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Abstract: The recent success of the process monitoring method Electron Optical Imaging, applied
in the additive manufacturing process Electron Beam Powder Bed Fusion, necessitates a clear un-
derstanding of the underlying image formation process. Newly developed multi-detector systems
enable the reconstruction of the build surface topography in-situ but add complexity to the method.
This work presents a physically based raytracing model, which rationalises the effect of detector
positioning on image contrast development and masking. The model correctly describes the effect
of multiple scattering events on vacuum chamber walls or heat shields and represents, therefore,
a predictive tool for designing future detector systems. Most importantly, this work provides a
validated method to compute build surface height gradients directly from experimentally recorded
electron-optical images of a multi-detector system without any calibration steps. The computed
surface height gradients can be used subsequently as input of normal integration algorithms aiming
at the in-situ reconstruction of the build surface topography.

Keywords: additive manufacturing; electron beam powder bed fusion; process monitoring; electron
optical imaging; ray tracing

1. Introduction

Additive manufacturing (AM) is driving innovation in many fields of engineering and
technology; application examples range from new types of heat exchangers [1] to space
applications [2,3]. However, additively manufactured parts intended for components in
high-risk/high-value constructions are difficult to develop without extensive trial and
error phases. In addition, the qualification of these parts is still a major challenge for
all stakeholders along the various value chains. In-situ, layer-based process monitoring
provides the possibility to accelerate process parameter development for new materials
or potentially the development of part-specific parameters. Accurate defect detection
allows us to implement correction strategies or even to qualify to build parts and to replace
traditional non-destructive evaluation techniques [4].

Recently, Electron optical (ELO) imaging has been demonstrated to be a successful,
reliable process monitoring method in electron beam powder bed fusion (PBF-EB), which
has been used to develop process parameters [5], defection detection [6] or the assessment of
dimensional accuracy [7]. After melting, the solidified build surface is scanned in a separate
additional process step with a focused and low-power electron beam. Then, an image is
reconstructed from 1D voltage time series data recorded by appropriate detector systems,
similar to the scanning electron microscope (SEM). This allows one to inspect the melt
surfaces of parts for defects such as surface bulging or surface porosity in-situ during the
build process every layer of a part. Single detectors systems are placed either directly in the
beam-column and coaxially to the incoming beam [5], get integrated into heat shields [8]
or just attached to the vacuum chamber ceiling [9].

Multi-detector systems were newly developed, which allow harvesting topographical
and material contrast information from the build surface [9,10]. A multi-detector system
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comprised of four single detectors is presented in a previous publication [11]. The integral
part of this work is the in-situ measurement of the surface height gradient∇Z(x, y) , which
approximates the true height gradient ∇Z(x, y) of the true build surface height Z(x, y).
Various correction and calibration steps are necessary to obtain the gradient, beginning with
surface tilt and solid angle (STSA) contrast correction. Surface tilt contrast is a distortion
effect that develops in ELO images due to the special geometrical conditions of single
and multi-detector systems inside PBF-EB machines. The effect can be corrected simply
by normalizing ELO images recorded in situ during the process with images recorded
from a calibration plate. The basis for the computation of the measure ∇Z(x, y) are STSA
contrast corrected normalised difference images. They are obtained by computing the
difference divided by the sum of the ELO images recorded by opposite detectors. After
further computation and calibration steps, it becomes possible to reconstruct the build
surface topography using existing normal integration algorithms.

The described variety of investigated detector systems necessitates a solid under-
standing of ELO image formation to realise the full potential of multi-detector systems.
This work builds on a simplified model of ELO image formation [11] and extends it to
include multiple scattering events at the vacuum chamber interior. Commonly, the SEM
community uses Monte Carlo models to study the interaction of electron beams with the
surface under investigation [12]. However, following the trajectory of single, possibly
interacting, electron pathways below the imaged surface is not useful in the context of ELO
imaging. For example, the special geometric conditions of a PBF-EB machine (small, distant
detectors and big imaging areas) determine the later image but depend only on the emitted
electrons. Additionally, typical beam currents are in the order of mA, which means Monte
Carlo models for ELO imaging might be computationally more demanding than similar
models used in SEM. Therefore, the ELO image formation process is modelled in the spirit
of classical ray tracing algorithms by incorporating known phenomenological descriptions
of electron scattering.

The overall aim of this work is to enhance the process monitoring method ELO imag-
ing by providing a physically based model of the imaging process itself. A special focus is
placed on multi-detector systems, which promise additional, previously unknown, insights
into PBF-EB. The provided model equations are validated with experimental ELO images
recorded by a multi-detector system. Detector positioning has a strong effect on the image
formation, and influences contrast development and masking. Masking develops when
obstacles in the pathway of scattered electrons prevent them from hitting a detector. This
is a deeply unwanted effect for gradient computation in the context of surface topogra-
phy reconstruction and can be understood by the interplay of the developing scattering
function, the local surface normal vector, and detector positioning. Most significantly,
this work shows that STSA correction introduces a position-dependent distortion in the
normalised difference images Mx and My. A new equation is developed, which allows
one to compute ∇Z(x, y) directly from four ELO images without any distortion effects or
previously necessary calibration steps. This is a significant improvement to the previous
study [11] and is enabled by the theoretical insights of this work.

2. Materials and Methods

The ELO ray tracing model is developed in the following. It builds on a simplified
model of ELO image formation [11], which includes only the first scattering event of
the primary beam electrons with the build surface. This extension provides additional
equations, which allow one to compute the influence of multiple scattering events on image
formation. Further, a validation experiment is described, and the simulation set-ups are
used in this work.

2.1. ELO Ray Tracing Model

Physically, the electron beam scans over the build surfaces in a square line-by-line
pattern of width w (see Figure 1a) with a defined scan velocity vs and beam current Ib.
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The electron beam is fully described by the positions and momenta of all electrons forming
it. Geometrically, the beam is a 3D object showing a caustic along its elongated direction.
The beam forms a 2D power density distribution at the intersection with the build surface,
which is called the beam profile. The shape and size of the beam profile will vary upon
deflection by the angle φ. The characteristics of the beam profile are highly significant
for ELO imaging since imaging a surface with electrons by scanning is mathematically
described by the convolution of the beam profile with the surface [13]. Commonly, the 2D
power density distribution is simplified to a single scalar value, the beam diameter. Single
primary electrons (PE) can enter the build surface either on locations of parts or of sintered
powder. Either way, PE experiences a variety of interactions with the material. Elastic
interactions of electrons with the atomic nuclei give rise to the emission of back scattered
electrons (BSE), which are electrons defined to have kinetic energies >50 eV. Averaging
over all primary beam electron trajectories inside the solid forms the information volume.
Its intersection with the build surface extends the spatial dimension of the beam current
distribution and influences, therefore, the imaging process. Inelastic interactions of PE with
the atoms of part or powder give rise to the ejection of weakly bound shell electrons, which
are then emitted as secondary electrons (SE). They posses low kinetic energies, by definition
<50 eV, due to their generation process. More details on the origin of BSE and the generation
of SE and further electron-material interactions are summarised in [14,15].

