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Abstract: Several physics-based models have been utilized in material design for the simulation and
prediction of material properties. In this study, several machine-learning (ML) approaches were
used to construct a prediction model to analyze the influence of equal-channel angular pressing
(ECAP) parameters on the microstructural, corrosion and mechanical behavior of the biodegradable
magnesium alloy ZK30. The ML approaches employed were linear regression, the Gaussian process,
and support vector regression. For the optimization of the alloy’s performance, experiments were
conducted on ZK30 billets using different ECAP routes, channel angles, and number of passes. The
adopted ML model is an adequate predictive model which agreed with the experimental results.
ECAP die angles had an insignificant effect on grain refinement, compared to the route type. ECAP
via four passes of route Bc (rotating the sample 90◦ on its longitudinal axis after each pass in the same
direction) was the most effective condition producing homogenous ultrafine grain distribution of
1.92 µm. Processing via 4-Bc and 90◦ die angle produced the highest hardness (97-HV) coupled with
the highest tensile strength (344 MPa). The optimum corrosion rate of 0.140 mils penetration per year
(mpy) and the optimum corrosion resistance of 1101 Ω·cm2 resulted from processing through 1-pass
using the 120◦-die. Grain refinement resulted in reducing the corrosion rates and increased corrosion
resistance, which agreed with the ML findings.

Keywords: machine learning; linear regression; support vector regression; equal channel angular
pressing; ultrafine-grained structure; corrosion behavior

1. Introduction

Magnesium (Mg) alloys have attracted a lot of attention because of their excellent
qualities of high specific strength and low density, which are ideal for transportation and
lightweight structural sectors [1,2]. On the other hand, Mg alloys also have significant
potential in biological applications, where they show promise for application as bone
implant materials due to their inherent benefits over typical biomedical materials [3–5].
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This is because Mg alloys have superior mechanical properties, are biocompatible, are
extremely biodegradable [6–8], and have remarkably similar density and elastic modulus
to genuine bone [9]. The high biodegradability of Mg alloys in the human body is one of
the most appealing properties of a substance utilized in medicine, as they can dissolve in
the body’s fluids after surgery, and therefore they do not have to be taken out with another
surgery [10,11]. Mg is also very biocompatible and non-toxic, which may help the new
bone cells grow and adhere together [12,13].

However, Mg alloys have not been used as much in medical applications because they
corrode quickly in systems rich in chloride, and degrade quickly [14] due to the loss of
mechanical integrity of bones before they are fully healed. Moreover, the formation of a hy-
drogen layer in the corrosion-prone areas affects the biodegradability of Mg alloys [15–17].
Consequently, several techniques based on different alloy designs and surface changes
have been proposed to enhance the resistance to corrosion (biodegradability rates) and
mechanical behavior of Mg alloys [15,18–23]. Other methods, such as eliminating impu-
rities and regulating their content ratios, have also been used to control the degradation
rate [24,25]. Accordingly, to facilitate the use of Mg alloys in biomedical applications while
maintaining nontoxicity, durability, biocompatibility, and cytocompatibility throughout
the service lifespan, it is essential to enhance their rate of corrosion and their mechanical
properties [19,26–29].

Numerous investigations have been carried out to find suitable alloying elements
to enhance the mechanical and corrosion behavior of magnesium alloys. Aluminum (Al)
additions were proven to be a cause of Alzheimer’s, hence it was stated that Al might be
hazardous and toxic [30]. Similar findings were made regarding liver toxicity caused by
other rare-earth elements, including yttrium [6,31]. As a result, it is advised to utilize an
Al-free Mg alloy while working with people [32]. However, zinc (Zn) additions offered
the chance to improve deformability and ductility. Zn is also a crucial nutrient for the
body, and its ions may be easily digested without endangering important organs. Similarly,
Zirconium (Zr) has also been described as a biocompatible alloying element when present
in low amounts [5,28,29,33]. It was also demonstrated by Gu et al. that Mg alloys with the
addition of Zr and Zn were stronger, more resistant to corrosion, and more cytocompatible
than pure Mg [32].

Concerning its manufacture, grain refining is a useful technique for enhancing Mg
alloys’ mechanical properties [19,28,29,34,35]. It is utilized to enhance the uniform corrosion
behavior promised by the homogeneous nanoscale dispersion. Hence, grain refinement
via severe plastic deformation (SPD) might achieve such properties [36–47]. In addition, it
was shown that the reference alloys with the coarsest grains had the most positive pitting
potentials [48], while the ultra-fine-grained (UFG) Mg alloys were linked to an amelioration
in corrosion resistance. The Mg-Zn-Zr alloy family (ZKxx), which stands to represent a
plausible alternative for metallic biodegradable materials, may thus be a better solution for
medical implants [19,28,29,49].

ECAP is one of the most significant SPD techniques for refining the grains of metallic ma-
terials, which results in enhancing both mechanical and electrochemical behavior [35,50–53].
The ECAP method compels the material to move on a die featuring two parallel channels
with similar cross-sectional profiles, and which intersect at a point that has an inner channel
angle that is given a symbol of φ, and Ψ for its curvature angle [28,29]. The type of ECAP
route, and how many passes are needed for the billets that have been processed, both have
massive implications for the changes to its mechanical features, the nature of its texture
regarding crystallography, and the evolution of its microstructure [54]. The three pervasive
types of ECAP route are A, Bc, and C (Figure 1) [28,54]. In route A, the billet goes through
several passes with no turning, while route Bc involves a 90◦ turn after each pass in the
same direction across its longitudinal axis [28,46,54], whereas in route C it is turned 180◦

after each pass across the extrusion direction [54,55].
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Several studies have been carried out to identify how SPD approaches like ECAP
affect the way Mg alloys corrode, and particularly to understand the reason that the UFG
structure obtained from ECAP makes corrosion resistance better. Grain refining using
ECAP reportedly enhanced corrosion performance in ZKxx alloys by creating quite a
consistent and even distribution of the added alloying elements [14,56]. One-pass ECAP
processing with a custom-made ECAP die of ZK60 has been shown by Orlov et al. [14] to
improve corrosion resistance by refining and redistributing the grains of Zn and Zr. Several
research works have been directed at investigating the performance of biodegradable Mg
alloys in modeled bodily fluids, including Mg-Zn-Zr [28,29,57], AZ31 [34,58], ZK60 [59],
and ZN20 [60]. According to Alawad et al. [57], processing the Mg-Zn-Zr alloy at four
passes of route Bc utilizing ECAP resulted in a remarkable reduction in the size of grains by
around 92.7%, which led to an amelioration in the rate of corrosion by ninety-four percent,
in comparison to the as-annealed (AA) equivalents. The corrosion rate was improved by
78.3%, and the Vickers microhardness was improved by 132%, when AZ31 was processed
using a 2-Bc ECAP die with a 90◦ inner channel angle, as reported by Alateyah et al. [34].
According to Mostaed et al. [59], ZK60’s corrosion rate and ductility were greatly enhanced
after eight passes of processing by route Bc, with a deterioration in mechanical properties.
Analysis of ECAP processing’s impact on AZ31’s stress corrosion cracking was conducted
by Peron et al. [58]. As a result of four ECAP processing steps, Gao et al. [60] pointed
out an obvious amelioration of 40% in the ductility of Mg-Zn-Nd alloy, along with grain
refinement, texture deterioration, and improved corrosion resistance.

