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Abstract: Thermal conductivity (TC) is greatly influenced by the working temperature, microstruc-
tures, thermal processing (heat treatment) history and the composition of alloys. Due to compu-
tational costs and lengthy experimental procedures, obtaining the thermal conductivity for novel
alloys, particularly parts made with additive manufacturing, is difficult and it is almost impossible to
optimize the compositional space for an absolute targeted value of thermal conductivity. To address
these difficulties, a machine learning method is explored to predict the TC of additive manufactured
alloys. To accomplish this, an extensive thermal conductivity dataset for additively manufactured
alloys was generated for several AM alloy families (nickel, copper, iron, cobalt-based) over various
temperatures (300–1273 K). This unique dataset was used in training and validating machine learning
models. Among the five different regression machine learning models trained with the dataset,
extreme gradient boosting performs the best as compared with other models with an R2 score of
0.99. Furthermore, the accuracy of this model was tested using Inconel 718 and GRCop-42 fabricated
with laser powder bed fusion-based additive manufacture, which have never been observed by the
extreme gradient boosting model, and a good match between the experimental results and machine
learning prediction was observed. The average mean error in predicting the thermal conductivity of
Inconel 718 and GRCop-42 at different temperatures was 3.9% and 2.08%, respectively. This paper
demonstrates that the thermal conductivity of novel AM alloys could be predicted quickly based on
the dataset and the ML model.

Keywords: thermal conductivity; additive manufacturing; machine learning; Bayesian optimization

1. Introduction

Material selection for an end-use application is critical to ensure meeting various
mechanical and thermophysical properties required. Each of the mechanical and thermo-
physical properties must be properly balanced based on the behavior under the expected
operating conditions and environment. One crucial thermophysical property for various
applications is thermal conductivity (TC). The temperature-sensitive TC values are a critical
material parameter for heat transfer applications used in various applications including
5G communication technologies [1], cooling components of a computer [2], propulsion
systems such as aircraft and rocket engines [3,4] industrial heat exchangers for power,
energy, and processing [5] electronic and semiconductor devices [6]. Depending upon
the end-use application, different types of materials with varying TC values are required.
For example, mechanically stable materials with a low thermal conductivity are needed
for coating the blades of gas turbine engines to improve power and efficiency at high
temperatures [7]. Similarly, electronic devices require high TC materials to dissipate the
generated heat [8]. However, due to the lack of design tools, it is extremely difficult to
design a new material, such as a new alloy, with a targeted set of TC values. So, it is
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necessary to choose and understand the right materials with desired thermal conductivity
to dissipate the heat according to the requirements of the application in order to achieve
the greatest performance.

Both first-principles and molecular dynamics (MD) calculations are the proven meth-
ods for calculating the lattice thermal conductivity of metals, semiconductors, binary alloys,
and compounds [9–17]. However, these calculations remain challenging for the system
of multicomponent alloys due to the complex structure and disorder phases that arise
from the addition of multiple elements. For examples, to perform first-principle calcula-
tion of alloys, constructing models for simulation is difficult due to the complex chemical
interaction that comes from the involvement of many principle elements [18]. Similarly,
it is required to develop force field to perform MD simulations. Such force field is not
readily available for novel alloys and constructing the force field is extremely challeng-
ing since alloys possess metastable phases depending upon methods of fabrications and
processing [19]. Performing thermal properties calculation using first principles and MD
simulation can easily consume more than 1,000,000 computer hours [16,20]. Therefore, high
computational costs and the unavailability of force potential make even more difficult to
predict the thermal properties of novel alloys as they have many principal elements. So far,
experimental trial and error approach is the only feasible method to identify the TC of novel
alloys. However, the screening process requires iterations and extensive testing which is
lengthy and costly. To overcome the limitations of simulations and experimentally based
material design approaches, machine learning (ML) is attempted in this study to predict TC
for alloys. ML-based predictions can use a full or partial traditional dataset and allow for
the opportunity to significantly lower costs [21–24]. Previously, many ML methods have
been utilized to predict the lattice TC of materials, for example, Chen et al. [25] applied
the Gaussian regression ML model to predict the lattice TC of organic compounds. The
random forest regression model was applied by the Russlan group [26] to predict the lattice
TC of crystals. Many researchers applied ML methods to predict lattice TC of graphene [27],
metal oxides [28], half-heusler compounds [29], and polymers [30] with acceptable model
performances. For training machine learning models, large amounts of data are often
needed to obtain more accurate predictions. It is necessary to evaluate and identify suitable
ML models, which do not require large training data for better accuracy. Nonetheless,
there are no ML calculations on the TC of metal alloys with multicomponent elements
particularly for additively manufactured materials.