The general probability density function f (E, θ, A, EB, dΩ) describes the probability
of finding an emitted/backscattered electron inside the solid angle element dΩ with the
energy EB. Originally, the electron escaped from a local surface element consisting of atoms
with the atomic number A and was described by the local surface normal vector~nS. It was
generated by PE (of the electron beam), which hit the local surface element with an energy
E in the direction ~pE. The vectors ~nS and ~pE form the angle θ as illustrated in Figure 1b,
if~nS is parallel to the the z-axis then θ = φ (see Figure 1a).

Figure 1. Schematics illustrating (a) geometrical parameters of the ELO ray tracing model specific for
a multi-detector system and (b) relevant vectors on a generic local surface element.

The general scattering function g(E, θ, A, dΩ) describes the probability of finding an
electron inside the solid angle element dΩ, it is defined by the integral of f over all electron
energies EB. For example, the scattering function gBSE specific to BSE is obtained by

gBSE(E, θ, A, dΩ) =
∫ E

50 eV
f (E, θ, A, EB, dΩ)dEB . (1)
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The BSE coefficient η(E, θ, A) can be measured experimentally as the quotient of the number
of BSE NBSE and the number of PE N0. It is defined by the integral of gBSE over the solid
angle of the hemisphere ΩHS above the interaction point as

η(E, θ, A) =
∫

ΩHS

gBSE(E, θ, A, dΩ)dΩ =
NBSE

N0
. (2)

Reversely, η can be used to define gBSE = dη/dΩ and f = d2η/dEBdΩ. The above
treatment follows Reimer [16] and is adapted to the present context.

The scattering function describing SE and the respective coefficient can be found in
the same way, but SE are neglected in the current form of the model for reasons which are
described in detail in Appendix B.

ELO imaging uses robust detector set-ups made of conducting metal plates to cope
with the harsh conditions during a build [8–11]. Ledford et al. [9] argue that these detector
designs are sensitive to BSE, SE, Auger electrons and additionally to charge transfer induc-
ing phenomena such as ionised shielding gas, plasma, thermionic emission or just charged
and ejected powder particles. For example, inert gases such as helium are frequently
used to improve image quality [5,8]. These effects are neglected since implementable
phenomenological equations are missing, and the relative importance of the effects is
unknown.

Therefore, in summary, only BSE contributes to the charge measured at the detector
plates. Furthermore, it is assumed that the detector plates integrate all incoming electrons,
and backscattering at the detector plates themselves is neglected. While it is easily possible
to implement the effect in the model below, it is unclear how to validate it isolated. In
addition, possible influences of the detector material or detector temperature on the mea-
surement chain are ignored. The energy distribution of BSE is not considered, which means
all BSE moves instantaneously from the build surface to the detector. Further simplifications
are mentioned when necessary.

2.1.1. Model Definition

The electron beam is modelled as a single ray without any spatial extension. It hits
the build surface at discrete points placed on a regular grid following the direction ~pE, as
shown in Figure 1a. The build surface location (x, y) is thereby approximated by the grid
point ij, which corresponds directly to the pixel ij of the later image. The beam ray stays on
each grid point ij for the dwell time td and distributes

N0 =
Ibtd

e
(3)

PE into it, with Ib describing the beam current and e the elementary charge. Then it moves
instantaneously to the next grid point.

Subsequently, the PE scatter for the 1st time on the build surface at grid point location
ij. There are N1 electrons in the chamber after the 1st scattering event, which can be
computed from the BSE coefficient as

N1 = N0 η . (4)

More details on the computation of η(E, θ, A) follow in Section 2.1.2.
For multi-detector ELO imaging, and especially the application of build surface to-

pography reconstruction, it is reasonable to use four single detectors and align opposite
detector pairs with the machine coordinate system [11]. In this work, the right and left
detectors are aligned with the x-axis and the back and front detectors are aligned with the
y-axis, as shown in Figure 1a. The number of electrons N1,d collected by a general detector
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d is computed by the sum of BSE, which are scattered in the detector’s solid angle Ωd.
Equation (5) computes N1,d as the integral of the scattering function gBSE over Ωd as

N1,d =N1

∫
Ωd

gBSE dΩ . (5)

See Appendix A for a way to compute integrals over the solid angles of arbitrarily shaped
detectors numerically. While the 1st scattering event has the biggest contribution to ELO
image formation, the 2nd, 3rd, and 4th scattering events contribute additionally to the
final image. In the following, the necessary equations are developed, which allow one to
compute multiple scattering events on heat shields or vacuum chamber walls. See Figure 2
for a schematic of the computation of the 2nd scattering event.

Figure 2. Schematic illustrating the computation of the 1st and 2nd scattering event.

The number of BSE in the vacuum chamber which can scatter a 2nd time on heat
shields or the vacuum chamber walls is called N1,Chamber. Equation (6) computes N1,Chamber
as the difference of N1 to the sum of all BSE which hit one of the four detectors

N1,Chamber = N1 −
4

∑
d=1

N1,d = N0 η

(
1−

4

∑
d=1

∫
Ωd

gBSE dΩ

)
. (6)

As a side remark, if SE would be included at this point (in a possible model extension), then
it is important to note that only BSE acts as a source for new SE from further scattering
events [16]. An accurate description of this generation process needs to consider the energy
distribution of BSE, which could be modelled using Monte Carlo techniques since reliable
experimental data are hard to obtain [15].

To include the 2nd scattering event in the image formation, the hemisphere above grid
location ij is sampled uniformly with a total of l rays. These rays point in the direction~s1,k,
are equipped with N1,k electrons, and will hit the surrounding eventually. To compute N1,k,
the remaining electrons after the 1st scattering event N1,Chamber are distributed between
these rays with the help of the scattering function gBSE as below

N1,k = N1,Chamber
gBSE(α1,k, β1,k)

∑l
k=1 gBSE(α1,k, β1,k)

. (7)
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The dependence of gBSE on dΩ can be rewritten in terms of the vectors~nS and ~d and thereby
in terms of the angles α and β (Figure 1b), especially if the respective equations are meant to
be solved numerically. More details can be found in Section 2.1.3 and Appedix A. In the case
of the 2nd scattering event,~s1,k replaces ~d which allows to compute N1,k with the respective
α1,k and β1,k as defined by Equation (7). All other dependencies of gBSE are omitted here
for the sake of brevity. Naturally, none of the rays is allowed to hit a part of the detector
system to avoid counting electrons scattered into the solid angles Ωd multiple times. The
necessary total number of rays l needs to be determined with a convergence study.