The development of diverse material-design approaches, such as the design of experi-
ment methodologies, optimization processes, and physics-based models, has received a
great deal of attention amid efforts to investigate and generate innovative materials with
distinct properties [61–63]. These traditional approaches frequently require a rigorous
physics-based investigation of the relationships between complicated material properties
and design concepts. It is consequently vital to analyze and study various fundamental
physical and chemical rules that regulate material behavior. Machine learning (ML) models
are another novel option that has been put forward as a potential material-design approach.
ML is a subset of artificial intelligence (AI) that enables computer programs to accurately
predict new outcomes from previously trained data, without explicit programming. These
models just need a database to record the complicated interactions between material prop-
erties as inputs, and material responses or attributes as the intended models’ outputs. The
relationships of material attributes are discovered by machine learning models much faster
than by using any other traditional approaches for material design, and with a high degree
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of accuracy. Due to the recent rapid expansion in computer performance and capabilities, as
well as the accessibility of enormous datasets and fully deployed sophisticated algorithms,
the ML field has seen a surge in attention for several industrial purposes. ML techniques are
presently being used effectively to tackle massive datasets with high-dimensional inputs
comprising regression, classification, clustering, and dimensionality reduction. The use
of ML technology helps quickly manage and expose complex material systems (including
their sudden functional changes), extract knowledge from the given data, and predict the
properties of the system. Furthermore, by adding extra data to ML models, it is possible to
use them as a tool for data analysis, producing forecasted results regardless of the model
that was chosen [64,65].

The aforementioned literature shed light on the possible biomedical applications of
Mg alloys and, as a result, the promising industrial applications that will develop from en-
hancing their degradation and mechanical behavior. Thus, the aim of this paper is two-fold.
First, to investigate the corrosion behavior of ECAP-processed ZK30 alloys in simulated
body fluids. Second, to analyze and optimize ECAP processing parameters to improve the
ZK30 alloy’s corrosion performance and mechanical properties. To that end, in the current
research, investigations were carried out to ascertain the effect of the ECAP processing on
the corrosion rates, mechanical behavior, texture, and structural evolution of the ZK30 alloy.
Variable ECAP routes and multiple passes were investigated. Machine learning methods
and approaches were used here to develop a predictive model for the ZK30 alloys processed
via ECAP. Linear regression (LR), Gaussian process regression (GPR), and support vector
machine (SVM) for regression (SVR) were among the ML algorithms adopted for model
training and validation. Several assessment criteria, including residuals (r), mean squared
errors (MSE), root mean square error (RMSE), and coefficient of determination (R2-score),
were used to validate and analyze the trained models.

2. Methodology
2.1. Material and Experimental Procedure

In this investigation, a commercial ZK30 alloy (Mg-3Zn-0.6 Zr, wt%) was adopted.
ZK30 billets 20 mm in diameter and 60 mm in length underwent a 16-h annealing process
at 430 ◦C. The adopted dies for the ECAP used two crossing cylindrical channels with an
external angle of Ψ = 20◦ and internal angles of Φ = 90◦ and 120◦ to be performed on the
AA samples of the billets as shown in Figure 1. One pass (1P), two passes (2P), and four
passes (4P) of the ECAP process were performed while placing the temperature at 250 ◦C,
employing a speed of the ram set at 10 mm/min, at different deformation settings, and
using routes A, Bc, and C.

The microstructural and textural development of the ZK30 alloy was researched by
adopting a cross-sectional cut taken longitudinally from the midpoint of the material using
ground and polished samples. For the polishing process, diamond suspensions were
used containing particles of 3 µm, subsequently 1 µm, along with a yellow DP-lubricant
(mixture of 90% ethanol +10% isopropyl alcohol). In order to achieve this, the last polishing
procedure was performed using a 0.05-micron colloidal silica formula. The following stage
involved etching the samples for 50 s in a solution of 5 milliliters of acetic acid (95%),
10 milliliters of water, 100 milliliters of ethanol, and 6 g of picric acid. Lastly, the resulting
samples were then flat ion milled utilizing a flat ion milling system for 30 min to eliminate
the top amorphous layer. The milling settings were set at a 5◦ grazing angle, 0.425 s−1

specimen rotation speed, and 2 keV beam energy [28,29]. Ion milling was employed for
sample preparation for subsequent texture analysis.

An SU-70 SEM outfitted with an electron backscatter diffraction (EBSD) attachment
was utilized to evaluate the advancement in the ZK30 biodegradable alloy’s microstructure
and the progression in the anticipated crystallographic texture. The ECAP-processed
billets were sectioned down the center longitudinally, parallel to the pressing direction,
to produce samples for SEM and EBSD analysis. The reference system’s axes align with
the extrusion ECAP direction (ED). The EBSD data were collected from the top surface ED
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plan in increments of 100 nm adopting the HKL Flamenco Channel 5 software (Hitachi,
Ltd., Tokyo, Japan), where the SEM was functioning at a current of 1.5 nA and a voltage of
15 kV [28,29]. The contouring parameters were based on more than 10-pixel, data clustering
of 5 degrees and half-width of 10 degrees.

The corrosion performance of the ECAP-processed ZK30-Mg alloy was assessed uti-
lizing a three-electrode corrosion cell. Rectangular samples measuring 20 mm by 30 mm
were cleaned with acetone and then ground using silicon-carbide sheets up to 4000 grit.
One ZK30 sample that had been ECAP-processed served as the working electrode, while
a saturated calomel electrode (SCE) and a platinum mesh served as the reference and
counter electrodes, respectively. Ringer lactate corrosive agents were examined for corro-
sion at room temperature. Adopting a Luggin capillary increased measurement accuracy
and decreased ohmic drop. The readings were taken and recorded employing an SP-200
Potentiostat, where the steady-state condition was further verified using the polarization ap-
proach at a prospective rate of scanning at 0.2 mVs−1. Linear potentiodynamic polarization
was performed using an open circuit voltage with a prospective voltage ranging around
±250 mV. Electrochemical impedance spectroscopy (EIS) was employed at open-circuit
potential (Ecorr), with a sinusoidal voltage of 10 mV and a frequency range of 10 MHz to
100 kHz.

Mechanical behavior characterization was carried out before and after the ECAP passes.
Vicker’s microhardness examination (HV) was performed utilizing a digital microhardness
tester (Qualitest Canada Ltd., Nisku, AB, Canada), from the sample periphery to the middle
of the processed samples, at 0.5 kg load and 15 s dwell time. The average results were
calculated over a minimum of five equally spaced indents per site. Tensile properties were
characterized at room temperature and a strain rate of 10−3 s−1, using a 100 kN universal
testing machine (Instron 4210, Norwood, MA, USA). The adopted samples for the tensile
tests were selected from the middle of the ZK30 ECAP-processed samples and machined to
E8M/ASTM tensile sample dimensions. Three samples were tensile tested per processing
condition compared to the as-received one.

2.2. Machine Learning Approach

The probable processing route type, the estimated number of passes needed, and
the adopted die angle of the ECAP were the most commonly reported ECAP process
parameters in previous findings [53]. According to earlier research [28,29], 16 runs were
conducted to test various ECAP responses. The specific levels of the adopted ECAP
process parameters used in this analysis, and the experimental design, are presented in
Tables 1 and 2, respectively. These parameters included the number of passes needed,
which are presented as 1, 2, or 4, the adopted die angles of the ECAP, which were set at 90◦

and 120◦, and the chosen processing route types, from A, Bc, and C.

Table 1. The ECAP process parameters and their subsequent levels.

