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Abstract: Given its layer-based nature, additive manufacturing is known as a family of highly capa-
ble processes for fabricating complex 3D geometries designed by means of evolutionary topology
optimization. However, the required support structures for the overhanging features of these com-
plex geometries can be concerningly wasteful. This article presents an approach for studying the
manufacturability of the topology-optimized complex 3D parts required for additive manufacturing
and finding the optimum corresponding build direction for the fabrication process. The developed
methodology uses the density gradient of the design matrix created during the evolutionary topology
optimization of the 3D domains to determine the optimal build orientation for additive manufactur-
ing with the objective of minimizing the need for support structures. Highly satisfactory results are
obtained by implementing the developed methodology in analytical and experimental studies, which
demonstrate potential additive manufacturing mass savings of 170% of the structure’s weight. The
developed methodology can be readily used in a variety of evolutionary topology optimization algo-
rithms to design complex 3D geometries for additive manufacturing technologies with a minimized
level of waste due to reducing the need for support structures.

Keywords: topology optimization; additive manufacturing; minimizing support structure;
density gradient

1. Introduction

Topology optimization is a form of design optimization that seeks to achieve the
best performance for a structural part or mechanical component by determining the best
locations and geometries of cavities within the design domain while satisfying various
constraints [1]. Figure 1 demonstrates the process of defining the design problem, discretiz-
ing the design domain into finite elements, and then performing topology optimization
to achieve an efficient structure. Many methods of topology optimization, including the
Homogenization Method, Bi-Directional Evolutionary Structural Optimization Method
(BESO), Solid Isotropic Material with Penalization (SIMP), Level Set, and Phase Field, are
currently employed in various design problems, and very successful results have been
reported [2]. However, regardless of the optimization method, the complex geometries
created by topology optimization are mainly very difficult to manufacture. Traditional
manufacturing technologies are typically not flexible enough to fabricate the complex
topologically optimized parts at an affordable cost. The highly efficient topologies achieved
through topology optimization often come with geometric complexities that are difficult or
even impossible to manufacture using traditional manufacturing techniques. Among the
manufacturing processes, the emerging field of Additive Manufacturing (AM) allows for
ease of manufacturing that is mostly independent of the part’s complexity. The flexibility
within AM processes is mainly due to their nature of manufacturing by addition.
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Figure 1. The process of structural design by means of topology optimization: (1) define the design
problem; (2) discretize the design domain; and (3) optimize the structure’s topology to achieve an
efficient design.

AM, which is also referred to as 3D printing, is currently a cost-effective way to
produce plastic, metal, ceramic, and composite parts of high complexity and small batch
size in many novel fields [3,4]. Combined with topology optimization, it has great potential
to replace conventional manufacturing and design processes [5]. The AM processes rely on
layer-by-layer material deposition or solidification, which provides a designer with many
advantages over traditional manufacturing processes, such as part consolidation, weight
reduction, functional customization, personalization, and aesthetics [6,7], although it is
not without its own limitations, such as the need for support material and poor surface
finish quality [8–11]. Among these issues, the need for supporting structures for fabricated
overhanging features is one of the most concerning ones, since these supports are mainly
considered a waste in terms of the use of material, processing time, and post-processing
required to remove them and finish the affected surfaces on the final product [12,13].

This article presents an approach for studying the manufacturability of the topology-
optimized complex 3D parts for AM and demonstrating its applicability by finding the
optimum build direction for the fabrication process. The developed methodology analyzes
the density field of the design domain generated and used during typical evolutionary
topology optimization processes [14,15]. The SIMP method assumes that each element of
the discretized design domain contains an isotropic material with a variable density, where
the material properties are assumed to be constant within each element and the design
variables are the element’s relative densities. The material properties are modelled as the
relative material density raised to some power [2].

Although, the recent developments in topology optimization have been very success-
ful in designing complex structures with the highest levels of efficiencies, the resulting
designs cannot be always used when there is no feasible or economically viable manu-
facturing and quality assurance process in place to support developing a final product.
In term of manufacturability analyses, the complex topologies typically result in difficult
to manufacture features. There have been significant research works to understand the
geometric features and characteristics that make the manufacturing unfeasible to expensive,
as the manufacturability limitations [16]. As the next step, the manufacturing limitations
are typically introduced to in the design process as the design constraints. Considering the
requirement for quality assurance, it is highly important to guarantee a way that complex
structure resulting by topology optimization can be inspected after or during the manufac-
turing process. This includes the considerations corresponding the inspections tools and
methods, sampling strategy, and the ways to evaluate the inspection data [17–19]. Although
the focus of this work is on the manufacturability of the complex topologies resulting by
topology optimization, the same level of attention is needed to the inspection-ability of
these topologies. Analyzing the manufacturability of the complex structures resulting from
topology optimization is a crucial task. Additive manufacturing has been known as one
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of the most reliable technologies for manufacturing topology-optimized 3D structures [5].
However, AM’s limitations and constraints, including the need for structural support
during the fabrication process, require more attention from researchers. One of the main
topics is the consideration of overhanging surfaces where the effect of the inclined angle
of the overhanging surface directly correlates with the need for a supporting structure.
This phenomenon was experimentally studied on a direct metal laser sintering machine by
Wang et al. [20]. Their research found that overhanging surfaces induce higher residual
stresses and warp easier as the inclined angle becomes smaller relative to the build platform.
In order to prevent small, inclined build angles from warping, an additional support struc-
ture should be included alongside the main part being printed. The support structure is
often a scaffolding-like lattice structure erected from the build platform to the overhanging
surface, and it is often printed using the base material. This supporting structure adds to
the required time to print the material, increases the wasted material, increases the post
processing times, and negatively affects the surface finish of the part [21]. For these reasons,
as well as the increasing popularity of AM in academia and industry, topology optimization
with AM constraints has been extensively researched in recent years [22].