Now, the rays~s1,k replace the primary electron beam ~pE and Equations (4) and (5)
need to be solved again, but with the variables changes shown below

N0 → N1,k

N1 → N2,k

N1,d → N2,d,k .

(8)

The total contribution of all 2nd scattering events is computed as the sum ∑l
k N2,d,k which

represents the total number of electrons arriving at the detector from the various scattering
locations defined by the vectors~s1,k.

In experiments, voltages are measured usually at the single detectors [11]. The voltage
at detector d can be computed using the transimpedance T (in units of V/A) of a virtual
amplifier in the context of the model. Therefore, Equation (9) can be used to validate
simulations which include the 2nd scattering event with experimental data

Ud =
(

N1,d +
l

∑
k

N2,d,k
)T e

td
. (9)

Similarly, experimental data can be converted to a number of electrons arriving at the
detector plates. The 3rd and further scattering events can be computed in the same spirit.
Possible additional influences of the detector material or temperature are neglected in this
work, but might be added to Equation (9). Further information on the measurement chain
in ELO imaging can be found in a previous publication [11].

The above equations can be solved easily in parallel. Indeed, the algorithm can be
classified as embarrassingly parallel since each grid point location is independent of the
others. However, taking multiple scattering events with a high number of random rays into
account demands an efficient implementation due to the exponentially growing number
of calculations. It may be possible to formulate the above equations differently and more
efficiently. See Reimer et al. for a comparison of electron and light optics [17] and Pharr et al.
for an overview of modern ray tracing algorithms [18].

The decision to describe the electron beam with a single ray limits the models’ ability
to represent resolution effects. As described above, ELO image blurring arises due to the
convolution of the beam profile with the build surface, which is currently not contained in
this model.

2.1.2. Back Scattered Electrons (BSE) Coefficient

The dependence of the BSE coefficient η on E, θ, and A is computed by the following
phenomenological equations. Equation (10) was developed by Darlington et al. [19] for
single atomic targets and was found to hold in the range of 10–100 keV

η(θ, A) = B
(

η0(A)

B

)cos(θ)
, with B = 0.89 . (10)
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According to Reimer [16] the following expression can be used to approximate the atomic
number dependence for θ = 0

η0(A) = −0.0254 + 0.016A− 1.86× 10−4 A2 + 8.3× 10−7 A3 . (11)

A summary of alternative expressions for η0(A) is listed in Hermann et al. [20]; however,
the differences to Equation (11) are small. Additionally, the authors provide a summary of
the summing rules for multicomponent specimens and found that the following expression
by Castaing [21] is the most accurate. Equation (12) allows to compute a weight averaged
BSE coefficient η̄, with ci being the weight fraction of the respective alloy constituent

η̄ = ∑
i

ciηi . (12)

2.1.3. Scattering Function

The scattering function gBSE is complicated to define, especially in a numerically
evaluable form. Quite a few publications exist that report experimentally measured 2D
data from polar scans in polar plots [22,23], but analytical functions are scarce, especially
functions which describe gBSE fully in 3D [24]. Therefore, the classic Phong model [25] is
adapted in the following way.

Equation (13) describes gBSE by the sum of a diffusive part and a reflective part,
where the latter is responsible for the experimentally found maxima of gBSE in the forward
direction at increased angles θ. The arguments E and A (from Equation (1)) are dropped
below for clarity. The argument dΩ is replaced by the angle α, which is defined in Figure 1b.
The reason is that Equation (5) (and similar equations computing the image contribution of
further scattering events) are best solved numerically. This can be done by discretizing the
detector, for example, with a triangular mesh. Now, the angle α points to the respective
mesh element, which allows one to approximate Ωd by a sum over all detector triangles;
see Appendix A for more details. The diffusive part follows Lambert’s cosine law which
is proportional to ∼cos(α)/π, where the angle α is formed between the vectors~nS and ~d
and π is a normalization factor [26] as shown in Figure 1b. The reflective part forms the
scattering lobe in the forward direction and is proportional to ∼cosk(β)

gBSE(θ, α, β) =
η0

π
cos(α) +

η(θ, A)− η0

C(θ)
k + 1
2π

cosk(β) . (13)

The angle β is the angle between the detection direction ~d and the reflection vector~pE,reflected
which is defined by the reflection of ~pE on~nS.

The parameter k describes the width of the scattering lobe and is chosen to be k = θ/13°
by comparison to experimental data shown in [23,24]. The diffuse part is scaled with η0,
whereas the reflective part is weighted with the additional electrons generated by oblique
beam incidence η(θ, A)− η0.

In addition, Equation (13) needs to be corrected with the function C(θ). Otherwise, the
correct value of η(θ, A) (from Equation (10)) at oblique electron beam incidence (or angles
θ � 0) cannot be reproduced by integrating gBSE over the solid angle of the hemisphere
ΩHS (Equation (2)). See [27] for an analogy to rendering in light optics and why it is
problematic to normalise cosk(β) analytically. The calibration function C(θ) solves this
issue pragmatically. C(θ) is determined numerically by placing a hemispherical detector
over the scattering location and the resulting gBSE, varying θ by changing~nS and measuring
the number of electrons hitting the hemispherical detector. This approach is basically the
numerical solution of Equation (2); again, see Appendix A for implementation details. C(θ)
enforces that the phenomenological η from Equation (10) and the numerically computed ηn
are equal by multiplying the reflective part with η/ηn. Equation (14) shows the calibration
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function C(θ), which the described procedure for Ti-6Al-4V has determined. θ is given
in degree

C(θ) = 1.01− 4.06 θ + 1.36× 10−5 θ2 − 1.71× 10−6 θ3 . (14)

2.1.4. Surface Tilt and Solid Angle (STSA) Contrast Correction, Normalised Difference
Images and Surface Gradient

As the introduction mentions, STSA contrast is a geometric effect resulting from
detector positioning and size. It needs to be corrected to enable various applications in
ELO imaging, here, the focus is on surface topography reconstruction. Surface tilt contrast
develops due to the dependence of η on θ as defined in Equation (10). In the most simple
case, the angle θ is equal to the deflection angle φ which means that the local surface normal
vector~nS = [0, 0, 1]T and, therefore,~nS is parallel to the z-axis. Both angles depend on the
build surface location (x, y) and increase with distance to the machine coordinate system
centre. Consequently, η decreases. Solid angle contrast is a result of the dependence of
Equation (5) on the build surface location (x, y). Both, Ωd and gBSE vary with (x, y) and,
therefore, the integral varies. Naturally, the same holds true if multiple scattering events are
included (as indicated by Equation (9)), but then the respective vacuum chamber interior
location replaces the build surface location.