ECAP Parameters
Process Parameters Levels

−1 0 1

Number of passes 1 2 4
ECAP die angle 90 120 -

Processing route type A Bc C

Supervised learning, unsupervised learning, semi-supervised learning, and reinforce-
ment learning are the major important fields within ML. The most common kind of ML is
supervised learning, which examines training data with the goal of identifying patterns
and making predictions based on past data [66]. Data preprocessing, model initialization,
feature extraction from input data, active learning algorithm selection, model training,
validation, and testing are all part of the unsupervised learning framework. Supervised
and unsupervised learning frameworks are the most widely adopted techniques [66]. In
the unsupervised learning framework, the training dataset is used to learn, and it provides
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a good match for the model parameters. The majority of the methods adopted for mining
training data for the purpose of reaching empirical correlations are data-suitable in the
way they reveal existing relationships that were overlooked in the data in the first place.
Model variables are fine-tuned by using a validation dataset. Both the training dataset
and the validation dataset should have the same probability distribution. An independent
testing dataset with the same probability distribution as the training dataset is adopted to
evaluate the model. The next step in the training process involves optimizing the model’s
performance, which is often measured by a cost function. The training procedure, model
structure, and behavior are all often affected by hyperparameters that must be modified
throughout this process. In a perfect world, the hyperparameters would be improved
with data that was not used in the test or training. During model training, an overfitting
problem can arise when a model overfits the dataset to a perfect match without taking the
regularization rule into account. In such a scenario, the trained model nearly never does
well during validation in the testing phase. With a small dataset like the one in this study,
cross-validation (CV) is employed to ensure that the model is not overfitting. The training
data is partitioned into many small, independent subsets called “folds” using the k-fold CV
method. Each k-fold of data is adopted to train the model, which is then tested by utilizing
the remaining data as a test set aimed at seeing how well it performs. This procedure is
redone k times in a loop. The effectiveness of the model is measured by calculating the
average of the iteration’s data values. While this approach is computationally expensive, it
does help conserve data, particularly if the model has been trained using a limited dataset.

Table 2. The experimental design of the ECAP process parameters.

Run A: No. of Passes B: Die Angle C: Route Type

AA - - -
1 1 120 Bc
2 2 120 A
3 4 90 C
4 2 120 C
5 2 90 Bc
6 2 120 A
7 2 90 Bc
8 4 120 Bc
9 4 120 C
10 2 120 Bc
11 1 120 C
12 4 90 Bc
13 1 90 A
14 4 90 A
15 4 90 A
16 1 90 C

An effective predictive ML model was developed using Gaussian process regression
(GPR) and support vector machine (SVM) for regression (SVR) to forecast the ECAP
parameters of ZK30 alloys. Brief descriptions of the methods used will be provided below.

2.2.1. Gaussian Process Regression (GPR)

Recent advances in ML have been made possible in part by the GPR methodology,
which falls into the category of Bayesian regression techniques for nonparametric data [67].
The technique presents several benefits, including the capacity to excel on tiny datasets and
produce estimations of prediction uncertainty. Recently, the GPR methodology has received
much interest and has been applied to various research topics, especially in chemistry and
materials science [68].

Taking into account the training dataset (xi, yi); i = 1, 2, . . . , M, where xi ε Rd and
yi ε R are taken from an unidentified distribution, and M is the number of observations or
instances in the dataset. The new input vector x, along with the training data, is designed
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to estimate the outcome of a response variable y utilizing a GPR model. The structure of a
linear regression model is as follows:

y = xT β + ε (1)

where the error term is ε ~ N (0, σ2), and β vector is the predicted coefficient that best fits
the model. N () denotes a normal distribution with a mean of zero and an error variance of
σ2. A Gaussian process (GP) is often characterized by its two famous functions, the mean
m(x) and covariance (or kernel) k (x, x′) functions, where x and x′ are two instances of the
input features of matrix x. Consequently, a GP could be employed to represent the expected
values of y:

y∗ ∼ GP
(
m(x), k

(
x, x′

))
(2)

Given that the covariance function plays a crucial role in determining how well GPR
performs, it must be carefully selected or built. Although there are several common covari-
ance functions in the GPR, picking one depends on the circumstances of each individual
situation. The radial basis function, one of the well-known kernels that are frequently used
with GPR, is stated as [67]:

K
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

2σ2

)
(3)

where the kernel function’s spread is represented by σ and ‖xi − xj‖ is the Euclidean
distance between the two feature vectors.

2.2.2. Support Vector Machine (SVM)

When it is necessary to model a problem aimed at classifying data or perform re-
gression problems using ML, the SVM technique [69] is extensively employed. The
classification processes used by SVR are similar to those of the SVM with a few minor
modifications [70–73]. For regression, a tolerance margin (ε) is provided to the SVM as
an approximated estimation that the problem would have already requested; moreover,
the algorithm complexity should be carefully considered. The idea of the SVM technique
is based on partitioning data into multiple groups with the greatest margin, where the
algorithm selects the best hyperplane. f (x) is adopted to provide the best approximation
for the supplied training dataset (xi, yi), i =1, 2, . . . , M, where x is a multivariate collection,
and M is the number of instances in the dataset. The function f (x) could be presented as
follows in its most straightforward way:

f (x) = wx + b (4)

Minimizing the next formula [68] would lead to the required optimum values of w
and b:

Min
1
2
‖W‖2 + C

N

∑
i=1

(ξi + ξ∗i ) (5)

Subject to: 
yi − wxi − b ≤ ε + ξi
wxi + b− yi ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
(6)

where ε is an error tolerance termed as the ε-insensitive tube, and the term C is a balance pa-
rameter between the error term that is expected empirically and the generic term. Whereas
ξ and ξ* are the slack variables, representing the individual fitting errors for each data point.
This allows for errors around the regression function and consequently provides model
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regularization. The output of the regression function is then obtained utilizing Lagrangian
multipliers and the optimum constraints [69]:

y =
N

∑
i=1

(αi + α∗i )K(xi, x) + b (7)

where α, α* are the Lagrangian multipliers, and K (xi, x) is the kernel function. Among the
foremost prominent kernel functions frequently employed with SVR are linear, polynomial,
sigmoidal, Gaussian, and radial basis functions.

3. Results and Discussion
3.1. Analysis of Machine Learning Approach

The estimated Pearson’s coefficient for every combination of parameters is revealed in
the matrix of the input data shown in Figure 2, along with the corresponding correlation
chart. Each off-diagonal subplot displays a scatterplot for two parameters, and each
diagonal subplot displays a histogram for the given parameter’s distribution. In each
off-diagonal subplot, the slope of the least-squares reference line equates to the correlation
coefficient. Assuming a linear relationship between the two sets of data, the Pearson
correlation coefficient ρ(x,y) for this graph could be calculated in the following way:

ρ(x, y) =
1

N − 1

N

∑
i=1

(
xi − µx

σx

)(
yi − µy

σy

)
(8)

where µx, µy and σx, σy are the mean and standard deviation of variables x, and y,
respectively. The correlation coefficient is usually between (−1) and (1). Slopes of linear
relationships between the two parameters are positive when they are increasing, and
negative when they are decreasing. A coefficient value close to positive one indicates a
strong directly proportional correlation, whereas a coefficient value close to negative one
indicates a strong inversely proportional correlation, while a coefficient value close to zero
indicates a weak correlation.