In this work, machine learning methods were implemented and trained using collected
experimental data to predict the TC of multicomponent alloys fabricated with AM methods.
This ML method can quickly learn from the dataset and provide an accurate prediction with
less cost and stress as compared to experimental and simulation methods. Figure 1 shows
the prediction model used in ML for predicting thermal conductivity. The ML models are
trained with the training set of data during the learning process. After the training, test data
is supplied in each model for TC prediction. Five different machine learning models have
been tested with the dataset and the best model was identified. It is found that extreme
gradient boosting (XGB) regression performs better than other models and it predicts the
TC of testing alloys accurately. A more detailed explanation of the experimental setup and
ML model performance is provided in the Methods section.
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2. Machine Learning Methods
2.1. Establishment of an Alloy TC Database

A large set of samples were built using AM processes, appropriate heat treatments
were completed, and the TC was measured across various nickel, copper, iron, and cobalt-
based alloys. This dataset was funded by NASA and used as the starting dataset to train the
ML model. Cylindrical-shaped alloy samples were fabricated with either laser powder bed
fusion (L-PBF) or laser powder direct energy deposition (LP-DED) additive manufacturing
processes. The AM samples were typically 13 mm in diameter with various length. Heat
treatments, including stress relief, hot isostatic pressing (HIP), and the appropriate solution
or aging were performed on the samples to tune microstructures and consequently perfor-
mance [31,32]. A few select wrought samples were also included in the dataset to provide a
comparison of the AM and wrought counterparts during the initial measurements of TC.
The various types of alloy samples and the corresponding heat treatment cycle are listed in
Table 1 [33]. According to this table, the final steps of the heat treatment procedures were
either HIP or solution annealing via fast cooling (quenching or air cooling). HIP typically
features a slow cooling rate, for example, several ◦C/min [34–36], which is around two
orders of magnitude slower than the air-cooling rate [37], and more than three orders of
magnitude slower than quenching [38]. Therefore, in this study, it is assumed that after
the HIP treatment, phases at room temperature were retained, while after both air cooling
and quenching, phases, and their compositions at the temperature where air cooling and
quenching started were kept. Furthermore, during the thermophysical test, there is a
significant temperature increase in material (up to 1000 ◦C) and phase transformation could
potentially occur. However, this study aimed to emphasize a fundamental aspect of the
machine learning model’s design. While it is true that phase transitions could lead to
changes in local element compositions, the current model operates on a different principle,
which was specifically designed to capture the relationship between composition, thermal
conductivity, and temperature, independent of the intricate phase change phenomena.
Therefore, phase change during thermophysical test process was not specifically considered
in this ML based study.

Table 1. List of the samples and the corresponding heat treatment information [33].

Alloy Process Heat Treatment Procedures a

GRCop-42 L-PBF HIP b

GRCop-84 L-PBF HIP b

C-18150 L-PBF Sol (1000 ◦C for 9 h)
Inconel 625 L-PBF SR (1066 ◦C for 90 min) + HIP b + Sol (1177 ◦C for 60 min, quench)
Inconel 625 LP-DED SR (1066 ◦C for 90 min) + HIP b + Sol (1177 ◦C for 60 min, quench)
Inconel 625 Wrought Anneal (1010 ◦C for 60 min), quench

Inconel 718 L-PBF SR (1066 ◦C for 90 min) + HIP b + Sol (1066 ◦C for 60 min, quench) +
Age (760 ◦C for 10 h, cool to 649 ◦C hold until total aging time of 20 h)

Inconel 939 L-PBF SR (1066 ◦C for 90 min) + HIP b + Sol (1090 ◦C for 4 h, quench) +
Age (1000 ◦C for 6 h, quench + 800 ◦C for 4 h, air cooling)