Using the elemental density gradient vectors to analyze the angles of overhanging
surfaces has been addressed in some research works on 2D topology optimization. To the
best of the authors’ knowledge, the first mention of using this method was made by Leary
et al. [23], who used local gradient information to identify the regions of the theoretically
optimal topology and modify it as required to ensure manufacturability without requiring
additional support material. Driessen [24] and Garaigordobil et al. [25] have used the
gradient of the density field to formulate an overhang constraint to produce self-supporting
designs, that is, designs which can be 3D printed without any supporting structure. Mass
and Amir [26] used similar density gradient approximation techniques in the continuum
portion of their two-step process for morphing their structural design toward one that is
self-supporting. Qian [27] used the density gradients to check the undercuts and overhangs
and then applied Heaviside projection to form a global constraint. Bender and Barari [28]
used the density gradient at the perimeter of the final structure to identify the locations and,
in turn, the required volume of the supporting structure, which they then used to perform
support slimming by means of orientation optimization relative to the print direction. This
approach minimizes the required volume of supporting structure.

The methods mentioned above are presented in 2D problems. The likely reason for the
lack of 3D implementation has been the need to approximate the density gradient in a 3D
space. Image processing techniques have been mainly used to develop the density gradient
matrix [29], which is only performed in two dimensions to address the rows and columns of
a picture, when a structural analysis should be performed in the three cartesian dimensions.

An extension of the 2D image processing gradient approximation method into 3D
applications is herein presented using matrix convolution with kernels. The applicability
of the density gradient vectors derived from a uniquely topology-optimized structure is
demonstrated for additive manufacturing by setting up a basic support slimming algorithm
based on the overhanging angles relative to the build direction. The density gradient
vector approximation method is then presented in a filter-based approach such as the ones
commonly implemented in common topology optimization algorithms.

2. Theoretical Background

Additive manufacturing is a cost-effective way to produce small batches, with the
manufacturing costs being almost completely decoupled from the geometric complexity
and assembly status of the products [30–32]. Although AM provides many advantages
over traditional manufacturing techniques, it is not without its own drawbacks, which
are best outlined in the context of topology optimization in [28], as well as deviations
from the true geometry from manufacturing artifacts such as the “staircase effect” and
others. These properties of AM synergize with structural topology optimization to easily
produce normally un-manufacturable or difficult to manufacture parts, sub-assemblies,
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and assemblies with complex shapes and geometries, which are often resulting features of
topology optimization.

2.1. Topology Optimization

A density-based power law approach to topology optimization known as the Simple
Isotropic Material with Penalization (SIMP) method was implemented to develop the
presented algorithm. An advantage of using the SIMP method is that it allows for the
straightforward implementation of additional filters [33,34].

The first step in any structural design process is to define the design problem and
its subsequent design domain. Once the structural design problem has been constructed,
the design domain is then discretized to perform a finite element analysis of the structure,
such as that in Figure 2. The discretized design domain may consist of elements of four or
more nodes with any number of elements, but often in research applications, cube elements
are implemented with eight nodes and the number of elements is limited by the available
computational power. Again, for the sake of simplicity, each node of an element will
contain 3 degrees of freedom (translation along the 3 Cartesian axes) where the forces and
boundary conditions of the design problem are applied. Finite element methods are then
implemented to determine the nodal displacement vector, u, and the elemental stiffness
matrices, Ke. The topology optimization techniques employed use the results of the finite
element analysis to slightly modify the design domain from the current iteration to the
next. The stiffness matrix and displacement vector of the new structure are then calculated,
and the process of finite element analysis and design modification repeats itself until the
convergence criteria have been met.
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The SIMP method of topology optimization modifies the relative densities, ρ, of each
element of the discretized design domain, where a relative density of zero implies that
an element is fully void, a relative density of one represents a fully solid element, and
a density between zero and one is an element somewhere between fully void and fully
solid. The densities of the elements are used to interpolate the Young’s modulus, E, of an
element, which implies that as the density of an element increases, so does its stiffness.
These equations for topology optimization can be found in [1]. The relationship between
an element’s stiffness and density is given by

E(ρe) = Emin + ρ
p
e (E0 − Emin) (1)

where Emin and E0 are the elastic Young’s modulus of the void and solid material, respec-
tively, and ρe is the elemental density. The penalization power, p, is taken to be a real
value greater than one, and it is implemented to steer the solution to a nearly solid-void
design [35].

The formulation of the topology optimization problem is as follows.
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Minimize:
c = fTu (2)

Subject to:
V∗ −∑N

e=1 veρe (3)

0 < ρmin ≤ ρe ≤ 1 (4)

where N is the total number of discrete elements and c is the stiffness compliance of the
structure (an inverse measure of stiffness) calculated using the transposed nodal force and
displacement vectors, fT and u, respectively. V∗ is the prescribed total structural volume
and ve is the volume of an individual element of the discretized design domain.

The sensitivity of the objective function, c, for each element, e, is found to be

∂c
∂xi

= −pρ
p−1
e uT

e K0
e ue (5)

The optimization problem is solved using a heuristic updating scheme known as the
optimality criteria. The optimizer redistributes the density in the design domain to give
elements with higher sensitivity numbers more density and, conversely, lower the density
of elements with low sensitivity values. A more detailed explanation of the optimality
criteria and their counterparts can be found in [34].