The correlation figure also shows that the hardness (H), yield stress (σy), and tensile
strength (σu) are all positively influenced by augmenting the number of passes (N), with
substantial positive correlations at 0.76, 0.45, and 0.58, respectively, whereas the elonga-
tion (El) and grain size (GS) exhibited a strong negative correlation of −0.57 and −0.75,
respectively. These results are corroborated by experimental data showing that the σy
and σu values of ECAP-processed billets are significantly higher than those of their AA
counterparts. Note that El falls off precipitously as strength intensifies. Moreover, these
results agree with the exhibited substantial decrease in grain size that comes with an
increase in the number of passes and the corresponding increase in σu, as will be pre-
sented in Sections 3.2.1 and 3.2.2, respectively. These findings agree with those of Dumitru
et al. [74], who claim that an increase in σu might have been caused by an increase in both
the dislocation density and the number of second-phase particles as a result of increasing
the number of ECAP passes. Additionally, these outcomes agree with the findings of the
microstructural evolution, where the increase in the number of passes led to further refine-
ment, resulting in smaller grain sizes with increased passes. ECAP processing with many
passes gradually transforms the LAGBs into HAGBs, which is linked to the development
of UFG, which increases the size of the grain boundary and consequently acts as a barrier
against dislocation motion, leading to increased alloy hardness and strength.

The results also show that the tensile properties of σy and σu decline when the ECAP
die angle (ϕ) is increased, with negative correlations of −0.63 and −0.65, respectively.
On the other hand, the ECAP die angle (ϕ) has a positive effect on El, with a positive
correlation of 0.48. These outcomes were also reinforced by the experimental outcomes,
where it was demonstrated that the most substantial enhancement in tensile properties was
obtained under processing conditions comprising a 90◦ ECAP die angle, pointing at the
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lower utilized angle, which could be assigned to the increased plastic strain. Moreover, an
improved El was seen at route Bc with a 120◦ die angle and four passes in comparison to
route Bc with a 90◦ die angle and four passes, which agrees with the obtained correlation
plot outcomes.
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3.2. Effect of ECAP Processing Parameters
3.2.1. Microstructural Evaluation

The grain structure of the ZK30 was evaluated using EBSD, and all of the AA-ZK30
orientation maps in Figure 3 are shown in relation to the extrusion direction (ED). Moreover,
experimental findings for the average grain size of AA and ECAP-processed ZK30 alloy
billets are shown in Table 3. Figure 3a shows the AA-ZK30 orientation map, which depicts
areas with fine grains and with spaced coarse grains. Figure 3b,f show the microstructure of
the AA-ZK30 processed using 1P ECAP via die angles of 90◦ and 120◦, respectively. Process-
ing at 1P via 90◦ intersecting ECAP channels resulted in scattered zones with ultrafine grain
surrounding coarse grains, which is indicative of nonuniform strain distribution while
passing through the shear zone. Conversely, 1P via 120◦ intersecting channels revealed
lower grain refinement, yet with a higher degree of uniformity that is indicative of lower
effective strain. Augmenting the number of passes enhanced the structure uniformity as
evidenced by the disappearance of the scattered coarse grains compared to 1P processing.
Further grain refinement was observed when increasing the number of passes to four via
routes A (Figure 3c), Bc (Figure 3d), and C (Figure 3f). Figure 3d shows that route Bc
produced finer grain sizes with a higher degree of uniformity compared to routes A and
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C. In addition, it is obvious from an examination of Figure 3d that processing 4-Bc passes
using the 90◦-die results in increased regions of ultrafine grain structure (UFG), in spite
of the existence of comparatively coarse grains. The average grain size measured was the
finest for the 4-Bc processed billets using a 90◦ die angle compared to the 4-A and 4-C ones,
as listed in Table 3. Based on the measured grain size and their corresponding average and
standard deviation, it is clear that the average grain size was not significantly influenced
by ECAP processing angles of 90◦ and 120◦ (Table 3). This was demonstrated by the fact
that processing via 4-Bc with the 90◦-die and 120◦-die decreased grain size by 92.7% and
92.8%, respectively, compared to their AA counterparts. However, the standard deviation
revealed a much higher value for the 90◦ angle compared to the 120◦, which is indicative of
a wider grain size distribution around the mean value. This is indicative of the enhanced
grain size uniformity via the 120◦ ECAP die compared to the 90◦ one.

Table 3. The data of grain size for the AA and ECAPed Mg-Zn-Zr billets. All of the presented units
are in µm.

AA
90◦-Die 120◦-Die

1P 4A 4Bc 4C 1P 4Bc

Minimum 3.39 1.13 0.23 0.23 0.28 2.24 0.76
Maximum 76.73 38.10 14.53 11.76 12.73 35.22 17.86
Average 26.69 3.24 2.89 1.94 2.25 5.43 1.92

St. Deviation 14.74 2.42 1.92 1.54 1.60 4.22 1.09

The experimental results in Figure 3 and Table 3 revealed an agreement with the
reported results by other researchers [28,29,56,74] concerning the density of low-angle
grain boundaries (LAGBs). The current structural analysis revealed a significant increase in
the LAGB structure following the first pass, which decreased as the number of processing
passes increased [75]. Dislocation density increased during the first pass, creating LAGB
dislocation cells [76]. The larger proportion of high-angle grain boundaries (HAGBs)
associated with ECAP 4-Bc condition, as opposed to the 1P counterpart, demonstrates that
the LAGBs underwent recrystallization over successive passes, resulting in the evolution of
LAGB dislocation cells into grains with higher misorientation angles. Here, it is important to
note that the completion of the dynamic recrystallization (DRX) process is manifested by the
change of LAGBs into HAGBs [75], which strengthens the alloy by impeding and blocking
the dislocations’ movement [77]. Similar results were found in a previous investigation [60].
Microstructural changes that occur during the ECAP processing of Mg alloys have been
modeled in detail by Figueiredo et al. [78]; they showed that the microstructure of Mg
alloys changes from a monomodal distribution to a bimodal or multimodal distribution
in the first pass and that successive passes substantially improve the microstructure. In
conclusion, a UFG homogenous distribution microstructure ought to be acquired when a
sufficient number of passes have been completed.

J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 10 of 30 
 

 

the other hand, the ECAP die angle (φ) has a positive effect on El, with a positive correla-
tion of 0.48. These outcomes were also reinforced by the experimental outcomes, where it 
was demonstrated that the most substantial enhancement in tensile properties was ob-
tained under processing conditions comprising a 90° ECAP die angle, pointing at the 
lower utilized angle, which could be assigned to the increased plastic strain. Moreover, 
an improved El was seen at route Bc with a 120° die angle and four passes in comparison 
to route Bc with a 90° die angle and four passes, which agrees with the obtained correla-
tion plot outcomes. 

3.2. Effect of ECAP Processing Parameters 
3.2.1. Microstructural Evaluation 

The grain structure of the ZK30 was evaluated using EBSD, and all of the AA-ZK30 
orientation maps in Figure 3 are shown in relation to the extrusion direction (ED). More-
over, experimental findings for the average grain size of AA and ECAP-processed ZK30 
alloy billets are shown in Table 3. Figure 3a shows the AA-ZK30 orientation map, which 
depicts areas with fine grains and with spaced coarse grains. Figures 3b,f show the micro-
structure of the AA-ZK30 processed using 1P ECAP via die angles of 90° and 120°, respec-
tively. Processing at 1P via 90° intersecting ECAP channels resulted in scattered zones 
with ultrafine grain surrounding coarse grains, which is indicative of nonuniform strain 
distribution while passing through the shear zone. Conversely, 1P via 120° intersecting 
channels revealed lower grain refinement, yet with a higher degree of uniformity that is 
indicative of lower effective strain. Augmenting the number of passes enhanced the struc-
ture uniformity as evidenced by the disappearance of the scattered coarse grains com-
pared to 1P processing. Further grain refinement was observed when increasing the num-
ber of passes to four via routes A (Figure 3c), Bc (Figure 3d), and C (Figure 3f). Figure 3d 
shows that route Bc produced finer grain sizes with a higher degree of uniformity com-
pared to routes A and C. In addition, it is obvious from an examination of Figure 3d that 
processing 4-Bc passes using the 90°-die results in increased regions of ultrafine grain 
structure (UFG), in spite of the existence of comparatively coarse grains. The average grain 
size measured was the finest for the 4-Bc processed billets using a 90° die angle compared 
to the 4-A and 4-C ones, as listed in Table 3. Based on the measured grain size and their 
corresponding average and standard deviation, it is clear that the average grain size was 
not significantly influenced by ECAP processing angles of 90° and 120° (Table 3). This was 
demonstrated by the fact that processing via 4-Bc with the 90°-die and 120°-die decreased 
grain size by 92.7% and 92.8%, respectively, compared to their AA counterparts. How-
ever, the standard deviation revealed a much higher value for the 90° angle compared to 
the 120°, which is indicative of a wider grain size distribution around the mean value. This 
is indicative of the enhanced grain size uniformity via the 120° ECAP die compared to the 
90° one. 

