping coefficients, stiffness,
directional factors, and displacement variables, respectively.

By defining the state variables as,

xG1 = xG, xG2 = dxG
dt =

.
xG1

yG1 = yG, yG2 = dyG
dt =

.
yG1

θx1 = θx, θx2 = dθx
dt =

.
θx1

θy1 = θy, θy2 =
dθy
dt =

.
θy1

(13)

The second-order delay differential equation for the periodic milling dynamics shown
in Equation (12) is organized in the first-order delay differential equation using state
variables as follows,

M′
.
q(t) = L′(t)q(t) + R′(t)q(t− T) (14)
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where

M′ =
[

I4×4 04×4
04×4 M

]
, L′(t) =

[
04×4 I4×4

δA(t)− K −C

]
, R′(t) =

[
04×4 04×4
−δA(t) 04×4

]
,

δ = 1
2 apKtc, q(t) =

[
xG1 yG1 θx1 θy1 xG2 yG2 θx2 θy2

]Tand
.
q(t) =

[ .
xG1

.
yG1

.
θx1

.
θy1

.
xG2

.
yG2

.
θx2

.
θy2

]T

By multiplying the Equation (14) on both sides with the inverse of matrix M′, Equa-
tion (14) becomes

.
q(t) = L(t)q(t) + R(t)q(t− T) (15)

where
L(t) = M′−1L′(t) and R(t) = M′−1R′(t)

The values of state variables in the previous cut are required to solve Equation (15).
The first-order delay differential equations as shown in Equation (15) can be written as

.
q(t) = F(t, q(t), q(t− T)) t ≥ 0

q(t) = ϕ(t) t ≤ 0
(16)

where ϕ(t) is the initial function, T is the time period, q(t) is called the delay argument,
and q(t− T) is the solution of the delay term.

The linear multistep methods are extensively used for the numerical solution of initial
value problems without the delay term. The delay period T is divided into r discrete time
intervals of ∆t. Assume the value to q(t) and F(t, q(t), q(t− T)) at the current time ti is qi
and Fi, respectively. According to the fourth-order explicit Adams–Bashforth method, the
next value qi+1 from previous values of qi can be computed as

qi+1 = qi +
∆t
4
(55Fi − 59Fi−1 + 37Fi−2 − 9Fi−3) (17)

While solving the delay equation (Equation (15)) using the Adams–Bashforth method,
the solution for first interval t ε(0, T) will depend on the value of function ϕ(t). The values
of q at previous steps will be determined using ϕ(t). For subsequent time intervals, the
values of q in previous steps will be used from determined values of q in previous intervals.
Using Equation (17), the motion of the micro end mill system (see Equation (12)) can be
numerically simulated for different spindle speeds and axial depths of cut.

A schematic to generate the stability plots is shown in Figure 3. The stability limits are
predicted by progressively increasing the axial depth of cut for a spindle speed given by
ω = 2π/T until the numerical simulations for motion show instability. Root mean square
(RMS) values of first half and second half of displacements data were calculated as RMS1
and RMS2, respectively. If the RMS1 is greater than the RMS2, then the system is assumed
as stable, otherwise it will be unstable system. This procedure is repeated for the next
spindle speeds to construct the stability lobe diagrams.
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4. Results and Discussion

The numerical modeling is carried out for slot milling operation. The simulations
were performed for different spindle speeds and depths of cut to construct the stability
lobe diagrams. In this study, cutting force coefficients were assumed to be constant. To
determine the tangential and radial cutting force coefficients, slot milling experiments were
conducted on the high-speed micromachining center developed in the Machine Tools Lab,
IIT Bombay, as shown in Figure 4. The two-fluted micro end has a diameter of 100 µm. The
length of flute is 200 µm. The overhang length of tool (length of tool outside the clamping)
is 20 mm. The workpiece material is Ti6Al4V which finds application in the aerospace and
biomedical industries. The cutting forces in x and y directions were measured using a
3-axis tabletop dynamometer (Minidyn 9256C1, Kistler, Pune, India). The experimental
conditions as shown in Table 1 were used to carry out experiments to determine the cutting
force coefficients. Experiments were carried out at feed per rev of 2 µm/flute and depth
of cut of 10 µm. The mechanistic force modeling was used to determine the radial and
tangential cutting force coefficients from experimentally measured cutting forces. Average
value of measured cutting force coefficients for different speeds was used. The value of
radial and tangential cutting force coefficients were 9182 MPa and 7205 MPa, respectively.