2.2. Two-Dimensional Density Gradient

In image processing, image points of high contrast (high magnitude of pixel intensity
gradient) can be detected by computing the intensity differences in local image regions,
which typically form the border between different objects in the scene. This process
produces the magnitude and direction of contrast or gradient vector of the greyscale image
pixel intensities. The magnitude of the contrast is typically applied in image processing
for its ability to detect edges [29]. Note that the pixel intensities of a greyscale image are
analogous to the elemental density matrix of a density-based topology optimization, where
the intensity of an image pixel can be represented as a number between zero and one (dark
and light) and an element’s relative density is represented as a number between zero and
one (void and solid). This suggests that the direction of the gradient vector produced by
the image processing difference operators can be used to determine the direction of the
density gradient vector at the surface elements of the structure. A visual representation of
the elemental density gradient vector can be seen in Figure 3.
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Figure 3. The detail shows part of the density field with the approximated gradients of the density
field. The gradient vectors point in the direction of increasing density [22].

The gradient vector is found using neighborhood templates, which are commonly
referred to as masks or kernels, namely the masks known as Prewitt, Sobel, or Roberts
masks [29]. The Prewitt mask is the basic form of the difference operator, as shown in
Figure 4. This mask is sufficient for finding the gradient vector, although the results are
noisy, meaning that the results produced may be significantly off from the true value. To
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help suppress this generated noise, the Prewitt mask is combined with a Gaussian filtering
scheme and then referred to as the Sobel gradient mask.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 6 of 19 
 

 

noisy, meaning that the results produced may be significantly off from the true value. To 

help suppress this generated noise, the Prewitt mask is combined with a Gaussian filtering 

scheme and then referred to as the Sobel gradient mask. 

 

Figure 4. Two examples of a pair of masks used to approximate the Cartesian components of an 

image’s intensity gradient. 

In image processing, a mask approximating a Gaussian is used on its own as an im-

age filter to remove “salt and pepper noise”. A Gaussian averaging mask was proposed 

and successfully implemented in [36] as an alternate filtering scheme for mesh-independ-

ent and checkerboard-free solutions, which demonstrates the applicability of image pro-

cessing techniques to density-based topology optimization. Incorporating the Gaussian 

filtering into the Prewitt difference operators provides the advantage of weighting ele-

ments smoothly with the distance from the mask origin, meaning that the elemental den-

sity values nearer the central location are more important than the values that are more 

remote. 

Mathematically, the density gradient vector, 𝛁𝝆𝑒, is conveniently represented in the 

polar form by its magnitude and direction, denoted as: 

𝜵𝝆𝑒 = 〈|𝛻𝜌𝑒  |, ∠𝜃𝑒〉 (6) 

The magnitude and direction of the gradient vector are calculated using the Cartesian 

components of the vector. 

|𝛻𝜌𝑒| = √𝛻𝜌𝑒𝑥
2  +  𝛻𝜌𝑒𝑦

2  (7) 

𝜃𝑒 =  𝑡𝑎𝑛−1  
𝛻𝜌𝑒𝑦

𝛻𝜌𝑒𝑥

 (8) 

where the Cartesian components of the elemental density gradient vectors, ∇𝜌𝑒𝑦
 and 

∇𝜌𝑒𝑥
, are calculated by convoluting the gradient masks to the density matrix. A detailed 

explanation of matrix convolution can be found in [29]. If there is not any gradient of the 

density in the x-direction, the denominator of Equation (8) will evaluate to zero, which 

should be taken into consideration during implementation. In this scenario, the gradient 

vector is either pointing straight up or straight down (±90°), and it can be determined by 

simply looking at whether the y-component of the gradient vector is positive (+90°) or 

negative (−90°). The Cartesian components of the gradient vector are determined using 

the matrix convolution between the density field and the Sobel or Prewitt gradient masks 

as follows: 

𝜵𝝆𝑿 =  𝝆 ∗ 𝑴𝑥 (9) 

𝜵𝝆𝒀 =  𝝆 ∗ 𝑴𝑦 (10) 

A sample elemental density and its eight-neighborhood are shown in the matrix of 

Figure 5. The density gradient vector points in the direction of the maximum increasing 

density visualized as the grey area in the figure, where, respectively, the grey/white areas 

Figure 4. Two examples of a pair of masks used to approximate the Cartesian components of an
image’s intensity gradient.

In image processing, a mask approximating a Gaussian is used on its own as an image
filter to remove “salt and pepper noise”. A Gaussian averaging mask was proposed and
successfully implemented in [36] as an alternate filtering scheme for mesh-independent and
checkerboard-free solutions, which demonstrates the applicability of image processing tech-
niques to density-based topology optimization. Incorporating the Gaussian filtering into
the Prewitt difference operators provides the advantage of weighting elements smoothly
with the distance from the mask origin, meaning that the elemental density values nearer
the central location are more important than the values that are more remote.

Mathematically, the density gradient vector, ∇ρe, is conveniently represented in the
polar form by its magnitude and direction, denoted as:

∇ρe = 〈|∇ρe |, ∠θe〉 (6)

The magnitude and direction of the gradient vector are calculated using the Cartesian
components of the vector.

|∇ρe| =
√
∇ρe

2
x +∇ρe

2
y (7)

θe = tan−1
∇ρey

∇ρex
(8)

where the Cartesian components of the elemental density gradient vectors, ∇ρey and
∇ρex, are calculated by convoluting the gradient masks to the density matrix. A detailed
explanation of matrix convolution can be found in [29]. If there is not any gradient of the
density in the x-direction, the denominator of Equation (8) will evaluate to zero, which
should be taken into consideration during implementation. In this scenario, the gradient
vector is either pointing straight up or straight down (±90◦), and it can be determined by
simply looking at whether the y-component of the gradient vector is positive (+90◦) or
negative (−90◦). The Cartesian components of the gradient vector are determined using
the matrix convolution between the density field and the Sobel or Prewitt gradient masks
as follows:

∇ρX = ρ×Mx (9)

∇ρY = ρ×My (10)

A sample elemental density and its eight-neighborhood are shown in the matrix of
Figure 5. The density gradient vector points in the direction of the maximum increasing
density visualized as the grey area in the figure, where, respectively, the grey/white areas
represent the interpreted structure/void regions of the continuous design domain, which
is represented by the 3 × 3 number matrix.
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Figure 5. A visualization of the elemental density gradient vector at an element.