Hastelloy X L-PBF SR (1066 ◦C for 90 min) + HIP b + Sol (1177 ◦C for 180 min, quench)
Hastelloy X LP-DED SR (1066 ◦C for 90 min) + HIP b + Sol (1177 ◦C for 180 min, quench)
Hastelloy X Wrought Hot rolled, anneal (1177 ◦C for 20 min), water quench
Haynes 230 L-PBF SR (1066 ◦C for 90 min) + HIP b + Sol (1177 ◦C for 60 min, quench)
Haynes 230 LP-DED SR (1066 ◦C for 90 min) + HIP b + Sol (1177 ◦C for 60 min, quench)
Haynes 230 Wrought Hot rolled, Sol (1204 ◦C for 30 min), quench

Haynes 282 L-PBF SR (1066 ◦C for 90 min) + HIP b + Sol (1135 ◦C for 60 min, quench) + Age (1010 ◦C for
120 min, cool to 788 ◦C hold until total aging time of 10 h, quench)

SS 316L LP-DED SR (899 ◦C for 120 min) + HIP b + Sol (1100 ◦C for 120 min, quench)
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Table 1. Cont.

Alloy Process Heat Treatment Procedures a

15-5, H1150 LP-DED SR (649 ◦C for 60 min) + HIP b + Sol (1050 ◦C for 60 min, air cool) +
Age (621 ◦C for 60 min, air cool)

17-4, H1150 LP-DED SR (649 ◦C for 60 min) + HIP b + Sol (1050 ◦C for 60 min, air cool) +
Age (621 ◦C for 60 min, air cool)

NASA HR-1 LP-DED 350W SR (1066 ◦C for 90 min) + HIP b + Sol (1066 ◦C for 60 min, quench) +
Age (691 ◦C for 16 h, cool to 621 ◦C hold until total aging time of 32 h)

JBK-75 LP-DED SR (982 ◦C for 90 min) + HIP b + Sol (982 ◦C for 60 min, quench) +
Age (718 ◦C for 16 h)

CoCr LP-DED SR (1052 ◦C for 120 min) + HIP b + Sol (1100 ◦C for 120 min, quench) +
Age (802 ◦C for 25 h, quench; 1000 ◦C for 60 min, quench)

a Detailed heat treatment procedures should be verified; general procedures are only provided; b Hot Isostatic
Pressing (HIP) Per ASTM 3301-18a; SR = Stress relief, slow cooling; Sol = Solution/Annealing; Age = Aging.

Three cylindrical disc samples for each alloy condition with the size of 12.55 mm in
diameter and 2.5 mm in thickness were machined with wire electrical discharge machine
(EDM) for the repeatability and credibility of the characterization testing. Prior to the tests,
the sample surfaces were grinded using SiC paper with a grit size of 600 mesh. After the
testing, the disk samples were rinsed in acetone, ethanol, and distilled water sequentially
for 10 min each, followed by air-drying. The room-temperature densities of the alloys
were measured with the Archimedes principle. Before the thermal property tests, the
disk samples were sprayed with thin graphite coating for uniform surface conditions. A
Netzsch LFA 467 HT HyperFlash®®-light flash apparatus was used to measure the thermal
diffusivity values of the samples up to 1000 ◦C, with the calculated specific heat values
of the samples by referring to the standard samples. Thermal conductivity of the alloy
samples at different test temperatures can be described by the following equation:

K(T) = α(T)·Cp(T)·ρ(T) (1)

where K(T), α(T), Cp(T), and ρ(T) are temperature-dependent thermal conductivity, ther-
mal diffusivity, specific heat and density of the samples. Coefficients of thermal expansion
were evaluated using a Netzsch DIL402SE dilatometer. Assume that after heat treatments,
the alloy samples are isotropic, linear and volumetric thermal expansion data can be es-
timated, which can be used to modify density and thermal diffusivity data above room
temperature. A more detailed description of the thermal property test procedures and
results can be found in the authors’ previous studies [33,39]. A total of 294 instances
of TC from the various AM alloy samples (and a few wrought) were collected from the
experiments. With all of the above tests and calculations, thermal conductivity of all the
alloy samples is listed in Table 2. Furthermore, new TC data were collected on copper alloy
GRCop-42 and GRCop-82 samples, Table 2. The GRCop alloy data provide the comparison
among samples manufactured by different venders with different L-PBF AM systems and
powder lots to determine the likely variability in thermophysical properties among the
commercial vendor supply chain. As the goal of this paper is to develop machine learn-
ing models and make predictions based on alloy compositions, detailed GRCop-42 and
GRCop-84 data with unique compositions are included in Table 3.
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Table 2. Thermal conductivity data (W/(mK)) of the alloy samples over the test temperatures.