Table 1. Experimental conditions for determination of cutting force coefficients.

Experimental Conditions Value

Tool Diameter (µm) 100
Cutting edge radius (µm) 2–3

Speed (RPM) 40,000, 60,000, 80,000
Feed (µm/flute) 2

Axial depth of cut (µm) 10
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The modal parameters (natural frequencies, stiffnesses, and damping ratios) at the
clamping end and tooltip end are required to predict the stability limits. Impact test-
ing is performed in which excitation is done using a miniature impact hammer (Dytran
Chatsworth, CA, USA, Model 5800SL) and displacement measured using a laser displace-
ment sensor (Keyence, Pune, India, Model LK-H020). The stiffness and damping ratios of
the machine tool structure at the ends of the rotor, which are assumed as flexible support
bearings, are shown in Table 2. The dynamic parameters in x and y directions are assumed
to be isotropic because of symmetrical collet and tool.

Table 2. Stiffness, natural frequency, and damping ratio at the clamping end and the tooltip end.

Clamping End

Stiffness (kx1, ky1) 9 × 106 N/m
Natural Frequency (Hz) 4030 Hz
Damping ratio (ζx1, ζy1) 0.03

Tooltip end
Stiffness (kx2, ky2) 0.65 × 106 N/m

Natural Frequency (Hz) 4000, 4800, 6440 Hz
Damping ratio (ζx2, ζy2) 0.03

4.1. Bifurcation Analysis

A bifurcation diagram is a tool to study the long-term qualitative behavior of the
dynamic system with the variation of the control parameter. In the stability analysis of
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milling, the control parameters are axial depth of cut and spindle speed during the ma-
chining operation. To construct the bifurcation diagram, simulations were performed
for the tooltip displacement at a given depth of cut. Initial values for state variables
xG1 , yG1, θx1, θy1, xG2, yG2, θx2 and θy2 are 10−6, 10−6, 10−4, 10−4, 0, 0, 0, and 0, respec-
tively. The displacement values are collected for a particular time period and the process is
repeated for the next depths of cut. The bifurcation diagrams are numerically constructed
for a slot milling operation, as shown in Figure 5, for a higher spindle speed of 120,000 rpm.
The control parameter for these bifurcation diagrams is the axial depth of cut. It can be
seen that bifurcation occurs at depth of cut ap = 4.1 µm. The system is stable at depths of
cut below 4.1 µm and the system shows unstable behavior at depths of cut greater than
4.1 µm.
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To find the dynamic behavior of Equation (12), the numerical simulations are per-
formed for different values of bifurcation parameter depth of cut (ap). Figures 6 and 7 show
the waveform and Poincare maps for pre-bifurcation (depth of cut ap = 4.1 µm) and post-
bifurcation (depth of cut ap = 4.6 µm) motions at a spindle speed of 120,000 rpm. Figure 6
shows that if the axial depth of cut is less than the critical value, then the zero-equilibrium
point is asymptotically stable. The amplitude of displacements (see Figure 6a,b) and tool
deflections (see Figure 6c,d) approaches zero with time. It can also be seen from the orbital
map (see Figure 6e) and the Poincare maps (see Figure 6f) that trajectory moves towards the
equilibrium point, and the system is stable. When the axial depth of cut increases beyond
4.1 µm, a Hopf bifurcation occurs at ap = 4.4 µm, as shown in Figure 5. For post-bifurcation
axial depth of cut ap = 4.6 µm, the displacement profiles (see Figure 7a,b) and tool deflection
profiles (see Figure 7c,d) diverge with time, indicating unstable behavior. The orbital map
and Poincare maps as shown in Figure 7e,f respectively, show that trajectory moves away
from the equilibrium point, and the system is unstable.
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ap = 4.1 µm and spindle speed of 120,000 rpm).
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Phase portrait for pre-bifurcation, bifurcation point, and post-bifurcation motions are
shown in Figure 8. It can be seen that at the bifurcation point (ap = 4.4 µm), the vibration
is not growing or decaying. A depth of cut below 4.4 µm, trajectory moves towards zero
(shown in the center of the plot), and the system is stable, but depth of cut greater than
4.4 µm indicates unstable behavior. Figure 9 shows a comparison of the orbital maps (θx
vs. θy) for spindle speeds of 60,000 and 120,000 rpm at one fixed depth of cut ap = 4.1 µm.
Variation in θx and θy are significantly higher for spindle speed of 120,000 rpm as compared
to spindle speed of 60,000 rpm. This can also be seen from the waveform plots as shown in
Figure 10a,b. The amplitude of deflection in x and y direction is significantly higher for a
higher spindle speed of 120,000 rpm. Root mean square (RMS) of θx and θy increases by
37% and 45%, respectively, for spindle speed of 120,000 rpm as compared to 60,000 rpm.
The higher deflection at higher speeds shows the presence of the gyroscopic effect in the
machining process.
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4.2. Stability Lobe Diagram and Validation