2.3. Limitations of the Gradient Vector’s Ability to Approximate Overhanging Angles

As explained in detail in the master’s thesis of Driessen [24], there exists some funda-
mental limitations in using the image processing method of the Prewitt and Sobel kernels
convoluted to the density field to approximate the density gradients. Some configurations
are shown in Figure 6, which shows that the approximated density gradient vector (blue
arrow) does not point orthogonal to the surface (black elements). This occurs because
the masks are approximating the gradient vector using a 3 × 3 kernel, which interprets a
heavier concentration of material to one side of the element over the other. As the kernels
become bigger, the number of elements that are misinterpreted also increases, which means
a smaller kernel is more desirable for accurately approximating the true overhanging angle
of a particular element. This limitation of misrepresented overhanging angles via the
density gradient approximation is not a big concern when estimating support structure
requirements because these misrepresentation occur one element at a time, which means
that if the neighboring element is not self-supporting, then it will be identified as a re-
gion needing a support and small overhangs can occur next to a supported surfaces with
minimal warping.
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2.4. Support Slimming

As mentioned in Section 1, the overhanging surfaces of an additively manufactured
part may require additional supporting structure to be printed, in addition to the part
itself. The angle of an overhanging surface relative to the build platform is the main
consideration when determining the proper locations for a supporting structure. As the
angle of the overhanging surface decreases relative to the build platform, the ability of the
structure to support itself as the material is being deposited decreases. This is true for most
printing techniques, including the prevalent forms (i.e., FDM, SLS/DMLS, SLA). Typically,
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an overhanging surface with an angle of 45◦ or greater relative to the build platform is
considered to be self-supporting. However, this is just a rule of thumb, and the actual
self-supporting limit is not only process- and machine-dependent but also depends on the
particular print settings, such as the laser scanning speed of a DMLS print. Liu et al. [37]
state that from their in-house data, anywhere from 40% to 70% of the cost of producing an
AM product could be avoided by removing the need for a support structure. The promise
of cutting the cost of producing AM parts by half or more is the motivation for reducing
the amount of required supporting structure (support slimming).

Support slimming has been extensively studied in recent years as the popularity of
AM in both academia and industry has increased. The geometry of the supporting structure
(i.e., tree-like, lattice, repetitive cellular structures, bridge-like scaffolding) plays a role in
reducing the volume and/or associated costs of the supporting structure, although it is
not the focus of this research. Support slimming is achieved by means of part orientation
optimization based solely on the overhanging angle to demonstrate the applicability of
the density gradient vector. As a part is reoriented relative to the build direction of an AM
process, the angle of the overhanging surfaces relative to the build platform varies and,
therefore, an orientation that minimizes the volume of supporting structure may be found.

Part orientation optimization has been studied on the STL representation of the struc-
ture [38,39]. The angle of an overhanging facet (STL representation of a surface) may simply
be calculated by finding the angle of the facet’s normal vector relative to the build platform.
Then, this information is used to calculate the volume of the region below un-supported
overhanging surfaces. Bender and Barari [28] achieved part orientation optimization by
calculating the overhanging surface angles using well-established image processing tech-
niques to approximate the gradient of the density, which resulted from a density-based
topology optimization. This technique was limited to two-dimensional problems, and the
purpose of this research is to extend the image processing-based developed concept to
three dimensions. This will allow us to solve the part orientation problem in the topology
optimization of 3D cases. The results of part orientation optimization, which minimize and
maximize the required supporting material using the density gradient information, can
be visualized in Figure 7. The black area represents the topology-optimized structure, the
colored areas represent elements on the perimeter of the structure that are overhanging,
and the color spectrum represents the angles of the overhanging surfaces relative to the
build platform.
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3. Developed Methodology

Referring to Figure 5, the Cartesian components of the elemental gradient, ∇ρex and
∇ρey , are respectively calculated across the local x- and y-axes. With only the 2 axes, the
gradient components are simply calculated across a line. However, in order to calculate the
gradient components in three dimensions, the three Cartesian components of the gradient
must be calculated across their corresponding plane (the normal plane). Analogously to
the image processing representation of a gradient component mask consisting of a 3 × 3
matrix of weights (Figure 4), the mask for calculating a 3D gradient component is a 3 × 3 ×
3 matrix of weights. For easy representation, this matrix may be split up into 3 of these 3 ×
3 matrices, as shown in Figure 8.
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Figure 8. Masks that are used to approximate the gradient across the x-plane. These masks are akin
to the 2D Prewitt masks for image processing.

The masks in Figure 7 are similar in nature to the Prewitt image processing masks, such
that they simply approximate the magnitude of the gradient across a plane. However, it is
shown in [29] that additionally weighting the elements of the masks based on their distance
from the central element helps to reduce noise, which in turn provides an approximation
that is truer to the actual value. A mask resembling the less noisy Sobel equivalent is
created by weighting the elements of the masks according to the distance, d, from the
central element. The Gaussian distribution is implemented to generate distance-based
weights. The equations of the Gaussian are:

g(d) =
1√
2πσ

e−
d2

2σ2 (11)

and

g(d) = e−
d2

2σ2 (12)

where g(d) is the Gaussian weight with respect to the distance, d, between elements and
σ controls how heavily weighted the elements further away from the central element are,
which is also known as the spread of the distribution. Since the calculated magnitude of the
gradient is divided by the sum of the weights of the mask (part of the matrix convolution
process), the 1√

2π
term of Equation (11) may be omitted to produce Equation (12). Equation

(12) will generate weights with values between one and zero, which are multiplied by a
constant to become integer values that are easier to display as a mask. The weights of the
mask in Figure 8 are multiplied by the weights generated by Equation (12) to produce the
derived masks needed to approximate the gradient of the density matrix. The product of
these weights is shown in the masks in Figure 9.