Thermal Conductivity (W/(mK)) at Different Testing Temperatures (◦C)

alloy Process 25 100 200 300 400 500 600 700 800 900 1000
GRCop-42 L-PBF 327.5 328.7 329.4 328.4 325 322.1 316.9 305.8 - - -
GRCop-84 L-PBF 286.4 285.5 286 285 282.5 279.8 274.6 265.9 - - -

C-18150 L-PBF 271.2 284.4 297.8 305.4 308.9 322.9 324.4 314.3 299.7 281.7 252.4
Inconel 625 L-PBF 10.3 11.7 13.9 16.6 19.5 18.7 20.6 23 23 24.6 25.6
Inconel 625 LP-DED 10.6 12.1 14.4 17.2 20.2 19.2 21 23.4 23 25.1 26.4
Inconel 625 Wrought 10.4 11.6 13.5 16.5 19.4 18.6 20.6 22.9 23 24.9 25.4
Inconel 939 L-PBF 10.4 11.8 13.5 16 18.4 18.3 20.3 21.8 23.2 25 25.6
Inconel 718 L-PBF 10.3 11.7 13.8 16.3 19.1 18.3 19.5 24.9 25.4 24.0 25.2
Hastelloy X L-PBF 11.1 12.8 15.3 17.9 21 20.6 23.7 26.3 29.5 28.8 29.4
Hastelloy X LP-DED 10.5 12.1 14.5 17.1 19.9 19.5 22.4 24.8 28.7 27 27.9
Hastelloy X Wrought 10.6 12.2 14.6 17.2 20.2 19.7 22.5 24.8 27.9 27.2 27.6
Haynes 230 L-PBF 8.8 10.2 12.4 15 17.7 17.2 19 21.4 21.9 23.8 25.2
Haynes 230 LP-DED 9.2 10.6 12.8 15.5 18.5 17.8 19.6 22 22.1 24.4 25.7
Haynes 230 Wrought 9.1 10.5 12.8 15.5 18.4 17.8 19.5 21.7 22.6 24.6 26.3
Haynes 282 L-PBF 10.9 12.3 14.4 16.8 19.6 19.1 20.9 23.3 23.4 25.2 26

SS 316L LP-DED 13.3 14.9 17.2 19.5 22.1 22.6 28.9 31.7 42 32.4 31.4
15-5, H1150 LP-DED 16.1 17.7 19.6 21.2 22.6 21.9 24 31.5 44.8 33.7 32
17-4, H1150 LP-DED 15.2 16.7 18.5 20.1 21.6 21 22.4 30.6 43.6 32.8 31.3
NASA HR-1 LP-DED 11.1 13 15.8 18.3 20.4 19.7 22.5 24.8 22.6 23.6 24.5

JBK-75 LP-DED 12.3 13.9 16.2 18.8 21.5 21.4 26.3 28.8 36 29.3 29.2
CoCr LP-DED 12 13.5 15.6 17.7 19.7 21.4 23.7 26 28.5 31.2 34.4

GRCop-42-1 L-PBF 316.3 312.5 318.0 315.4 310.9 305.7 298.8 288.5 - - -
GRCop-42-2 L-PBF 320.5 318.2 317.2 314.7 310.3 305.5 299.9 289.8 - - -
GRCop-42-3 L-PBF 325.3 331.3 330.3 327.8 323.5 318.4 312.3 302.3 - - -
GRCop-42-4 L-PBF 329.5 329.7 327.4 324.2 319.6 314.2 307.9 297.5 - - -
GRCop-42-5 L-PBF 328.2 327.7 324.9 321.8 317.2 311.9 305.7 295.4 - - -
GRCop-42-6 L-PBF 325.6 322.5 319.4 315.7 311.2 305.5 297.9 288.5 - - -
GRCop-42-7 L-PBF 342.6 341.6 340.2 337.1 332.4 327.3 321.4 310.5 - - -
GRCop-84-1 L-PBF 308.5 304.8 303.3 300.5 296.6 292.3 285.8 275.3 - - -
GRCop-84-2 L-PBF 291.4 288.5 287.5 285.2 281.6 277.2 271.4 262.1 - - -

Table 3. Weight percentage of elements in the tested GRCop alloys [40].