The basis for the computation of the build surface gradient∇Z(x, y) are STSA contrast
corrected normalised difference images. ELO images for STSA contrast correction can be
recorded from a plane plate characterised by~nS ≈ [0, 0, 1]T . Then single ELO images of the
right, left, back, and front detectors are normalised with the correction images to obtain the
contrast-corrected images RC, LC, BC, and FC. The corrected normalised difference image
Mx and My are computed by the respective expression below

Mx =
RC − LC

RC + LC and My =
BC − FC

BC + FC . (15)

Mx carries gradient information along the x-axis whereas My carries gradient information
along the y-axis. The gradient ∇Z(x, y) is then obtained from Mx and My after further
computation and calibration steps. In addition to STSA contrast, normalised difference
images do not depend on the beam current IB and on the backscattering coefficient η, as
described in detail in [11].

Following the arguments in [28,29] shows that the projection model of the imaging
process defines the connection of local surface normal vector ~nS at location (x, y) and
∇Z(x, y). The ELO projection model defined in [11] reveals that ELO imaging does not
exactly follow orthographic projection, but it is a valid simplification as long as the work
distance wd (Figure 1a) is big in comparison to the build surface height Z(x, y). Then ~nS
can be written in terms of the gradient as

~nS =

− ∂Z
∂x
− ∂Z

∂y
1

 =

nSx
nSy
1

 . (16)

Summarizing, this means that multi-detector ELO imaging enables the measurement of the
normal vector field of the build surface, which can be reconstructed using existing normal
integration algorithms.

2.2. Validation Experiments

The validation experiment was conducted on the in-house developed PBF-EB system
ATHENE and reported on in detail in a previous publication [11]. In brief, the experiment
consists of the recording of ELO images of a blank Ti-6Al-4V melt plate for STSA contrast
correction, melting of 3 × 3 squares with a side length of 10 mm and 15 mm on the same
plate and the subsequent recording of further ELO images. The Ti-6Al-4V melt plate in
Figure 3a is the result and is used to validate simulation results of the presented ray tracing
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model. Figure 3b shows the height map Z(x, y) of the melt plate, which was measured
with the optical profilometer Keyence VR-6200.

Figure 3. The Ti-6Al-4V melt plate. (a) Optical image and (b) height map Z(x, y) obtained by
microscope measurement.

The acceleration voltage of the electron beam gun is 60 kV. The exact melt parameters
are given in [11] since they are of no further importance in this work.

All ELO images were recorded with a four-detector system under a controlled vacuum
atmosphere of 1.5× 10−3 mbar generated by a constant helium influx. A beam current of
3 mA was chosen at a scan speed of vS = 133 m s−1. The side length of the images was
80 mm with 1500 single scan lines, which results in a square pixel size of 53.3 µm and a
dwell time of td = 0.4 µs.

The detectors are placed at a height of dh = 272 mm and spaced dw = 127 mm
from the z-axis of the machine coordinate system (as depicted schematically in Figure 1a).
The normal vectors of all four detectors are directed towards the centre of the coordinate
system, as shown in Figure 5b. The right and left detectors are aligned with the x-axis and
record the images R and L, whereas the back and front detectors are aligned with the y-axis
and record B and F. The single detector disks are made from copper with a diameter of
50 mm. Heat shields are omitted deliberately from the experiment. More details on the
measurement chain and the choice of cabling used amplifiers and digitisers can be found
in [11].

2.3. Software

The ELO raytracing model is implemented using open-source libraries of the scientific
Python community. In principle, an ELO imaging experiment can be recreated virtually by
designing a digital twin of the experimental setup. NumPy [30] and Scipy [31] are used as a
basis. For example, the Ti-6Al-4V plate in Figure 3a is digitised from the height map Z(x, y)
in Figure 3b by creating a mesh with the library Open3D [32] and exported as .stl file. All
further surfaces in the simulation, a flat plate for STSA contrast correction, the detector
plates, and the vacuum chamber of the PBF-EB machine are drawn with a CAD program
and then exported as single .stl files. The library trimesh [33] is used to load the .stl files
and to represent the simulation environment in the form of meshes. Additionally, trimesh
computes the intersection of single rays with the respective meshes. Scikit-image [34] is
used for all image processing tasks, and Matplotlib [35] and CMasher [36] for plotting.

2.4. Simulations

The following simulation parameters are kept constant throughout this work. The ac-
celeration voltage is 60 kV, the beam current is 3 mA, the dwell time td = 0.4 µs and the
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transimpedance T = 1× 105 V/A. Further, only BSE contributes to the detector signals,
following the arguments presented in Appendix B. Only the 1st scattering event is com-
puted in the model, except stated otherwise. All objects of interest consist of Ti-6Al-4V; this
means that Equation (10) is computed as a weighted sum using Equation (12). The specific
detector positioning of the various simulation studies is mentioned where necessary.

Validation

The validation simulations mirror the detector system positioning of the validation
experiment described in Section 2.2. To validate STSA contrast, a plane plate (characterised
by ~nS = [0, 0, 1]T) is used as an object of interest. Here the 1st and additionally the 2nd
scattering event are computed to account for the influence of the vacuum chamber interior.
The digitised Ti-6Al-4V melt plate is used to validate STSA-corrected normalised difference
images Mx and My since they are the basis for gradient computation. The simulated ELO
images R, L, B, and F are divided by the respective STSA images to obtain the STSA
corrected images RC, LC, BC, and FC. Then Mx and My are computed using Equation (15).
The experimentally recorded Mx and My are computed analogously.

3. Results

This part is concerned with validating the ELO ray tracing model by comparing
experimental and modelled STSA contrast ELO images. Additionally, STSA contrast
corrected normalised difference images Mx of the Ti-6Al-4V melt plate displayed in Figure 3
are computed from experimental and modelled ELO images and compared.

3.1. Validation: STSA Contrast

As explained in the introduction, STSA contrast correction is a necessary step to
compute surface gradients. Therefore, the first part of the validation study compares
STSA images of the validation experiment and the model in Figure 4, as recorded by
the right detector. The object of interest is a blank plate Ti-6Al-4V plate characterised
by a local normal surface vector ~ns = [0, 0, 1]T . All images display the quotient of input
electrons arriving at the detector by normalizing with N0. As a rule of thumb, roughly one-
thousandth of the input electrons arrive at the detectors in this specific setting. The current
arriving at the detectors is in the range of µA range since the input current IB = 3 mA.

The curvature of the contour lines of the experimentally recorded ELO image in
Figure 4a are parabolic however, there is an asymmetry at the upper end. In contrast, the
simulated ELO image of the 1st event in Figure 4b is symmetric with respect to the x-axis.
Including the 2nd event in the calculation means that the influence of the vacuum chamber
interior is added to the image formation. Figure 4d shows the 2nd scattering event isolated,
and clearly, there is no recognizable symmetry. Adding the contribution of the 1st and 2nd
scattering events reproduces the contour line asymmetry as shown in Figure 4d.