  

Figure 3. Cont.



J. Manuf. Mater. Process. 2023, 7, 52 11 of 28
J. Manuf. Mater. Process. 2023, 7, x FOR PEER REVIEW 11 of 30 
 

 

  

  

 
Figure 3. EBSD orientation maps for the AA-ZK30 (a) and post-ECAP processing over 1-P (b), 4-A 
(c), 4-Bc (d), 4-C (e) using the 90°die angle, and 1P (f), 4-Bc (g) by the 120°-die angle. The inverse 
pole figure (IPF) coloring triangle is depicted in for the 90°-die and 120°-die, red: [001]; blue: [120]; 
and green: [010]. 

Table 3. The data of grain size for the AA and ECAPed Mg-Zn-Zr billets. All of the presented units 
are in µm. 

 AA 
90°-Die 120°-Die 

1P 4A 4Bc 4C 1P 4Bc 
Minimum 3.39 1.13 0.23 0.23 0.28 2.24 0.76 
Maximum 76.73 38.10 14.53 11.76 12.73 35.22 17.86 
Average 26.69 3.24 2.89 1.94 2.25 5.43 1.92 

St. Deviation 14.74 2.42 1.92 1.54 1.60 4.22 1.09 

The experimental results in Figure 3 and Table 3 revealed an agreement with the re-
ported results by other researchers [28,29,56,74] concerning the density of low-angle grain 
boundaries (LAGBs). The current structural analysis revealed a significant increase in the 
LAGB structure following the first pass, which decreased as the number of processing 

Figure 3. EBSD orientation maps for the AA-ZK30 (a) and post-ECAP processing over 1-P (b), 4-A (c),
4-Bc (d), 4-C (e) using the 90◦die angle, and 1P (f), 4-Bc (g) by the 120◦-die angle. The inverse pole
figure (IPF) coloring triangle is depicted in for the 90◦-die and 120◦-die, red: [001]; blue: [120]; and
green: [010].

The {0001} pole figures of the AA condition are exposed in Figure 4a, whereas 1P,
4-Bc, 4-A, and 4-C (90◦ die angle), and 1P, 4-Bc (120◦ die angle) ECAP processed ZK30
billets are shown in Figures 4b–e and 4f,g, respectively. The AA texture (Figure 4a) has a
highest texture intensity of 14.3 times random, and it is characterized by a strong {0001}
<uvtw> fiber texture with intense {0001} poles that are positioned at an angle with respect
to the extrusion direction (ED). In accordance with [35], the crystallographic texture that
developed during ECAP processing was primarily the simple shear texture with the shear
plane oriented at 45◦ relative to the extrusion direction. There are three levels of slip systems
in HCP crystal structures (Mg alloys): basal {0001} <11–20>, prismatic {10–10} <11–20>, and
pyramidal {10–11} <11–20> [86,87]. Robust basal plane texture components with a highest
texture intensity of 20.8 times random were produced by ECAP via 1P processing for the
90◦-die, as shown in Figure 4b. With the 1P condition, the {0001} basal planes were twisted
roughly 30◦ with respect to the ED. By turning the ECAP-processed billet on its central
longitudinal axis while processing at 4-Bc, the {0001} basal planes were twisted roughly
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45◦ with respect to the ED, resulting in a different crystallographic texture (Figure 4c). The
highest texture intensity was reduced to 8.46 times random after being processed with 4-Bc
because there are only so many ZK30 slip systems available during shear deformation [79].
As a result of 4-A processing, ZK30 billets have {0001} basal planes that are 45◦ off of the
ED. Processing in 4-A resulted in a highest texture intensity that was equal to 8.77 times
random. Figure 4e demonstrates that after going through ECAP processing in 4-C, the
highest texture intensity was augmented to 9.51 times random, and the {0001} basal planes
were slanted nearly 45◦ apart from the ED. Several of the {0001} basal planes in the 120◦

ECAP die were positioned parallel to the transverse direction (TD) after being processed in
1P, while the other {0001} planes were turns on the TD axis by about 45◦, which could be
explained as the c-axes are 45◦ off of the ED and coplanar to the shear plane normal (SPN),
as depicted in Figure 4f; moreover, two overlapping peaks on the {0001} pole figure could
be observed.
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From Figure 4 it is clear that the highest texture intensity went down from 14.3 times
random (AA billets) to 10.46 times random. Especially remarkable is the fact that the
texture’s symmetry was almost entirely lost after 4-Bc, along with a corresponding decrease
in intensity to 8.08 times random.

Earlier investigations also revealed alike results. Referring to Suh et al. [80], the texture
component intensity of the AZ31 alloy was found to be modestly enhanced by using route
Bc as opposed to the various other routes. Additionally, they discovered that the novel
texture component created after initial passes was reinforced, and the tendency of the Mg
alloy’s basal planes to align parallel with the rolling direction was enhanced by following
route A. Furthermore, they stated that texture intensity was considerably reduced with
each even pass along route C, rather than being restored. Since route C leads to a shear
stress on the very same plane only in opposing directions every couple of passes, the
texture intensity was found to decrease after 4-C processing. Shearing stresses parallel to
the basal planes, which occur during ECAP processing, are responsible for the rotation of
the basal planes [81]. It was affirmed using XRD that the vast majority of basal poles are
rotated by around 45◦ with respect to ED and TD [82]. The results of the crystallographic
texture analysis agreed with those of [83] for the AZ31B Mg alloy, ref. [75] for the Mg-Zn-
Ca alloy, ref. [84] for the pure Mg, ref. [85] for the AM60 Mg alloy, and ref. [86] for the
Mg-5.00Zn-0.92Y-0.16Zr alloy.

The ECAP properties of the ZK30 alloy were modeled using several ML approaches,
including linear regression (LR), Gaussian process regression (GPR), and support vector
regression (SVR). After training, the model’s performance was evaluated using RMSE
and R2-score. As listed in Table 4, the LR modeling failed to adequately fit the model
data, while the SVR was able to model the dataset to some extent. The best-fit model
was attained using the GPR algorithm with RMSE and R2 values in the training set of
0.0176 and 0.99, respectively; in the testing set, these evaluation metrics were 0.3285 and
0.70, respectively. According to Figure 5a,b, the expected grain size values were in strong
agreement with the empirical data in both the training and testing datasets. Following
successful training, validation, and testing of the ML model of choice, a common strategy
is to use the entire dataset to reevaluate the model accuracy and build a more regularized
final model appropriate for deployment. From the ML model, it was clear that the number
of passes was the most effective processing parameter to determine the average grain
size of the ZK 30 alloy, as it exhibited a strong negative correlation of −0.75 (Figure 2).
Furthermore, the ML model confirmed that ECAP die angle had a significant influence
on the average grain size, with a positive correlation of 0.38. On the other hand, the route
type showed a trivial effect on the average grain size compared to the other processing
parameters as displayed in Figure 2. The ML model showed that the optimum processing
parameters for the magnesium alloy were 4-Bc adopting the 120◦ channel angle die which
exhibited a mean grain size of 1.86 µm. For the 90◦-die, the minimum average grain size
produced through 4-Bc was 1.88 µm.