Considering the representation of the gradient vector from Equation (6), the magnitude
of the three-dimensional gradient vector in the polar form is calculated as:

|∇ρe| =
√
∇ρe

2
x +∇ρe

2
y +∇ρe

2
z (13)
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Assuming that the build platform of a 3D printer is formed by the lowest XZ-plane of
the design domain, the angle of the elemental gradient vector with respect to this plane
may be calculated as described by Equation (14). It is possible for the denominator of this
equation to evaluate to zero if there is no density gradient in the x- or z-direction. In this
scenario, the magnitude along the y-direction can be solely looked at. If the magnitude
is positive, the gradient vector is +90◦ measured from the build platform’s normal vector,
while if the magnitude is negative, the gradient vector is −90◦.

θe = cos−1 ∇ρe
2
x +∇ρe

2
z√

∇ρe
2
x +∇ρe

2
z

√
∇ρe

2
x +∇ρe

2
y +∇ρe

2
z

(14)

More generally, the angle may be calculated using the dot product between the ele-
mental gradient vector, ∇ρe =

(
∇ρex ∇ρey ∇ρez

)
, and the normal vector, n =

(
nx ny nz

)
,

of the build platform.

θe = cos−1
(
∇ρe

|∇ρe|
· n
|n|

)
(15)

Similar to Equations (9) and (10), the Cartesian components of the elemental gra-
dient vectors are calculated via matrix convolution with the masks in Figure 9 with the
density matrix.

∇ρX = ρ×MXi+1,j,k + ρ×MXi,j,k + ρ×MXi−1,j,k (16)

∇ρY = ρ×MYi,j+1,k + ρ×MYi,j,k + ρ×MYi,j−1,k (17)

∇ρZ = ρ×MZi,j,k+1 + ρ×MZi,j,k + ρ×MZi,j,k−1 (18)

where ρ represents the density matrix. It is worth noting that the middle terms in Equa-
tions (16)–(18), that is, the terms containing MXi,j,k , MYi,j,k , and MZi,j,k , may be omitted from
the calculations since their masks contain only weights of zero value.

Using the methods described in this section, a three-dimensional structure resulting
from topology optimization may be analyzed to allow for its supporting structure require-
ments to be additively manufactured. These locations are determined based on whether
an overhanging surface angle relative to an AM build platform is below a self-supporting
threshold or not. These overhanging surface angles are visualized in Figure 10.



J. Manuf. Mater. Process. 2023, 7, 46 11 of 19

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 11 of 19 
 

 

𝜃𝑒 =  𝑐𝑜𝑠−1 (
𝜵𝝆𝒆

|𝜵𝝆𝒆|
 ∙  

𝒏

|𝒏|
) (15) 

Similar to Equations (9) and (10), the Cartesian components of the elemental gradient 

vectors are calculated via matrix convolution with the masks in Figure 9 with the density 

matrix. 

𝛻𝜌𝑋 =  𝝆 ∗ 𝑴𝑋𝑖+1,𝑗,𝑘
+  𝝆 ∗ 𝑴𝑋𝑖,𝑗,𝑘

+  𝝆 ∗ 𝑴𝑋𝑖−1,𝑗,𝑘
 (16) 

𝛻𝜌𝑌 =  𝝆 ∗ 𝑴𝑌𝑖,𝑗+1,𝑘
+  𝝆 ∗ 𝑴𝑌𝑖,𝑗,𝑘

+  𝝆 ∗ 𝑴𝑌𝑖,𝑗−1,𝑘
 (17) 

𝛻𝜌𝑍 =  𝝆 ∗ 𝑴𝑍𝑖,𝑗,𝑘+1
+  𝝆 ∗ 𝑴𝑍𝑖,𝑗,𝑘

+  𝝆 ∗ 𝑴𝑍𝑖,𝑗,𝑘−1
 (18) 

where 𝛒 represents the density matrix. It is worth noting that the middle terms in Equa-

tions (16)–(18), that is, the terms containing 𝑴𝑋𝑖,𝑗,𝑘
, 𝑴𝑌𝑖,𝑗,𝑘

, and 𝑴𝑍𝑖,𝑗,𝑘
, may be omitted 

from the calculations since their masks contain only weights of zero value. 

Using the methods described in this section, a three-dimensional structure resulting 

from topology optimization may be analyzed to allow for its supporting structure require-

ments to be additively manufactured. These locations are determined based on whether 

an overhanging surface angle relative to an AM build platform is below a self-supporting 

threshold or not. These overhanging surface angles are visualized in Figure 10. 

 

Figure 10. A sample overhanging surface angle analysis of a cantilever: (left) facets of the finite 

elements are colored and (right) a smoothed isosurface. 

4. Implementation and Results 

A direct application of the developed methodology in the estimation of the density 

gradient is to calculate the Required Support Volume (RSV) for a certain build orientation. 

This section presents the implementation results of the RSV calculation and a selection of 

best build orientations that minimize the RSV. 

The analysis of the developed algorithms is carried out on three structural design 

problems, as seen in Table 1. The first problem is a benchmark problem often referred to 

as a “Mitchell structure” or “3D Wheel”. This structure is particularly chosen because of 

its two planes of symmetry. Its structure was topologically optimized using the code pro-

vided in the appendix of [30], with a total of 171,500 discrete elements comprising its finite 

mesh. The second structure is the standard cantilever benchmark problem consisting of 

211,050 finite elements and 1 plane of symmetry. The last structure analyzed is a non-

benchmark problem consisting of 171,500 finite elements with no spatial symmetry. The 

second and third structures were topologically optimized using the built-in feature of AN-

SYS™ 18.2. The density matrix of the final result was exported from ANSYS following 

Figure 10. A sample overhanging surface angle analysis of a cantilever: (left) facets of the finite
elements are colored and (right) a smoothed isosurface.