The asymmetric image contribution of the 2nd scattering event can be explained by
the specific vacuum chamber interior of ATHENE. As shown schematically in Figure 5a,
the machine coordinate system is placed closer to the back side (since a radiation protection
metal sheet hangs from the ceiling) than to the front side. The detector’s solid angle from a
position on the back side will, therefore, be always bigger than the detector’s solid angle
from a comparable position on the front side. Consequently, more electrons reach the right
detector from the back side.
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Figure 4. STSA contrast images of a blank Ti-6Al-4V plate, with~ns parallel to the z- axis, recorded by
the right detector. (a) The experimental ELO image. All further plots show results of the ELO ray
tracing model: (b) the 1st scattering event, (c) the sum of the 1st and 2nd scattering event, (d) the 2nd
scattering event.

Figure 5. Schematics of the (a) vacuum chamber of the PBF-EB machine ATHENE displaying the
asymmetry of the machine coordinate system and (b) the relevant geometric variables of detec-
tor placement.

This result is quite significant for future optimised multi-detector systems. Clearly,
the vacuum chamber interior, for example, heat shields, will distort ELO images due to
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the 2nd and further scattering events. Therefore, future heat shields should be symmetric
with respect to the z-axis of the machine coordinate system and the scan pattern or even be
designed to minimise the influence of every scattering event after the 1st.

While the degree of similarity between the experiment and model is astonishing the
model overestimates the experiment slightly on a quantitative level. This can be explained
by the assumptions of the ELO ray tracing model, as described in Section 2.1. Possible
extensions of the model can either increase or decrease the intensities of the modelled
images. Including backscattering on the detector plates itself or accounting for the influence
of helium gas will decrease the number of electrons arriving at the detectors. However,
including further scattering events (besides the 1st and 2nd), adding the signal contribution
of SE, or using a more accurate, experimentally verified definition of gBSE might increase
the number of electrons arriving at the detectors.

Further, the detector material itself and inaccuracies in detector positioning are sus-
pected to influence the experiments and could be responsible for the difference in the model.

3.2. Validation: Melt Plate

Figure 6 compares the experimentally recorded STSA contrast corrected normalised
difference image Mx with the computed one. As explained in Section 2.1.4, the material
contrast information, the influence of the beam current Ib and STSA contrast are removed
from Mx (and My). This explains the astonishing similarity between the experiment and
the model. A deviation of Mx from the expected value of zero can be observed aside the
melt surfaces (characterised by~nS parallel to the z-axis), which can be explained by slight
misalignments of detector plates, the melt plate or calibration issues of the measurement
chain [11].
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Figure 6. Comparison of experimentally recorded and modelled STSA contrast corrected normalised
difference images Mx obtained from the Ti-6Al-4V melt plate.

Figure 7 compares Mx of the experiment and model with the true gradient ∂Z/∂x
(obtained from the height map in Figure 3b) at the example of the middle surface of the
Ti-6Al-4V melt plate. The experimental Mx in Figure 7a appears blurred in comparison to
the model, which can be explained by the effect of the beam profile. The beam profile on
ATHENE is approximately Gaussian in the focus point at the machine coordinate system
centre and shows a beam diameter of approximately 270 µm full-width half maximum.
Even though many of the fine details vanish, both images are quite similar. However, the
comparison with the true gradient ∂Z/∂x reveals immediately that Mx of the model and
experiment do not reach the magnitude of the true gradients. Figure 7b compares profile
plots along x at y = 0 of the three images above, naturally with the same conclusion.
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The effect has been noticed in previous work and could be corrected by scaling
normalised difference images with calibration functions obtained from ELO images of a
calibration object with known dimensioning [11]. However, the root cause for the magni-
tude difference remained unknown. An additional close look at the model and microscope
measurement shows that the digitization of the height map (via mesh generation) has a
slight averaging effect but without significant influence.

Figure 7. Comparison of experimentally recorded and modelled STSA contrast corrected normalised
difference images Mx obtained from the middle surface of the Ti-6Al-4V melt plate with the true
gradient ∂Z/∂x obtained from the height maps in Figure 3b. (a) Close up of the middle surfaces.
(b) Profiles of the respective middle surfaces along x at y = 0.

4. Discussion

The following part identifies the root cause of the magnitude differences of Mx and My
to the true gradient ∇Z(x, y) with the help of a simplified model of ELO image formation.
An equation to compute an experimentally measured ∇Z(x, y) directly from four ELO
images recorded by a suitable detector system is developed. The equation is tested with the
accurate ELO ray tracing model on the corrugated sheet of Section 4.2 and further validated
with experimentally recorded ELO images of the Ti-6Al-4V melt plate. Additionally,
detector positioning and its influence on masking and contrast development in ELO image
formation are discussed.

4.1. Distortion Effects in Gradient Computation

In the following, the complex model of Section 2.1 is simplified twofold. First, the
areal detector is shrunk to a point-like detector and second the scattering function gBSE is
assumed to be simply Lambert’s cosine law. This allows approximating Equation (5) by
the vector definition of the cosine function. In consequence the influence of the geometric
parameters of the detector system dw and dh is made explicit by the following detector
vector definition.
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The detector vectors ~dr, ~dl , ~db and ~d f (of the right, left, back, and front detector) are
defined at the surface plane point (x, y) as

~dr =


dw−x

dh−y
dh
1

, ~dl =


−dw−x

dh−y
dh
1

 and ~db =


−x
dh

dw−y
dh
1

, ~d f =


−x
dh

−dw−y
dh
1

 . (17)

Figure 8a illustrates the simplified multi-(point)-detector system and the x, y-position
dependency of the detector vectors.

Figure 8. Schematics illustrating (a) geometrical parameters of the simplified point-detector model
and (b) how the p, q-form is obtained from a vector~n.

Additionally, the local surface normal vector ~nS and the surface vector of the STSA
contrast correction plate~nC are defined by

~nS =

nSx
nSy
1

 and ~nC =

0
0
1

 . (18)

The z-component of every vector is normalised to 1 by scaling every vector until it
touches the plane z = 1, as shown schematically by Figure 8b. Usually, this representation
is called p, q-form. It is chosen here intentionally since a four-detector system composed of
orthogonal detector pairs can only measure two components of a given 3D normal vector
~nS, but not all three.