Table 4. Model evaluation metrics of ZK30 alloy grain size.

Algorithm
Training Set Testing Set

RMSE (µm) R2 RMSE (µm) R2

LR 0.6693 0.60 0.5725 0.07
SVR 0.0181 0.99 0.3703 0.61
GPR 0.0176 0.99 0.3285 0.70

3.2.2. Corrosion Behavior

Electrochemical testing studies were conducted on the AA and the biodegradable
ZK30, which went through ECAP at varying processing parameters, as described in [28,29],
where the observations were performed in an electrolytic solution of ringer’s lactate,
which is a representative of bodily fluids, to ensure accuracy. Both the potentiodynamic
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polarization curves (a) and Nyquist plots (b) of the ZK30 for varying values of the ECAP
parameters are shown in Figure 6.
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The Tafel plot is an extremely effective tool adopted for corrosion resistance [87].
Figure 6a demonstrates that the corrosion possibility of 1P using the 90◦-die scenario was
significantly lower than that of its AA equivalent and that the noble corrosion current
shifted noticeably toward the lesser current density (Icorr). With the exception of the
90◦ 4-C route, further ECAP processing passes, namely those employing the 90◦-die and
occurring along other routes, led to an additional reduction in corrosion current relative
to the 1P pass. Corrosion Icorr was also drastically reduced by raising the die angle to
120◦ by route Bc, as compared to 90◦_4-Bc. It should be noted that when the Icorr value
goes down, that may be a good sign that the corrosion rate has been slowed. A change to
greater negative values for the corrosion potential Ecorr was seen when the die angle was
increased to 120◦ at 4-Bc.

Nyquist plots showed that the results of the EIS were equivalent, though the diameters
of the semicircles were not. The charge resistance, and hence the corrosion rate, are strongly
related to the diameter of the semicircle. Therefore, the highest corrosion resistance is
found in semicircles with the biggest diameters [52]. Figure 6b demonstrates that in
contrast to the ECAP-processed billets, the AA-ZK30 reaction produced the narrowest
semicircle. Additionally, the semicircle diameter increased dramatically during 1P ECAP
processing with the 90◦-die. Nonetheless, the semicircle diameter increased from 1P after
four passes of ECAP processing, possibly because strain accumulation boosts dislocation
density [28,52,88]. In contrast, as depicted in Figure 6b, the various routes have a major
effect on corrosion resistance. The smallest semicircle diameter was achieved via Route
C. Nevertheless, the semicircle diameter for Route A is just slightly larger than that for
Route 4-Bc. Concerning the effect of the die angle, Figure 6b revealed that processing by 1P
with the adoption of a 120◦-die resulted in a much greater semicircle diameter in contrast
to samples obtained from 1P with the adoption of a 90◦-die, which could be interpreted
to mean that the augmentation in the imposed strain caused a decline in the corrosion
resistance. Moreover, the semicircle diameter rose when employing the 120◦ ECAP dies
in 4-Bc, as opposed to the 90◦-die used in 4-Bc, indicating greater corrosion resistance.
Increased plastic strain during ECAP processing at 90◦-die results in a higher density of
dislocations, which reduces corrosion resistance compared to a 120◦-die, as previously
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documented in the literature [34,58]. To that end, an increase in dislocation density brought
about a decline in corrosion resistance.
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The ECAP-processing-induced improvement in corrosion resistance was linked by
Peron et al. [58] to the ameliorated stabilization of the accompanying oxide layer, which
revealed small grains. It has been found [19,34] that raising the SPD by augmenting the
passes ameliorates the protective layer thickness. Thus, the ECAP-processed ZK30 al-
loy’s corrosion behavior improved due to the formation of high-potential phases, which
was enabled by the second phase strengthening mechanism [34], which was in line with
the results of other studies. According to Tang. et al. [89], processing the AM80 alloy
with ECAP prompted the second phase Mg17Al12 to precipitate from the α-Mg matrix,
which was responsible for the remarkable augmentation in the ultimate intensity of the β-
Mg17Al12 phase. As shown by Cubides et al. [90], augmenting the ECAP passes produced
more homogenous shielding layers of oxide, which improves resistance to the concen-
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trated breakdown of the destructive groups by preventing the involvement of anodic and
cathodic sites.

This study’s potentiodynamic polarization results and EIS results confirmed that the
greatest improvement, resulting in the finest grains, was attained with the 4-Bc, which led
to a substantially reduced rate of corrosion to 0.091 mpy as opposed to the cases of 4-A
and 4-C processed under similar circumstances. Gurao et al. [91] obtained similar results
for pure titanium, which is available on the market. They went through three passes of
processing with the adoption of routes Bc, A, and C. It was shown that 3-Bc and 3-A had
the least Icorr and corrosion rate as opposed to the Ti billets, which showed much coarser
grains, whereas 3-C showed the peak. They also found that grain size, texture orientation,
and grain boundary character are all strongly correlated with corrosion rate. Furthermore,
they came to the conclusion that using processing routes that create UFG but have an
off-basal texture can improve corrosion resistance. In contrast, Rifai et al. [92] observed
that when they employed the Fe-20%Cr alloy, Ecorr and Icorr improved by augmenting the
passes. Moreover, they found that the Tafel polarization curves along route C were more
stable than those along routes A and Bc when there were elevated concentrations of HAGBs
and increased grain boundary non-homogeneity. It was found by Gebril et al. [93] that
route Bc attained substantial results for the amelioration of A356 alloy corrosion resistance
as opposed to other routes. They concluded that this was because the structure created via
route Bc was more refined than the structure produced via route A.

Figure 7 shows the results of modeling the corrosion behavior of the ZK30 alloy,
comprising the corrosion rate and corrosion resistance. For corrosion rate modeling, the
outcomes revealed a substantial and elevated correlation, with an R2 of 0.92, between
the true empirical dataset and the predicted dataset. SVR and GPR algorithms exhibited
extraordinary performance for data training and testing, which was assured by the RMSE
values and R2 scores presented in Table 5. Considering the modeling of corrosion resistance
using SVR and GPR, the R2-score was in the range of 0.85 to 0.88 for the training set, and
0.69 to 0.77 for the testing set. From the ML models, it was clear that the number of passes
had the most major effect on both the corrosion rate and resistance of the ZK30 alloy. The
optimum processing parameters for the ZK30 alloy were 4-Bc using the 90◦-die, which
reduced the corrosion rate to 0.14 mpy (the corrosion rate of the AA billets was 17.2 mpy).
Besides, using 1-P with the 120◦-die resulted in an increase in the corrosion resistance of
the ZK30 up to 1101 Ω·cm2 (the corrosion resistance of the AA billets was 69.2 Ω·cm2.

Table 5. Model evaluation metrics of ZK30 alloy corrosion properties.