Element GRCop-
42-1

GRCop-
42-2

GRCop-
42-3

GRCop-
42-4

GRCop-
42-5

GRCop-
42-6

GRCop-
42-7

GRCop-
42-8

GRCop-
84-1

GRCop-
84-2

Ag 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Al 0.06 0.06 0.06 0.06 0.06 0.07 0.04 0.06 0.01 0.03

Co 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Cr 3.25 3.30 3.29 3.37 3.26 3.28 3.28 3.38 6.61 6.59

Fe 0.01 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Nb 2.65 2.82 2.77 2.81 2.65 2.92 2.73 2.92 5.68 5.47

Ni 0.03 <0.01 <0.01 0.01 0.02 <0.01 0.01 <0.01 <0.01 <0.01

O 0.08 0.05 0.04 0.06 0.1 0.05 0.08 0.05 0.13 0.12

P <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.011

Si 0.02 0.01 <0.01 0.03 0.04 0.01 <0.01 0.02 <0.01 <0.01

2.2. Feature Selection and Analysis

The independent features used in this work are the corresponding compositions of
alloys, testing temperatures, and the target feature is thermal conductivity. The composi-
tional features listed in the dataset consist of atomic percentage of elements Ni, Cu, Fe, Cr,
Mo, Nb, Ta, Mn, Si, Co, Al, Ti, Zr, W, V, C, B, P, S, and La for each alloy.
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A selection process filtered the features based on the statistical calculation of correlation
between the independent variables. It was necessary to eliminate the features which were
strongly correlated with each other since correlated features would lead to either overfit or
underfit of the ML model. Pearson correlation coefficient statistical method was adopted to
calculate the correlation between each pair of features [41]. A correlation value between
two features approaching a +1 or −1 represents a strong correlation between them. To
eliminate the highly correlated features, correlation values over the range of ±0.9 will be
removed from the dataset. There was no need to calculate the correlation between the
dependent feature with independent features since a higher correlation between them is
required by the model to increase the model accuracy.

2.3. ML Methods

After feature selection, the TC dataset was applied for training and testing with
machine learning regression models, including random forest regression (RFR), gradient
boosting regression (GBR), Extreme Gradient Boosting (XGB) regression, Lasso regression
(LR), and Ridge regression with default parameter setting. These methods have been
successfully applied in several material science research projects for predicting physical
properties of materials [18–25,42–44]. The 10-fold cross-validation approach [45] was
used to evaluate the model performance and hyper-parameter tunning was performed
to find the best parameter for better performance. For the accuracy of the results, it is
very crucial to evaluate the predictions of all regression models to select the optimal one
among them. For regression problems, two widely used metrics to evaluate the ML model’s
performance are absolute error (MAE) and root-mean-squared error (RMSE). Meanwhile,
the R-Squared (R2) is also used to evaluate ML models, since it helps to evaluate how much
variance of the target property was captured by the regression model. Additionally, the
mean square error (MSE) of each model is also calculated because it helps to compare the
overall performance of ML models and verify whether the model is good at predicting
alloy thermal conductivity accurately. In this work, all four metrics were used to evaluate
the regression model performance and the mathematical formula is shown in Equations
(2)–(5) [46]. The workflow of this ML method explained above is shown in Figure 2.

MAE =
1
n∑n

i=1|mi − m̂i| (2)

RMSE =

√
∑n

i=1(mi − m̂i)
2

n
(3)

R2 = 1− ∑n
i=1(mi − m̂i)

2

∑n
i=1(mi −m)2 (4)

MSE =
1
n∑n

i=1(mi − m̂i)
2 (5)

where mi, m̂i, m, and n represents the experimental TC, ML predicted TC, mean of thermal
conductivity, and sample size, respectively.
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3. Results and Discussion
3.1. ML Models and Evaluation

The correlation plot is shown in Figure 3 using a heat map. Among 21 independent
features, elements Cr and Ni have the highest positive correlation of 0.5. The initial
threshold of feature correlation was set to be ±0.9, which is a value frequently used in
computing a correlation matrix. It is found that none of the initial features are highly
correlated as all values of Pearson correlation lie below the initial threshold. This means all
features are safe to use in the ML model.