In the following, the images R, L, B and F are computed by the respective Equation (19)
as functions of the build surface position (x, y). Every detector vector and surface vector
changes with a given (x, y) and so does η, but this and all other dependencies are omitted
in the following for the sake of brevity

R =
N0 η

π

~nS · ~dr

|~nS||~dr|
and L =

N0 η

π

~nS · ~dl

|~nS||~dl |

B =
N0 η

π

~nS · ~db

|~nS||~db|
and F =

N0 η

π

~nS · ~d f

|~nS||~d f |
.

(19)
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The STSA correction image C of an arbitrary detector is then simply given by

C =
N0 ηC

π

1

|~d|
, (20)

where ηC is the BSE coefficient of a plane plate defined by~nC. This allows to compute the
respective STSA corrected images by R/CR, L/CL, B/CB and F/CF as

RC =
η

ηC

~nS · ~dr

|~nS|
and LC =

η

ηC

~nS · ~dl
|~nS|

BC =
η

ηC

~nS · ~db
|~nS|

and FC =
η

ηC

~nS · ~d f

|~nS|
.

(21)

Consequently, this means that STSA contrast correction removes the imaging current
dependency in form of N0 and the normalization constant π. Additionally, the norm of
the respective detector vector is removed. This last point is equivalent to the solid angle
dependency in experiments or the ELO ray tracing model. Inserting the detector vector
definitions in the scalar products allows writing the STSA-corrected difference images as

RC − LC =
η

ηC

2
|~nS|

nSx dw

dh

BC − FC =
η

ηC

2
|~nS|

nSy dw

dh
.

(22)

Equation (22) shows that the difference image RC − LC measures the x component of ~nS
scaled by the detector position given by dw and dh. Equivalently, BC − FC measures the y
component of~nS. Additionally, the vector component information is divided by |~nS| and
the quotient of the scattering coefficients. The STSA corrected sum images are given by

RC + LC =
η

ηC

2
|~nS|

[
1−

nSxx + nSyy
dh

]
= BC + FC . (23)

The sum images are intended to measure only the local material contrast without surface
topography influence. However, the scattering coefficient η contains a dependence on
the angle θ and thereby on ~ns, as shown by Equation (10) and Figure 1b. Additionally,
the sum images are superimposed with 1/|~nS| and distorted by the term (nSxx + nSyy)/dh.
This is an important result for optimised multi-detector designs since the undesired effects
can be partly suppressed simply by increasing the detector distance dh. Further, accu-
rate knowledge of ~nS might allow to correct Equation (23) for all remaining influences
of topography.

The normalised difference images are computed by dividing Equations (22) by
Equation (23) to obtain

Mx =
RC − LC

RC + LC =
nSx dw

dh − (nSx x + nSy y)

My =
BC − FC

BC + FC =
nSy dw

dh − (nSx x + nSy y)
.

(24)

This formulation explains the magnitude difference of Mx (and My) to ∇Z(x, y) depicted
in Figure 7 directly. Obviously the respective~nS component and thereby ∇Z(x, y) is scaled
in first approximation with dw/dh. Additionally, the expressions confirm that the material
contrast information disappears completely (as intended), but as a drawback, the division
with the sum images adds the known position-dependent distortion. A careful look shows
that a given vector~n+ = [1, 0, 1]T is measured as dw/dh at x = 0, whereas it is measured as
dw/(dh ± x) depending if x < 0 or x > 0. Naturally, the same holds for a general~nS. The
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distortion is a deeply unsatisfying consequence of the STSA contrast correction and thereby
of the non-linearity of the scattering function, in this case of Lambert’s cosine law.

The distortion effect can be corrected by rearranging Equations (24) and solving for
the only two unknowns, nSx and nSy to obtain

nSx =
Mx(dh − nSyy)

dw + xMx
and nSy =

My(dh − nSxx)
dw + yMy

. (25)

It is possible to solve for the normal vector components of~nS by inserting the respective
Equation (25) into the other. In summary, Equation (26) computes ∇Z(x, y) directly from
the normalised differences images Mx and My and the detector position as

−∂Z
∂x

= nSx =
Mxdh

dw + xMx + yMy
and − ∂Z

∂y
= nSy =

Mydh

dw + xMx + yMy
. (26)

4.2. Correct Gradient Computation

The corrugated sheet object depicted in Figure 9 is used to test if the predictions
by Equations (24) and (26) are valid in the framework of the ELO ray tracing model.
The object is characterised by neighbouring flanks of 1 mm length with surface normals
~n− = [−1, 0, 1]T and~n+ = [1, 0, 1]T . The resulting pattern extends along the x-axis but does
not change along y, which allows us to isolate position-dependent distortion effects. Mx
and My are obtained from modelled ELO images. The detectors are placed at a height of
dh = 272 mm and single detectors are dw = 127 mm away from the z-axis of the machine
coordinate system, as in the validation study.

Figure 9. The corrugated sheet metal object: (a) schematic in side view (b) 3D display.

Figure 10 compares line profiles along x at y = 0 of Mx with the true, analytical
gradient ∂Z/∂x and the computed ∂Z/∂x from ELO images. Mx is always lower than
the true analytical gradients, as could be expected by the results from Section 3.1 and
Equation (24). At x = 0, Mx takes the value dw/dh ≈ 0.47. Additionally, Mx shows a build
area position dependency which is predicted from Equation (24). The analytical gradient
∂Z/∂x equals ±1 depending on the rising or falling flank of the object. The modelled
gradient ∂Z/∂x follows the analytical one to a very high degree, which confirms the
correctness of Equation (26) in the framework of the ELO ray tracing model.
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Figure 10. Data obtained from the corrugated sheet metal in Figure 9 along x at y = 0. The horizontal
lines are placed at ±dw/dh. (a) Comparison of the true analytical gradient −∂Z/∂x (or nSx) with
the one given by Equation (26) and Mx. Both are computed from modelled ELO images. (b) Close-
up of (a) showing the same data at the ends of the corrugated sheet metal and additionally the
height profile.

Figure 11 displays the middle surface of the Ti-6Al-4V melt plate as in Section 3.1. How-
ever, now the experimental and the modelled gradients are computed from the respective
Equation (26) and compared to the gradient computed from the microscope measurement.
Figure 11a reveals that the order of magnitude of the experimental ∂Z/∂x matches with
∂Z/∂x obtained from model and microscope measurement. Differences between the exper-
iment, model, and microscope measurement can be explained again by the influence of the
beam profile on the ELO image formation. Figure 11b shows that the line profiles along
x at y = 0 match closely. Differences between the gradient of the model and microscope
measurement are attributed to the digitization of the height map.

This part establishes that STSA contrast corrected normalised difference images Mx
and My depend on the recording position (x, y). The unintended positional dependence
can be completely removed by Equations (26), which allow computing ∇Z(x, y) directly
from experimentally recorded ELO images without the need of any additional calibration
functions. Knowledge of the constructive details of the detector system, the detectors
heights dw, and their distance from the z-axis dw are enough to directly compute the surface
gradient ∇Z(x, y) from the four ELO images of a multi-detector system. To the author’s
knowledge, this is valid for the simplified point-detector model, the ELO Raytracing model,
and the true scattering function of the validation experiments. This is a big improvement to
the surface topography reconstruction algorithm presented in a previous publication [11]
and its future applicability.