Parameter Algorithm
Training Set Testing Set

RMSE R2 RMSE R2

Corrosion
Rate (mpy)

SVR 0.0547 0.92 0.0741 0.92
GPR 0.0567 0.92 0.0653 0.93

Corrosion
resistance (Ω)

SVR 103.77 0.85 157.24 0.77
GPR 102.30 0.88 160.01 0.69

3.2.3. Microhardness

The AA billets exhibited a Vicker’s microhardness (HV) of 52. Processing through 1-P
with the adoption of a 90◦-die led to an augmentation in the HV value up to 85. Increases
the passes to four with A, Bc, and C led to an increase in hardness of 75%, 81%, and 77%,
respectively, compared to the AA counterpart. For the 120◦-die, 1-P revealed an augmentation
in the HV value of 59% compared to AA billets. Further processing through 4-Bc using the
120◦-die exhibited an augmentation in the HV value by 79% compared to AA.
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Figure 7. (a) Predicted corrosion rate against experimentally measured corrosion rate assessed for the
training and the testing datasets, (b) Predicted grain size against sample indices for predicted train,
predicted test, and experimental dataset. (c) Predicted corrosion resistance against empirically mea-
sured corrosion resistance assessed for the training and the testing datasets, (d) Predicted corrosion
resistance against sample indices for predicted train, predicted test, and experimental dataset.

Figure 3 shows that grain refinement is accountable for the higher Vicker’s hardness
values (HV-values) of the billets obtained from ECAP as opposed to AA. Moreover, as
seen in Figure 3d, the HV-values increased as a result of the UFG structure attained with
4-Bc, suggesting that the grain refinement strengthening mechanism was the prevailing
one responsible for augmenting the strength of the texture. This was the case because
the imposed strain increased with the increase in ECAP passes. It is important to note
that additional ECAP passes increased the dislocation density and hence hindered the
dislocation motion [59]. According to a previous study [94], strain hardening is an essential
factor in strengthening the Mg alloys obtained from ECAP, thus elevating the HV-values.
In line with previous research findings [28,29], ECAP processing significantly strengthened
the ZK30 alloy via both grain boundary and strain hardening strengthening. Nevertheless,
substantial variations in hardness values were not noted across all the tested ECAP routes,
similarly to the findings of Sankuru et al. [55], where they showed that 4-Bc was proven
to be the ultimate effective method for enhancing the hardness of pure Mg. According to
Illgen et al. [95], the best approach is route Dc, which entails rotating the sample by 90◦

in the same direction between successive passes. The higher HV-values following ECAP
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processing are consistent with this finding and also validate the Hall–Petch relationship.
The higher dislocation density is responsible for the ECAP-induced post-processing re-
finement of grains [55]. As was previously documented [28,29], ECAP processing with
numerous passes gradually transformed the LAGBs into HAGBs, which is associated with
the improvement of UFG. When a UFG structure forms, it increases the size of the grain
boundary, which acts as a barrier against dislocation motion. This is consistent with [96,97],
which confirmed that increasing the alloy’s hardness also enhances its strength.

The microhardness properties of the ZK30 alloy were modeled and evaluated using
SVM and GPR. According to Figure 8 and Table 6, both the training and testing sets of
microhardness indicated that the expected values were within a hair’s breadth of the
empirical data. These results were obtained by optimizing SVM and GPR models to meet
the conditions for a model with recognized precision that should attain acceptable scores for
the training and testing sets alike. For the training dataset, the best-fit models achieved R2

scores in the range of 0.92 and 0.99; on the other hand, the scores for the testing dataset were
in the range of 0.93 and 0.99. This indicates the capabilities of SVM and GRP to effectively
grasp the trends in the microhardness data, and implies that they lend themselves well to
a generalized predictive model. Similar to the empirical outcomes, the number of passes
revealed a higher effect on the HV values, as it displayed a strong correlation of 0.76
(Figure 3). In addition, the die angle exhibited a good negative correlation of 0.37, while
the route type revealed an insignificant effect on the HV value as it showed a relatively
weak correlation of 0.14. Furthermore, the ML model revealed that the optimum processing
conditions for increasing the HV value were 5-Bc through the 120◦-die (HV= 98), while the
best processing condition for the 90◦-die was 4-Bc, which displayed an HV of 93.
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Figure 8. (a) Predicted experimental hardness assessed for the training and the testing datasets, (b) Pre-
dicted hardness against sample indices for predicted train, predicted test, and experimental dataset.

Table 6. Microhardness predictive model evaluation metrics of ZK30 alloy.

ML Algorithm
Training Set Testing Set

RMSE R2 RMSE R2

Gaussian process regression 0.5593 0.99 1.4007 0.93
Support vector regression 1.4641 0.90 0.0142 0.98

3.2.4. Tensile Properties

Figure 9 reveals the stress-strain diagrams of ZK30 billet samples pre- and post-ECAP
processing, which takes place under varied conditions. Figures 10 and 11 demonstrate
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the results of the predictive modeling of ZK30 tensile properties, including σy, σu, and El.
The tensile findings showed that ECAP-processed ZK30 billets significantly outperformed
their AA counterparts in terms of σy and σu without suffering from a significant decrease
in El. In addition, it was demonstrated that the highest σy could be obtained at four
passes under processing conditions comprising an angle of 90◦ for the die of ECAP and
route Bc, which might be associated with the observed grain refinement (Figure 3). It is
possible that the UFG acquired by ECAP processing with many passes is the major cause
of the dislocation movement being slowed down [59]. As a result, the process of grain
refinement is the strengthening mechanism mainly responsible for the improvement in
mechanical properties. Moreover, the use of an angle of 90◦ for the die of ECAP generated
a substantial enhancement in σy, which might be attributable to the resulting augmentation
in plastic strain. In addition, the shear strain buildup that occurs as a result of processing
to four passes might be related to the augmentation in dislocation density, which impedes
the mobility of the dislocation motion [98,99]. As reported by Alateyah et al. [28,29], the
increased volume fraction of the HAGBs evaluated via 4-Bc compared to 4-A and 4-C
played a significant role in strengthening the ZK30 billets processed using the 90◦-die. In
addition, the ECAP processing may have contributed to grain refining, which may account
for the lowered El. Furthermore, improved El was seen at 1P and 4-Bc when the die angle of
120◦ was employed in comparison to 1P and 4-Bc when the die angle of 90◦ was employed.
This difference might be related to compelling less strain, as stated by [29]. When compared
to routes A and C, which were the other two varieties investigated, route Bc showed the
lowest El since it had the most refined grains. Thus, from this vantage point, route Bc may
be the most viable option. Similar behavior was reported by Lyszkowski [100] for CuZn36
alloy and by Alateyah et al. [101] for Cu.
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Figure 9. The stress-strain diagrams of ZK30 billets before and after ECAP processing.
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Figure 10. (a) Predicted against experimental σy assessed for the training and the testing datasets,
(b) Predicted σy against sample indices for predicted train, predicted test, and experimental dataset.
(c) Predicted against empirical σu assessed for the training and the testing datasets, (d) Predicted σu
against sample indices for predicted train, predicted test, and experimental dataset.