4. Implementation and Results

A direct application of the developed methodology in the estimation of the density
gradient is to calculate the Required Support Volume (RSV) for a certain build orientation.
This section presents the implementation results of the RSV calculation and a selection of
best build orientations that minimize the RSV.

The analysis of the developed algorithms is carried out on three structural design
problems, as seen in Table 1. The first problem is a benchmark problem often referred
to as a “Mitchell structure” or “3D Wheel”. This structure is particularly chosen because
of its two planes of symmetry. Its structure was topologically optimized using the code
provided in the appendix of [30], with a total of 171,500 discrete elements comprising its
finite mesh. The second structure is the standard cantilever benchmark problem consisting
of 211,050 finite elements and 1 plane of symmetry. The last structure analyzed is a non-
benchmark problem consisting of 171,500 finite elements with no spatial symmetry. The
second and third structures were topologically optimized using the built-in feature of
ANSYS™ 18.2. The density matrix of the final result was exported from ANSYS following
processing and imputed into the implemented program in MATLAB™ for the custom
overhanging feature analysis and support slimming analysis.

The first step in the analysis process is to analyze the overhanging surface angles and
determine the locations of the surfaces that are not self-supported during 3D printing. This
is performed by performing the matrix convolution of the density matrix in accordance with
Equations (16)–(18) and the masks in Figure 8. Equation (14) is then applied to calculate
the angle of the overhanging surfaces with respect to the build platform of an arbitrary 3D
printer. If the angle is below a prescribed self-supporting angle, which is taken to be 45◦,
then the surface is considered to need a supporting structure. The total volume contained
under the unsupported surfaces is calculated in the same manner as outlined in [28]. This
entire analysis is carried out on the structure at rotations about the x- and y-axes between
0◦ and 360◦ to determine the orientations that minimize and maximize the supporting
structure volume in a brute force manner.



J. Manuf. Mater. Process. 2023, 7, 46 12 of 19

Table 1. Three structural design problems, results of the topology optimization, and corresponding
landscapes of the orientation optimization.

Structural Design Problem and the
Resulting Topology Part Orientation Optimization Landscape

Top. Opt. Software:

Nelx: 70
Nely: 35
Nelz: 70

Two planes of symmetry
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Table 2. Part orientations that minimize and maximize the required support volume with surface
angle visuals of the minimum orientation.

Minimum RSV Orientation Maximum RSV Orientation Surface Overhang Angle w.r.t the Build Platform
Visualization @ min Support Orientation
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with general purpose resin on a Formlabs Form 2 SLA Printer. 
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Table 3. Comparing the experimental results with the maximum and minimum RSV calculated us-
ing the developed methodology. 
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In order to also validate the results of the analytical solutions with actual experiments,
the three topologically optimized parts were fabricated with the original and the optimized
build orientations. The RSV for each case was measured by weighing the parts before and
after removing the support structures. The RSV for the original build direction compared
to the RSV for the optimum build direction is presented as a percentage in Table 3 for the
theoretical and experiments studies.
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Table 3. Comparing the experimental results with the maximum and minimum RSV calculated using
the developed methodology.

Case Study

Theoretical Weight Difference
between the Original Build

Direction an Optimal
Build Direction

Experimental Weight Difference
between the Original Build

Direction an Optimal
Build Direction

Difference between
Theoretical and

Experimental Results

Michell 174.32% 171.35% 1.7%

Cantilever 170.70% 169.8% 0.5%

Asymmetric 148.02% 145.7% 1.5%

As can be seen in Table 3, the differences between the experimental and analytical
results are negligible. It is worth mentioning that the support structures in the fabricated
parts are done in patterns, as defined by the utilized 3D printing software, and they are
not meant to fill the entire RSV. This could potentially cause some differences between the
theoretical and experimental RSV results. However, this difference has been negligible for
all case studies (less than 2%). Figure 11 presents the images of the fabricated samples for
the topologically optimized cantilever beam as examples. These samples were printed with
general purpose resin on a Formlabs Form 2 SLA Printer.
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Figure 11. Examples of the fabricated samples for the experimental topologically optimized cantilever
beam: (a) orientation with maximum required support volume; and (b) orientation with minimum
required support volume.

The algorithm is implemented in MATLAB. The elemental density gradient vectors,
angle analysis, and total support structure volume can be calculated relatively fast with
the visual generation comparing the time required for the iterations in the topology opti-
mization process. Comparatively, one iteration of the topology optimization process may
take upwards of an hour to compute. All the analyses were carried out on an Intel Core
i5-5300U, 2.30 GHz with 8 GB RAM.

It is worth noting that if there exists a plane of symmetry in the structural design,
then there will be an axis of symmetry in the part orientation optimization landscape.
This is evident in Table 1, where the first structure has two planes of symmetry and its
corresponding optimization landscape has two axes of symmetry. This can also be seen
in the second example in Table 1, where the structure has one plane of symmetry and its
corresponding optimization landscape has one axis of symmetry. This is useful for reducing
the time needed to optimize the parts orientation, as searching redundant optimization
domains is time consuming.
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5. Replication of the Results

A customized MATLAB script used to calculate the 3D density gradient vectors has
been included in Appendix A, which may simply be adapted into the benchmark 3D
topology optimization code provided in Appendix C of [34]. To approximate the density
gradient vector, simply add this line of code after line 90 of the aforementioned topology
optimization code:

91 [magnitude, direction] = DensityGradient(x);
The code provided in Appendix A should be included as either an auxiliary function

to your script or as a standalone script contained within the working directory of your
program. The function will return two matrices of the same size as the x matrix, one
containing the magnitude of the elemental density gradient vector and the other the angle
of the vector measured from the XZ-plane (assumed to be a build platform).