4.3. Scattering Function, Detector Positioning and Masking

In rendering and photometric stereo, reflectance maps establish a clear visual relation
between image brightness at a given surface orientation when the light source direction
and surface reflectance are known [29,37]. This study is concerned with electron optics,
however, the concept of reflectance maps can be applied as well [17].

As described in Section 2.1 (and Appendix A), the pixel intensity of ELO images
develop due to the interplay of scattering function, detector position ~d (or solid angle) and
the local surface normal vector ~nS. Assuming a point-like detector and vertical electron
beam incidence (~pE = [0, 0,−1]T) and further positioning every local~nS at the coordinate
system centre allows to compute a reflectance map for the 1st scattering event. To this end,
the vectors ~d and~nS are defined in p, q- form, as illustrated in Figure 8b and explained in
Section 4.1. Every cartesian vector ~n = [nx, ny, nz]T is scaled such that it touches the p, q-
plane defined at the height z = 1 and consequently nz = 1. The reflectance maps can then
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be computed by evaluating Equation (13) with a given ~d and~nS and displayed by plotting
the result at the respective position (nSx, nSy) in 2D.

Figure 11. Comparison of the gradient ∂Z/∂x from experimental and modelled ELO images of
the Ti-6Al-4V melt plate and the true gradient ∂Z/∂x obtained from the height maps in Figure 3b.
(a) Close up of the middle surfaces. (b) Profiles of the respective middle surfaces along x at y = 0.

Figures 12 and 13 show the reflectance maps of two different positions of a right
detector ~dr = [dw/dh, 0, 1]T (indicated by white crosses) resulting in detector inclinations
of ξ = 25° and ξ = 50° (see Figures 1a and 5b.). The left side of both figures displays the
reflectance map due to the complete scattering function gBSE whereas the right side shows
only the reflectance map due to the diffusive part. Both figures display hatched areas
that indicate masked vectors ~nS. In this specific geometric condition, the right detector
is placed along the p-axis (or x-axis). The masking condition for any ~nS is, therefore,
given by nSx ≤ −dh/dw, irrespective of nSy. This means that the detector vector ~dr
and ~nS enclose an angle α ≥ |π/2| and subsequently gBSE(θ, α, β) = 0 since electrons
cannot reach the detector directly and the ELO pixel intensity is zero. In general, every
surface vector ~nS = [nSx, nSy, 1]T imaged with a detector at ~d = [dx, dy, 1]T and fulfilling
nSxdx + nSydy + 1 ≤ 0 is geometrically masked.

The detector in Figure 13 is positioned steeper and consequently, a higher number of
normal vectors are geometrically masked. The contour lines in Figures 12 and 13 of gBSE
differ strongly, which suggests that the expected ELO image intensity and contrast depend
strongly on detector positioning but also on the present~nS.



J. Manuf. Mater. Process. 2023, 7, 87 19 of 25

−3 −2 −1 0 1 2 3

p

−3

−2

−1

0

1

2

3

q

− 272
127

gBSE

0.
05

0.10

0.15
0.20

0
.2

5

0.30

−3 −2 −1 0 1 2 3

p

− 272
127

1
η
η0
π

cos(α)

0.
05

0
.1

0

0
.1

5

0
.2

0

0.25

0.00

0.05

0.10

0.15

0.20

0.25

0.30

a.u

Figure 12. Reflectance maps for a right detector with ~dr = [127/272, 0, 1]T indicated by white crosses.
The left shows the complete scattering function gBSE, and the right the diffusive part. Masked vectors
are indicated by hatched areas.
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Figure 13. Reflectance maps for a right detector with ~dr = [229.6/192.7, 0, 1]T indicated by white
crosses. The left shows the complete scattering function gBSE, and the right the diffusive part. Masked
vectors are indicated by hatched areas.

This short discussion reveals that masking, ELO image intensity, and the expectable
contrast are strongly intertwined with the geometric conditions of the measurement system,
namely the local surface normal vector ~nS and the detector vector ~d. Optimised multi-
detector systems must find a compromise between image intensity, contrast, and masking.
However, most importantly, real surface normal vector distributions as occurring in PBF-EB
must be considered.

4.4. Masking and Contrast in PBF-EB

This part considers realistic surface normal vector distributions to understand po-
sitioning in multi-detector design. Figure 14a shows the 2D histogram of the Ti-6Al-4V
melt plate, which is computed by binning every surface normal vector~nS = [nSx, nSy, 1]T

obtained from the height map in Figure 3b. Each surface vector is translated to the origin of
the machine coordinate system by the binning process. The 2D histogram shows a four-fold
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symmetry which results from the four-fold symmetry of the molten squares. Structures
whose normal vectors are orientated along the p or q-directions will develop predominantly.
Additionally, the figure shows the masking lines resulting from the four different detector
positions ξ, which are summarised in Table 1.

Table 1. Detector positioning in the modeling study concerning masking and contrast.

dh/mm dw/mm ξ/◦

272.0 127.0 25.0
192.7 229.6 50.0
149.9 259.6 60.0
77.6 289.6 75.0

Clearly, the detector position resulting in ξ = 25° masks a fewer surface normals than
ξ = 50°, 60° or 75°. Indeed, all strongly inclined detector positions will mask the respective
~nS to the left of the masking line which means that electrons from the 1st scattering event
are unable to reach the right detector.

The upper row in Figure 14b displays the contrast increase in modelled ELO images
of the middle melt surface of the Ti-6Al-4V plate with increasing detector angle ξ. Here,
the colourmap covers the complete data range of every single image to make the visual
impression of all images comparable. The effect originates from the evaluation of the
scattering function gBSE by the detector position, as can be seen exemplarily for ξ = 25°
in Figure 12 and for ξ = 50° in Figure 13. The lower row in Figure 14b shows the same
ELO images, but now the masked pixels are marked in green. As expected, the amount of
masked pixels increases with increasing contrast and increasing detector angle ξ.

Figure 15 compares the histograms of the images in Figure 14b. The image intensity is
normalised and given in NR/N0. The mean intensity (indicated by dashed vertical lines)
decreases with increasing ξ. This means that in experiments higher (negative) voltages
are measured at detector positions with low inclination angle ξ. Contrarily, the histogram
broadens with increasing ξ which means that ELO image contrast increases as can be seen
in Figure 14b. Only the histogram of the detector position ξ = 25° is always >0 meaning
that not a single build surface location (characterised by~nS) is masked.