It was found that three machine learning models had similar R2 scores for both the
training and testing dataset, as shown in Table 4. However, the remaining two models
(ridge and lasso) train R2 scores were similar but the test R2 scores were relatively lower
than those of the RF, GBR and XGB models. To differentiate which ML model is appropriate
for the TC dataset, additional metrics such as RMSE, MAE, and MSE of each model are
evaluated and compared. Five ML models and their metrics during training and testing
data are shown in Figure 4. ML models with low MAE, MSE, and RMSE scores are better
at making more accurate predictions. The MAE score of both Ridge and Lasso models
are higher than RF, GBR, and XGB models, which indicates their low performance in
the prediction of TC of the AM alloys dataset. The training RMSE of the RF model is
higher than that of the GBR and XGB models. Meanwhile, the testing RMSE and MAE
score of the GBR model is slightly higher than that of the XGB model. The MSE score of
the XGB model is lower than that of all four ML models, indicating that the XGB model
is better at predicting the TC of AM alloys. Analyzing the overall bargraph results in
Figure 4a,b, the XGB model is found to have the best performance among all tested models
with low RMSE and MAE scores and it was chosen as the best performing model for the TC
prediction of AM alloys. The XGB model performs better than GBR because the XGB model
uses a regularization technique which is incorporated in the XGB model for preventing
the overfitting of the model [47]. The XGB model has more space for hyper tunning the
parameters and computational method for tree pruning, which can reduce the noisy data
present in a small dataset.
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Table 4. Different ML models statistical summary R2 for train and test data.

ML Model Train R2 Score Test R2 Score

RF 0.9997 0.9228
GBR 0.9997 0.9086
XGB 0.9999 0.9618

Ridge 0.9948 0.6953
Lasso 0.9956 0.7023

To improve the XGB model’s prediction accuracy, the grid search method [48] was
applied to find the best hyperparameters. Grid search builds a model for all combinations
of hyperparameters and provides the best-tuned hyperparameters. Table 5 shows the list
of tuned hyperparameters. By using the tuned parameter, the final XGB ML model is
constructed. The scatter plot of training and testing data of TC predicted by XGB against
the experimental work is shown in Figure 5a. The blue solid diagonal line on the plot
represents the situation in which the predicted TC of alloys by the ML model match the
experimental TC values, and in this case, the training and testing data points will lie along
the blue line. According to Figure 5a, scatter plot of all the training and testing data points
lie near the straight diagonal blue line indicating less error in prediction. However, a
few testing data points have some higher variance, showing a lack of data around that
range. In the future, more experimental data are expected to be added to improve the
model. The K fold cross-validation test on the XGB model is also performed to identify
any possible overfitting. The average 10-fold cross-validation score of the XGB model is
found to be 99%. Based on a small TC dataset (294 datapoints), this score is very good.
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Similar cross-validation results were found in the previous publication that consists of low
data while predicting material properties [49,50]. For example, Huang et al. [49] found a
10-fold validation score of 0.91 while predicting the hardness of high entropy alloys from
85 experimentally collected hardness data. Huang et al. [50] found the average accuracy of
support vector machine model in predicting single-phase, intermetallic phase and mixed
phase of HEAs to be 86.3%, 91.2%, and 73.2%, respectively, using 4-fold cross validation.
To verify the validity of the XGB model’s prediction capability, the Ni-based Inconel 718-L-
PBF superalloy (Ni-Cr-Mo-Nb) elemental composition and testing temperatures data are
inserted in the XGB model, which were not present in the training and test dataset and
were never seen by the model previously. Figure 5b shows the TC of Inconel 718 alloy at
different temperatures predicted by the XGB model and the TC obtained experimentally.
The consistency of TC of Inconel 718-L-PBF predicted by the XGB model with experiments
further confirms the reliability of the model. The average mean error in predicting the TC
of Inconel 718-L-PBF at different temperatures is 3.9%.
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Table 5. Parameter, hyperparameter, and tuned hyperparameter obtained from Grid Search method.