The Hall–Petch relationship demonstrated that the grain boundary process predomi-
nated over the texture strengthening process. Therefore, it is not surprising that augmenting
the number of passes resulted in a large reduction in grain size and a corresponding rise
in σu. As demonstrated in Figure 3, the creation of finer grains occurs as a result of the
LAGBs being absorbed and eventually changing into more stable HAGBs as the applied
strain accumulates through an increase in the number of processing passes [35,102]. In
addition, Cheng et al. observed that grain refining increases the grain boundaries (GBs)
area, which acts as a significant barrier to dislocation motion and boosts the Mg billets’
σu [96]. The results are consistent with what was seen in the work of Dumitru et al. [74],
who argue that an increase in σu might have been caused by an augmentation in both
the dislocation density and the number of second-phase particles due to increasing the
number of ECAP passes. The modest rise in σu after the second pass may have resulted
from dynamic recrystallization, which in turn eliminated dislocations. Strain softening
caused by static recrystallization between ECAP passes can potentially cause a little boost
to the σu. Furthermore, the bimodal grain structure revealed in Figure 3 explains the
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enhanced El. Previous research [103,104] found that substantial grains (about 20 µm) re-
vealed significant strain deformation by providing strain hardening, whereas small grains
(smaller than 5 µm) resulted in an augmentation in strength. This suggests that the ZK30
ECAP-processed billets’ El can be enhanced by the combination of special texturing and
basal slip [28,29]. Furthermore, the enhancement of grain boundary sliding due to the rise
of HAGBs following ECAP processing explains the improvement in the El. The researchers
Alateyah et al. [35] found the same thing for pure Mg. Similarly, Jin et al. [105] found that
adopting ECAP at elevated temperature reaching up to 250 ◦C improved the AZ31 alloy
by 14%. Similar increases in El were found for AZ31B by Meyer et al. [106] and Agnew
et al. [107], who also saw a drop in the σy while the σu remained unchanged. Mostaed
et al. [59] showed that the El of ZK60 alloy had increased by 30 percent. In the case of
AM80 alloys, Naik et al. [108] found a similar pattern. In light of the previous discoveries
about the mechanical behavior of ZK30, it was abundantly obvious that the refinement
obtained through ECAP acts as an essential part of the bid to strengthen the magnesium
alloy. Sankuru et al. [55] discovered the same result, where an enhancement in the σy,
σu, and El of pure Mg following ECAP processing was clearly noted. Additionally, they
exposed that the best way to increase σy was via route Bc, whereas the best way to increase
σu was via route BA. However, improvement in pure Mg’s El was achieved most effectively
via route C. Moreover, they mentioned that the tensile properties of the ECAP-processed
billets were significantly altered after the first pass, but that successive passes had only a
negligible impact on the mechanical properties. They explained that most of the deforma-
tion occurs throughout the initial basal slip clutches, while further passes activate non-basal
slip systems and hence need less deformation energy. In addition, after ECAP processing,
second-phase particles were found consistently and homogeneously distributed at grain
boundaries and triple conjunction points, where they notably bolstered the AZ61 alloy’s
strength, as reported by Shana et al. [76].
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Figure 11. (a) Predicted against experimental El assessed for the training and the testing datasets,
(b) Predicted El against sample indices for predicted train, predicted test, and experimental dataset.

Figure 10 exhibits the outcomes of modeling σy and σu of the ZK30 alloy, Figure 11
exhibits the outcomes of modeling El. The outcomes exposed a substantial association
between the practical empirical and prospective outcomes for the datasets. The majority
of the adopted algorithms demonstrated satisfactory performance with data training as
well as testing, as evidenced by the RMSE and R2-scores illustrated in Table 7. It is worth
mentioning that SVM as well as GPR demonstrated the greatest performance for modeling
the process parameters, which were evaluated based on both RMSE and R2 criteria. This is
owing to their intrinsic merits that appear when dealing with nonlinear modeling, making
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connections without being bogged down with the local minima of the cost functions. This
is consistent with relevant literature since SVM employs the Structural Risk Minimization
(SRM) inductive principle, which has been found to outperform conventional methods.
The tensile properties of alloys might exhibit nonlinear behavior, which provides widely
scattered and statistically spread data. As a result, the mechanical properties of ZK30
alloys are highly dependent on manufacturing factors, which may be modified for specific
purposes. In this context, ML modeling techniques excel at tackling both linear and
nonlinear multivariate regression issues. From ML models, it was clear the die angle was
the most effective processing parameter in improving both σy and σu as it revealed a
strong correlation of negative 0.63 and 0.65, respectively. Furthermore, the number of
passes revealed a strong correlation of 0.45 and 0.58, respectively, whereas the route type
showed an insignificant effect on both σy and σu (Figure 2). For El, the number of passes
was the most effective route, recording a strong correlation of negative 0.57, followed by
the die angle, which recorded a strong correlation of 0.48. To strengthen the ZK30 alloy,
the optimum processing parameters of ECAP were 4-Bc when adopting a 90◦ channel
angle, which led to increasing the σy and σu up to 96 and 342, respectively. On the other
hand, to improve the El, 1P using the 120◦-die was the optimum processing parameter as it
displayed an El of 37.

Table 7. Evaluation metrics of ZK30 tensile properties ML models.

Properties Algorithm
Training Set Testing Set

RMSE R2 RMSE R2

σy (MPa) GPR 0.2906 0.99 1.5464 0.81
σu (MPa) GPR 1.6323 0.98 4.2525 0.86

El (%) SVM 1.6524 0.93 1.4570 0.82

3.3. ML Model Deployment

ML model deployment refers to the process of placing a finalized, trained, and verified
ML model into a production setting where it can be used and updated easily. Systems that
use ML in production are complex software systems that require regular upkeep. This
presents developers with new challenges, some of which are shared with the operation of
conventional software services, while others are unique to ML. As a result, most ML re-
search field models were not put to use. The need for data storage, high computational costs,
a lack of control and ownership, difficulties in reproducibility, and a severe shortage of well-
defined standards are all factors contributing to this challenging environment [109–111].
Users can benefit from models in a variety of contexts, and developers often expose them
to apps via an Application Programming Interface (API). Gradio [112] is an open-source
Python module that makes it easier to create APIs by providing methods and functions
for adding input spaces and facilities to a graphical user interface (GUI) for the deployed
model. The fact that Gradio can be installed on the host server is yet another plus for using
it. Hugging Face [113] is an open-source hosting platform for machine learning models,
transforming them from models in papers into functional objects that can be effectively
utilized. For this purpose, as shown in Figure 12, a GUI tool was developed in Python using
the Gradio library, to expect the mechanical properties of ZK30 alloys when adopting ECAP
parameters. This tool is hosted on the Hugging Face platform. This web app presents the
three input parameters (N, φ, and Rt) in line with the suggested ML model. Users may
enter values for the ECAP parameters and submit them to get the expected values of the
ZK30 properties, comprising microhardness, tensile properties, grain size, and corrosion
properties based on SVR and GPR algorithms.
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4. Conclusions

In this work, experimental investigations were conducted on billets of ZK30 alloy to
determine the ECAP processing conditions that correspond to optimum alloy performance.
The attributes under investigation were the alloy’s microstructural evolution, its crystal-
lographic texture development, and its electrochemical and mechanical properties. ML
was employed to build prediction models that optimize the ECAP’s processing parameters
towards best alloy performance. The following can be concluded:

1. The adopted ML models can be trusted, as the outcomes they generated were consis-
tent with those of the experimental results.

2. The ML model confirms the optimum ECAP processing parameters for grain refine-
ment found experimentally, namely using the 4-Bc path with a die angle of 120◦.

3. The maximum texture intensity realized was 20.8 times random, produced by 1P
processing using the 90◦-die.

4. Finer grain sizes lead to lower corrosion rates. The ML model confirms this, and also
confirms the experiment’s findings that the lowest corrosion rate was achieved in the
90◦-die via the 4-Bc processing condition.

5. The highest corrosion resistance of 1101 Ω·cm2 is achieved using 1-Pass ECAP pro-
cessing at 120◦-die.
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6. The ML model predicts that the highest hardness values should occur with 5-Bc
processing with a die angle of 120◦. This is in agreement with the experimental results
(HV = 98).

7. The greatest strengthening effect is produced by ECAP processing via 4-Bc and using
a die angle of 90◦. The highest σy and σu achieved were 96 and 342 MPa, respectively.
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