The production environment of PBF-EB machines is adding noise to ELO images
which lower their resolution. A detector with a low inclination angle will record higher
mean voltages which means that the resulting ELO images are more resistant to noise if the
noise contribution is purely Gaussian and centred around 0 V. Additionally, the noise might
be filtered in a post-processing step. A detector with a high inclination angle will record
lower mean voltages and is, therefore, less resistant to the same kind of noise. However,
the broader histogram and, therefore, better contrast is favourable since it makes different
surface locations better differentiable. At the same time masking is a deeply unwanted
effect in multi-detector ELO imaging since material contrast images (based on sum images
RC + LC or BC + FC) or measured surface gradients ∇Z(x, y) (based on difference images
RC − LC or BC − FC) will be heavily distorted. Especially if one detector is masked and the
opposite detector is not.
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Figure 14. Masking as a result of the distribution of~nS and the positioning of the right detector. (a) 2D
histogram of all surface normal vectors~nS of the Ti-6Al-4V melt plate. Masking lines are indicated by
pointed lines. (b) Upper row: modelled ELO images of the right detector at various detector angles
ρD of the middle surface of the Ti-6Al-4V melt plate. Lower row: masked pixels are marked in green.
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Figure 15. Histograms of the the images shown in Figure 14b. The mean of every image is indicated
by dashed lines.

5. Conclusions

This work presents the ELO ray tracing model which allows one to model ELO
image formation process based on phenomenological relationships discovered by the SEM
community. An ELO image forms by the contribution of multiple scattering events which
can be computed individually and then added up. Implementation details are given with
respect to integrals over the solid angles of single detectors. Additionally, a scattering
function for BSE is provided which can be used in future works. The model is validated
successfully with experimental ELO image recordings. It allows to rationalise effects
like STSA contrast asymmetries due to asymmetric vacuum chamber interiors, contrast
development, and masking due to detector positioning.

Using the ELO ray tracing model to verify a simplified, point-detector model of
the ELO image formation process allowed us to identify position-dependent distortion
effects in normalised difference images which originate due to STSA contrast correction.
An equation is developed which allows computing the build surface gradients ∇Z(x, y)
directly from experimentally measured four detector ELO images, without the need of any
additional calibrations. This will have a big effect on the accuracy of surface topography
reconstruction in PBF-EB and its applicability in different machines.

Additionally, the ELO ray tracing and the simplified point-detector model allow us to
understand material contrast development and will help to derive pure material contrast
images from the four detectors’ ELO images of multi-detector systems in future works.

While the question of optimal multi-detector system design is not answered in this
work, many of the relevant points have been discussed. Future works should investigate
the influence of measurement noise, detector temperature, and detector material, and
detector geometry experimentally and theoretically. In its current state, the ELO ray tracing
model can be used as a design tool that could help to upgrade existing PBF-EB machines
with customised single or multi-detector systems.
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Appendix A. Integrals over Solid Angles

Integrals over solid angles can be hard to solve. There are analytical solutions for
simpler cases [38] but not for arbitrarily shaped detectors. Van Oosterom et al. [39] derived
the following expression to compute the solid angle for a plane triangle Ωd,p

Ωd,p
(
~v1,~v2,~v3

)
= 2 atan2

(
~v1 · (~v2 ×~v3)

|~v1||~v2||~v3|+ (~v1 ·~v2)|~v3|+ (~v1 ·~v3)|~v2|+ (~v1 ·~v3)|~v1|

)
. (A1)

Equation (A1) can be used to calculate the solid angle Ωd of an arbitrarily shaped detector
whose form is approximated with a triangular mesh. The vectors ~v1,~v2 and ~v3 define
the points of a single detector triangle. The intersection points of the 3 vectors with the
unit sphere define a spherical triangle whose solid angle can be computed within spher-
ical trigonometry. Ωd at location ij is then given by the sum over all detector triangles
Ωd = ∑p Ωd,p. Additionally, this allows approximate integrals over the solid angle of a de-
tector by a sum over the solid angles of all single detector triangles, which are weighted with
the correctly defined scattering functions. For example Equation (5) can be approximated
by the following equation

N1,d =N1

∫
Ωd

gBSE dΩ

≈N1 ∑
p

Ωd,p gBSE(α1,d,p, β1,d,p) .
(A2)

Equation (A2) evaluates gBSE at the center of a detector triangle and weights the result
with the detector triangle’s solid angle. The angles α1,d,p and β1,d,p are formed by the
interplay of ~pE,~nS and the detector vector ~dd,p pointing to the detector triangle p of detector
d. The necessary level of discretization for every detector geometry needs to be determined
with a convergence study.

Appendix B. Treatment of SE

In the main text, it has been mentioned several times that SE is not taken into account
in this work. While it is easily possible to include SE in Equation (6) to Equation (9),
the actual practical implementation is difficult which is explained in the following.

The SEM community agrees that Lamberts’s cosine law accurately describes the
scattering function gSE [15,16], naturally this is easy to implement. On a theoretical level,
the SE coefficient δ(E, θ, A) can be found by adapting the integration ranges in Equation (1)
and then (2) to 0 eV and 50 eV. δ has a clear dependence on E as shown in the experimentally
confirmed Equation (A3). The ∼E−0.8 proportionality is valid for various angles θ, for a
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wide range of energies, and for different materials which are incorporated by the exponent
p (p > 1 for light elements and p < 1 for heavy elements)

δ(θ, E, A) ∼ E−0.8 1
cosp(θ)

. (A3)

However, measuring accurate, absolute values for δ is hard as can be seen by the variation of
δ in the database collected by Joy and published in Goldstein [15]. Additionally, summing
rules for SE does not exist to the authors’ knowledge, which makes the choice of the
parameter p somewhat arbitrary.

However, how many SE are actually generated in PBF-EB and how susceptible are ELO
detector systems to them? An indirect answer is provided by the previous publication [11].
It was found that BSE at least dominates ELO images by analysing the contour lines in
normalised difference images of a calibration sphere segment and comparison with results
in [14,17]. Additionally, the energy distribution of SE peaks at approximately 5 eV which
means that the majority of SE are slow in comparison to BSE [15,16]. The time of flight of
5 eV SE is in the order of 0.45 µs, which is estimated here using the biggest detector height
in this study: dh = 272 mm. Comparing that to the typical experimentally used dwell
time td = 0.4 µs shows that SE originating from build surface location (x, y) arrive later
than the much faster BSE. Consequently, SE appear in the time series data delayed by an
energy-dependent time difference and contributes to the image background of ELO images,
thereby potentially blurring details. Additionally, it is comparably easy in experiments to
apply a low negative bias voltage to deflect low-energy SE. Due to reasons present above, it
is chosen to neglect the contribution of SE in the current form of the ELO ray tracing model.
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