Parameters Hyperparameter Value Tuned Hyperparameter

Learning rate [0.01, 0.1, 0.5] 0.1
max_depth [3, 4, 5, 6, 8] 6

n_estimators [100, 500, 900] 900
Subsample [0.5, 0.7, 1.0] 0.5

Colsample_bytree [0.3, 0.4, 0.6] 0.4
Gamma [0, 1, 4] 0

3.2. Additional Testing of the XGB Model

To evaluate the reliability of the XGB model, further testing was conducted using a
small dataset of GRCop alloys. These alloys have higher TC than the Ni- based superalloys
and are created for high thermal conductivity applications such as electronics and aerospace
sectors. The optimal XGB model was again trained with a 72-sample GRCop-alloy dataset
to see how this model performs when the dataset is small. Since the number of datasets
was reduced, the chances of finding the tuned hyperparameter for accurate ML model is
challenging. For small datasets, it is found that the Bayesian optimization (BO) approach of
hyperparameter tunning is more favorable than grid search [51,52]. This is due to Bayesian
hyperparameter tuning working based on a probabilistic model, which searches for the
best hyperparameter more effectively with lower computational costs. The advantage
of Bayesian hyperparameter tunning is that it can search the optimal hyperparameter
space and enhances the robustness of the ML models even with a small dataset. At first,
the B0 approach will try to find out the initial set of hyperparameters from different
combinations of hyperparameters based on the problem space and some presumptions
regarding the potential effects of the model’s hyperparameters. After finalizing the initial
hyperparameters, BO uses a probabilistic model to construct a surrogate model which
helps to estimate the performance of the model across a wide range hyperparameter
space. The model is then trained using an initial set of hyperparameters. This process
of training the model and evaluating model performance with different hyperparameter
will help BO to collect more data points and makes the surrogate model more powerful
and accurate. As the surrogate model improved, the algorithm will be more accurate in
making an informed decision about where to search for the best hyperparameter. This
process will help to find out the best hyperparameter from the limited dataset where the
model is likely to have a better performance. Therefore, BO was employed to tune the
XGB model hyperparameters. Table 6 lists the hyperparameters, their related search spaces,
and the tuned hyperparameters for an XGB ML model that were discovered via Bayesian
optimization. The hyperparameter max_depth was tuned from an integer of 1 to 6 which
helps to regulate the maximum depth of each tree of the XGB model. It was found that the
tuned hyperparameter for maximum depth was 4.16. The search space for the learning rate
was from 0.01 to 0.4 and the tuned parameter was found to be 0.4 based on the BO approach.
Similarly, the other hyperparameters such as n_estimators, subsample, colsample_by tree,
min_child_weight, and gamma parameters are effectively tuned and adjusted using BO to
improve the model’s performance on the small dataset.

Table 6. The hyperparameter, space searching, and tuned hyperparameter based on the BO method.

Hyperparameter Space Searching Tuned Hyperparameter

max_depth (1, 6) 4.16
learning_rate (0.01, 0.4), 0.4
n_estimators (100, 700), 448.06
subsample (0.1, 1), 0.1

colsample_bytree (0.1, 1), 1
min_child_weight (1, 4), 1.0

gamma (0, 4) 0
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The XGB model was trained and tested on the small dataset of GRCop alloys (Cu-Cr-
Nb) using the tuned hyperparameters from BO. The tuned XGB model had an R2 score
of 0.995, RMSE of 0.847, and MAE of 0.723, demonstrating excellent performance on the
test data. In order to evaluate how well the tuned XGB model performed, a completely
new set of GRCop alloy data (GRCop-42-8) with composition and testing temperatures is
supplied to the model for prediction. The thermal conductivity predicted using the XGB
model is shown in Table 7. The predicted TC using the XGB model is consistent with the
experimental result, demonstrating that the model had correctly generalized the unseen
data with slight changes in the elements. Figure 6 and Table 7 show the TC of GRCop-42-8
alloy predicted using the ML XGB model, together with experimental results, at different
temperatures. It is found that ML XGB model prediction and experimental results show a
similar trend with a total average prediction error of 2.08%. It implies that selecting the
best hyperparameter can significantly impact the ML model’s prediction accuracy, rather
than the number of datasets. However, the larger dataset can provide more information for
the model, but careful selection of the hyperparameters has a significant impact on model
accuracy. Therefore, the trained XGB model shows a promising possibility that it could
be utilized in predicting the thermal conductivity of new composition alloys with high
accuracy. The trained ML model proposed by Yanjing et al. [53] has a mean absolute error
(MAE) of 0.39 W/mK and a coefficient of determination (R2) while predicting the TC of
crystal materials. Similarly, Wang et al. [54] applied four different ML models to compute
the TC of crystal materials and found that the XGBoost model has the best prediction
accuracy based on R2 and MAE scores. The MAE and R2 of the XGBoost model were 0.95
and 0.96, respectively. The MAE and R2 of the model on the testing set were 2.13 W/mK
and 0.90, respectively. The XGB model in this work on the training set has MAE and R2
values of 0.10 W/mK and 0.99, respectively. On the testing set, the MAE and R2 of the
XGB model were 0.86 W/mK and 0.96, respectively, which suggests that it has strong
generalizability.