To visualize the results, the display_3D function can be simply modified to display
the direction of the density gradient vector using a color map, such as the jet color scheme,
to plot the elements instead of plotting them as a greyscale visualization of the densities
similar to in Figure 9.

6. Filter Approach for Density Gradient Vectors

The methods presented in this article thus far are concerned with topology optimiza-
tions whose design domains consist of only squares (in 2D) and cubes (in 3D), although
most practical applications decompose the design domain into multiple types of finite
elements. A reconstruction of the computer vision derivation to form the masks of the
previous sections is performed to achieve a continuous form of density gradient analysis
based on the SIMP mesh independence filtering.

An approximation of the Cartesian components of the density gradient analysis is
presented in Equations (19)–(21). The familiar SIMP filtering scheme is used with some
minor changes. First, the filter is split into three components to analyze the gradient in the
x-, the y-, and the z- directions individually with an additional directionality term added
(dij|dij|), where dijx is the x-component of the distance between elements i and j. These
functions essentially perform the exact same operations as the matrix convolution.

∇ρex =
1

∑N
j=1 Gij

N

∑
j=1

Gijρj
dijx∣∣dijx
∣∣ (19)

∇ρey =
1

∑N
j=1 Gij

N

∑
j=1

Gijρj
dijy∣∣∣dijy

∣∣∣ (20)

∇ρez =
1

∑N
j=1 Gij

N

∑
j=1

Gijρj
dijz∣∣dijz
∣∣ (21)

The Gaussian weight factor (Gij) is used to smooth the results. It is recommended that
the Gaussian weight factor is used for the purpose of noise reduction to achieve accurate
approximations. The proposed weight factor for this filter is as follows:

Gij =
1

σ
√

2π
e−

dij
2

2σ2 (22)

This Gaussian weight factor has a component known as the spread factor (σ). It is
recommended that this factor reflects the length scale used in the topology optimization
process so that the local gradient analysis does not encompass multiple members and to
ensure that the surface in question is adequately analyzed. It is recommended that the
spread factor is taken as a third of the filter radius used in the SIMP optimization.

σ =
rmin

3
(23)
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7. Conclusions

This article presents a methodology for evaluating the three-dimensional gradient
vector of the design domain in the topology optimization process. It also shows how the
information of the three-dimensional gradient vector is used to analyze the overhanging
surfaces of AM parts for purposes such as finding the optimum built orientation. This
was achieved by extending the techniques from 2D image processing into 3D as well as
by modifying a pre-existing topology optimization filter to achieve the same results as
the image processing techniques. The developed algorithm is fully implemented, and a
variety of experiments are conducted for validation purposes. The developed support
slimming algorithm can be combined with any topology optimization process to consider
the manufacturing requirement as an optimization constraint. Without losing generality,
the developed methodology is implemented in combination with a SIMP-based topology
optimization in this article. The results show that the presented technique for approximat-
ing the elemental density gradient vectors is an effective way to determine whether an
overhanging surface requires a supporting structure to be effectively additively manufac-
tured. Future works include extending the implementation of the developed approach
to the overhanging surface analysis for different types of printing processes, materials,
and support structure types to develop a complete understanding of the limitations of the
overhanging surface of topology-optimized structures via density gradient vectors.
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Appendix: MATLAB Program Density Gradient 

1 function [mag, dir] = DensityGradient(x) 

2 [nely,nelx,nelz] = size(x); 

3 mag = zeros(nely,nelx,nelz); 

4 dir = zeros(nely,nelx,nelz); 

5  

6 xTemp = zeros(nely+2,nelx+2,nelz+2); 

7 xTemp(2:nely+1, 2:nelx+1, 2:nelz+1) = x; 

8  

9 for ely = 2:nely+1 

10 for elx = 2:nelx+1 

11 for elz = 2:nelz+1 

12 magX = ((xTemp(ely,elx+1,elz) - xTemp(ely,elx-1,elz))*4 ... 

13 + (xTemp(ely,elx+1,elz-1) - xTemp(ely,elx-1,elz-1))*2 ... 

14 + (xTemp(ely,elx+1,elz+1) - xTemp(ely,elx-1,elz+1))*2 ... 

15 + (xTemp(ely+1,elx+1,elz) - xTemp(ely+1,elx-1,elz))*2 ... 

16 + (xTemp(ely-1,elx+1,elz) - xTemp(ely-1,elx-1,elz))*2 ... 

17 + (xTemp(ely+1,elx+1,elz+1) - xTemp(ely+1,elx-1,elz+1)) ... 

18 + (xTemp(ely+1,elx+1,elz-1) - xTemp(ely+1,elx-1,elz-1)) ... 

19 + (xTemp(ely-1,elx+1,elz-1) - xTemp(ely-1,elx-1,elz-1)) ... 

20 + (xTemp(ely-1,elx+1,elz+1) - xTemp(ely-1,elx-1,elz+1)))/16; 

21  

22 magY = ((xTemp(ely+1,elx,elz) - xTemp(ely-1,elx,elz))*4 ... 

23 + (xTemp(ely+1,elx-1,elz) - xTemp(ely-1,elx-1,elz))*2 ... 

24 + (xTemp(ely+1,elx+1,elz) - xTemp(ely-1,elx+1,elz))*2 ... 

25 + (xTemp(ely+1,elx,elz+1) - xTemp(ely-1,elx,elz+1))*2 ... 

26 + (xTemp(ely+1,elx,elz-1) - xTemp(ely-1,elx,elz-1))*2 ... 