The stability lobe diagrams were constructed for slot milling operation (100% immer-
sion) on Ti6Al4V using LMS based numerical scheme. Table 2 shows the modal parameters
at tool tip and clamping ends used in the numerical simulations. The feed per flute is
fixed at 2 µm for the prediction of stability limits. The delay period T is divided in r = 100,
which is a parameter for the discretization of the tooth period. Figure 11 shows the sta-
bility limits for the 2DOF and MDOF stability models. In the stability chart, the loss of
stability is associated with the Neimark bifurcation of periodic motions, also known as
Hopf bifurcation. The MDOF chatter model shows conservative stability limits, especially
at high rotational speeds (>100,000 rpm). This conservative behavior of stability limits at
high rotational speeds can be attributed to the inclusion of additional rotational degrees of
freedom with gyroscopic components. The higher deflection at higher spindles (as shown
in Figure 10) shows the effect of gyroscopic couple. Due to effect of gyroscopic couple at
higher rotational speeds, there is a reduction in stability limits at higher spindle speeds
compared to the lower spindle speeds.

Experiments were carried out to verify the stability predictions at different depths
of cut and spindle speeds selected from the stability chart shown in Figure 11. The FFT
spectrum of velocity and machined surface data were used to identify the stable and
unstable depths of cut experimentally. Figure 12 shows the FFT spectrum of the velocity
data at spindle speeds of 50,000 and 120,000 and corresponding depths of cut of 20 µm
and 5 µm. It can be seen that there is no high amplitude peak at a rotational speed of
50,000 rpm and a depth of cut of 20 µm which shows stable machining. At a spindle speed
of 120,000 rpm and a depth of cut of 5 µm, the amplitude peaks of the velocity spectrum
are higher at around 6000 Hz which is in the vicinity of one of the natural frequencies
of the tool tip. The critical limits for stability obtained from numerical simulations and
experiments are compared in Figure 13. It can be seen that the predicted stability limits
from the MDOF model are in better agreement with experimental limits at high rotational
speeds (>100,000 rpm). Difference between predicted and experimental limits at high
rotational speeds is less than 16%. Hence, using an MDOF model is imperative to predict
stability limits at very rotational speeds as the effect of the gyroscopic couple becomes
pronounced, especially for miniature tools (~100 µm in diameter).
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5. Conclusions

This paper uses a multiple degrees of freedom model based on rotor dynamics to
investigate the gyroscopic effect. A numerical scheme based on the linear multistep method
has been presented to predict the stability limits. Bifurcation analysis has been performed
to understand the dynamic behavior of the system under high rotational speeds. The loss
of stability is associated with Hopf bifurcation. Numerical simulations were presented to
compare the pre-bifurcation and post-bifurcation motions. It was found that vibration does
not grow and decay at the bifurcation point at depth of cut of 4.1 µm at spindle speed of
120,000 rpm. RMS of θx and θy increases by 37% and 45%, respectively, for spindle speed of
120,000 rpm as compared to 60,000 rpm. This increase in deflection in x and y direction
(θx vs. θy) is significantly higher for higher spindle speeds which shows the presence of
gyroscopic effect at high rotational speeds. It has been found that at high rotational speeds,
stability limits are conservative due to the gyroscopic effect at high rotational speeds.
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