Table 7. Comparison of thermal conductivity (TC) experimentally measured and predicted by ML
model for a new GRCop alloy.

Testing Temperature
(◦C)

Experimental TC
(W/mK)

TC Predicted Using XGB Model
(W/mK) Error %

25 338.536 330.21 2.45
100 336.187 329.21 2.08
200 333.851 326.96 2.06
300 330.246 323.96 1.9
400 325.17 318.39 2.08
500 319.44 313.58 1.83
600 312.59 305.27 2.34
700 302.2228 296.31 1.95

To find the relationship between the features applied to construct the GBR model and
TC, SHAP (SHapley Additive exPlanations) [55] is used to plot the feature importance.
The SHAP method takes the mean absolute value of each feature from the entire dataset
to generate the feature importance plot which is shown in Figure 7. There is no physical
relationship between feature importance and the TC of materials. The feature importance
is only ranked based on the scores of each independent feature during the training of the
model. It was found that the composition of Ni holds the most important feature, which
denotes it has the highest score among other features and is very helpful in predicting
thermal conductivity. The interesting thing to note here was that the statistical mean value
of the Ni element holds 35% in the training dataset and due to its high presence, it may
have the highest SHAP value. The other six important features in predicting the TC are the
composition of Cu, Si, Fe, C, Ti, and the testing temperature. It was found from the previous
study that the alloying of elements influenced the thermal conductivity of alloys [56–59].
For instance, the F82H steel has low TC and the addition of copper and tungsten improves
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its thermal conductivity [60]. Many studies show that the thermal conductivity decreases
when the test temperature increases for pure metals, for example, Cu [61] Al [62], Au [63],
Ag [64], and so forth. However, this is not the case for alloys over the test temperature range
in this study, whose thermal conductivity value generally increases as test temperature
rises. Defects, especially point defects like solid solutions commonly existing in alloys with
a high content of alloying elements, show a strong scattering effect on electrons, which raise
thermal resistance and most likely lead to different temperature-dependence features of
thermal-physical properties. It appears that the SHAP model was able to find the physical
connection between the TC and the composition of elements. Therefore, the SHAP model
will be further examined for providing guidance for AM alloy design in future.
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4. Conclusions

In this work, different ML models were used to predict and experimentally validate the
thermal conductivity of different additively manufactured alloys. Based on the metrics used
to evaluate the performance of all models, the XGB ML model was found to be promising
in predicting the thermal conductivity of alloys. The TC of alloy prediction is based on
the composition of elements and testing temperature and does not require additional
theoretical calculations and experimental setups. This method is faster, more economical,
and more precise than many other physics-based simulations. The predictions made by the
XGB model for AM alloy L-PBF Inconel 718 and L-PBF GRCop-42 are consistent with the
experimentally measured values. The R2, MAE, RMSE and MSE of the XGB model were
0.96, 0.86 W/mK, 1.63 W/mK and 2.66 W/mK, respectively. The SHAP method shows
that the composition of Ni, Cu, Si, Fe, and C holds the most importance in predicting the
thermal conductivity of alloys. This current ML method could be utilized in screening
various newly developed compositions of AM alloys to search for the potential alloy of
the desired thermal conductivity. This model will continue to be refined with additional
TC measurements of alloys from various families and it will be used to optimize the
elemental composition of AM alloys to improve the TC. The model performance of the XGB
model can be improved by carefully selecting, adding more data, and optimizing the input
features or learning algorithms. In the future, physics-based models can be developed to
calculate the relevant properties of alloys, and can be further applied to machine learning
for optimization until the best composition with the desired TC is found.
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