27 + (xTemp(ely+1,elx+1,elz+1) - xTemp(ely-1,elx+1,elz+1)) ... 

28 + (xTemp(ely+1,elx+1,elz-1) - xTemp(ely-1,elx+1,elz-1)) ... 

29 + (xTemp(ely+1,elx-1,elz-1) - xTemp(ely-1,elx-1,elz-1)) ... 

30 + (xTemp(ely+1,elx-1,elz+1) - xTemp(ely-1,elx-1,elz+1)))/16; 

31  

32 magZ = ((xTemp(ely,elx,elz+1) - xTemp(ely,elx,elz-1))*4 ... 

33 + (xTemp(ely,elx-1,elz+1) - xTemp(ely,elx-1,elz-1))*2 ... 

34 + (xTemp(ely,elx+1,elz+1) - xTemp(ely,elx+1,elz-1))*2 ... 

35 + (xTemp(ely+1,elx,elz+1) - xTemp(ely+1,elx,elz-1))*2 ... 

36 + (xTemp(ely-1,elx,elz+1) - xTemp(ely-1,elx,elz-1))*2 ... 

37 + (xTemp(ely+1,elx+1,elz+1) - xTemp(ely+1,elx+1,elz-1)) ... 

38 + (xTemp(ely+1,elx-1,elz+1) - xTemp(ely+1,elx-1,elz-1)) ... 

39 + (xTemp(ely-1,elx-1,elz+1) - xTemp(ely-1,elx-1,elz-1)) ... 

40 + (xTemp(ely-1,elx+1,elz+1) - xTemp(ely-1,elx+1,elz-1)))/16; 

41  
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12 magX = ((xTemp(ely,elx+1,elz) - xTemp(ely,elx-1,elz))*4 ... 

13 + (xTemp(ely,elx+1,elz-1) - xTemp(ely,elx-1,elz-1))*2 ... 

14 + (xTemp(ely,elx+1,elz+1) - xTemp(ely,elx-1,elz+1))*2 ... 

15 + (xTemp(ely+1,elx+1,elz) - xTemp(ely+1,elx-1,elz))*2 ... 

16 + (xTemp(ely-1,elx+1,elz) - xTemp(ely-1,elx-1,elz))*2 ... 

17 + (xTemp(ely+1,elx+1,elz+1) - xTemp(ely+1,elx-1,elz+1)) ... 

18 + (xTemp(ely+1,elx+1,elz-1) - xTemp(ely+1,elx-1,elz-1)) ... 

19 + (xTemp(ely-1,elx+1,elz-1) - xTemp(ely-1,elx-1,elz-1)) ... 

20 + (xTemp(ely-1,elx+1,elz+1) - xTemp(ely-1,elx-1,elz+1)))/16; 

21  

22 magY = ((xTemp(ely+1,elx,elz) - xTemp(ely-1,elx,elz))*4 ... 

23 + (xTemp(ely+1,elx-1,elz) - xTemp(ely-1,elx-1,elz))*2 ... 

24 + (xTemp(ely+1,elx+1,elz) - xTemp(ely-1,elx+1,elz))*2 ... 

25 + (xTemp(ely+1,elx,elz+1) - xTemp(ely-1,elx,elz+1))*2 ... 

26 + (xTemp(ely+1,elx,elz-1) - xTemp(ely-1,elx,elz-1))*2 ... 

27 + (xTemp(ely+1,elx+1,elz+1) - xTemp(ely-1,elx+1,elz+1)) ... 

28 + (xTemp(ely+1,elx+1,elz-1) - xTemp(ely-1,elx+1,elz-1)) ... 

29 + (xTemp(ely+1,elx-1,elz-1) - xTemp(ely-1,elx-1,elz-1)) ... 

30 + (xTemp(ely+1,elx-1,elz+1) - xTemp(ely-1,elx-1,elz+1)))/16; 

31  

32 magZ = ((xTemp(ely,elx,elz+1) - xTemp(ely,elx,elz-1))*4 ... 

33 + (xTemp(ely,elx-1,elz+1) - xTemp(ely,elx-1,elz-1))*2 ... 

34 + (xTemp(ely,elx+1,elz+1) - xTemp(ely,elx+1,elz-1))*2 ... 

35 + (xTemp(ely+1,elx,elz+1) - xTemp(ely+1,elx,elz-1))*2 ... 

36 + (xTemp(ely-1,elx,elz+1) - xTemp(ely-1,elx,elz-1))*2 ... 

37 + (xTemp(ely+1,elx+1,elz+1) - xTemp(ely+1,elx+1,elz-1)) ... 

38 + (xTemp(ely+1,elx-1,elz+1) - xTemp(ely+1,elx-1,elz-1)) ... 

39 + (xTemp(ely-1,elx-1,elz+1) - xTemp(ely-1,elx-1,elz-1)) ... 

40 + (xTemp(ely-1,elx+1,elz+1) - xTemp(ely-1,elx+1,elz-1)))/16; 

41  

42 mag(ely-1,elx-1,elz-1) = sqrt(magX^2 + magY^2 + magZ^2); 

43  

44 if magY < 0 

45 mult = -1; 

46 else 

47 mult = 1; 

48 end 

49 

50 dt = mult*acosd((magX^2 + magZ^2) ... 

51 / ((sqrt(magX^2 + magZ^2))*(sqrt(magX^2 + magY^2 + magZ^2)))); 

52  

53 if isreal(dt) 

54 dir(ely-1,elx-1,elz-1) = dt; 

55 else 

56 dir(ely-1,elx-1,elz-1) = 0; 

57 end 

58  

59 if isnan(dir(ely-1,elx-1,elz-1)) 

60 dir(ely-1,elx-1,elz-1) = 0; 

61 end 

62 end 

63 end 

64 end 
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