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Abstract: Precision edge preparation techniques for cemented carbides enable optimization of the
geometry of tools’ cutting edges. These techniques are frequently used in high-stress environments,
resulting in substantial improvements in tools’ cutting performance. This investigation examined
the impact and evolution of cutting edge parameters and resulting surface finishes as a function of
dry-electropolishing time on an end-mill. Findings demonstrate enlargement of the cutting edge
radius, a decrease in surface roughness, and the mitigation of defects induced during previous
manufacturing stages (i.e., smashed ceramic particles, burrs, chipping, etc.). Additionally, a direct
correlation between dry-electropolishing time and primary cutting edges’ micro-geometry parameters
has been established.
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1. Introduction

Cemented carbides are composite materials consisting of hard carbide particles em-
bedded in a tough metallic binder phase. Due to their remarkable combination of hardness,
wear resistance, and toughness, they have become the primary material choice for extreme
applications as tools and components in diverse industries, including machining, drilling,
and mining [1]. In general, a grinding process is performed after sintering to achieve the
necessary macro-geometry [2]. However, the resulting surface quality usually does not
meet final micro-geometry or mechanical requirements, which are critical for cutting tools.
Hence, further finishing operations on these tools are mandatory, particularly regarding
their cutting edges, in order to improve their performance and extend their service life.

Generally, post-grinding finish operations not only optimize the shape and size of a
cutting edge, but also increase the wear resistance of a tool [3,4] by reducing pre-existing
defects and enhancing both its mechanical [5] and adhesion strength in the case of coated
tools [6]. In addition, higher edge quality lessens the stress concentration between the
tool and the workpiece, resulting in a uniform distribution of loads. This slows a cutting
edge’s wear [7], chipping formation during cutting [8], and the temperature achieved [9].
Moreover, cutting edge preparation is used to minimize compressive residual stresses,
providing a smooth surface for post-coating the desired end-mills [6].

However, it is well known that radius parameter is not enough to characterize the
micro-geometry of a cutting tool. In that sense, the K-factor, which is defined as the ratio
between rake and clearance surfaces (Sγ/Sα), plays an important role [5]. The K-factor
dictates the micro-geometry of a cutting tool, with three options available: symmetric,
waterfall, and reverse waterfall (also referred to as trumpet), depending on whether K is
equal to, less than, or greater than one, respectively [10].
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Over the past decade, numerous investigations have addressed the influence of a
cutting edge’s micro-geometry on tool wear and its thermo-mechanical load under service-
like working conditions [5,11,12]. However, information regarding the direct effect of the
K-factor form on end-mills is scarce, and is somehow limited to tool life maps, also known
as Taylor lines. Furthermore, the highest tool lifespans reported were found for K-factor
values higher or lower than one, depending on whether the material machined by the
hardmetal tool was Inconel 718 or a Ti-alloy, respectively [11]. Contrary to these findings,
Denkena et al. [5] reported that the durability of cemented carbide tools when machining
AISI 1045 is not dependent on the K-factor. Additionally, cemented carbide inserts show
increased durability when exposed to static or dynamic thermo-mechanical loads, with
cutting edge K-factors of approximately < 1 and >1, respectively [11].

Numerous advanced preparation methods have been developed to perform cham-
fering, honing, and radius modification, such as electrical discharge machining, laser
machining, magneto abrasive machining, abrasive jet machining, brushing, and drag fin-
ishing. However, the last three methods are the most commonly used techniques in the
cemented carbides industry [3,5,7]. These techniques aim to reach an optimal cutting
edge radius and minimize detrimental effects like edge chipping, high cutting forces, and
poor surface finish, while simultaneously enhancing chip evacuation and reducing tool
wear [5,7,13,14]. However, although these techniques allow modification of the micro-
geometry of tools, they also present specific limitations. Abrasive jet machining removes
the metallic cobalt (Co) binder from the surface, decreasing tools’ mechanical integrity [15].
Brushing is limited to producing edge rounding for complex geometries, and it results in
elevated temperatures during the conditioning process [9]. Drag finishing is more time-
consuming than previous methods, depending on the desired radius. Furthermore, the
sizes of abrasive particles pose limitations for small geometries, and are less flexible, as the
entire piece is submerged in the abrasive [5].

Based on the above ideas, research regarding new technologies to address preparation
challenges associated with cutting edges is required. Therefore, this study examined the dry-
electropolishing technique to fulfil all requirements related to cutting edges’ preparation
to enhance the lifetime of cutting tools. This method is based on ion exchange resins
interacting with roughness peaks [16]. On cemented carbide materials, this effective
polishing action takes place particularly at the cutting edge, where selective roughness is
removed until the desired radius is attained, while compressive residual stresses produced
during the machining process are preserved [16]. In this sense, the technology employed
removes only the minimum amount of material by interacting solely with roughness
peaks. This results in a cost-saving advantage compared to existing industrial methods
because it preserves the tolerances of the workpiece as well as maintains the stress field
induced during the pre-processing stage. Additionally, the resulting microstructure is free
of corrosion, reaching a nearly flat surface between constitutive phases.

This research aimed to develop a preparation protocol for cutting edges, taking into
account key micro-geometry parameters and characterizing the evolution of defects located
at cutting edges as a function of dry-electropolishing time.

2. Materials and Methods

This investigation was conducted on an end-mill made of WC-Co cemented carbide
material with 6 wt. % of a metallic Co binder and a fine microstructure. The final shape,
geometry, and tolerances of the entire end-mill were obtained by applying a grinding
process after sintering. Grinding was carried out using a commercial diamond grinding
wheel. Coolant was used to prevent heat generation.

The end-mill was dry-electropolished (using DryLyte® Technology, Steros GPA Inno-
vative, Barcelona, Spain) with a commercial electrolyte. Further and detailed information
can be found in [16]. The end-mill was processed to a maximum of 30 min. Two different
time sets of dry-electropolishing time were utilized until the maximum investigated time
was reached: (1) initially ranging from 0 to 120 s, every 30 s, to assess the efficiency of the



J. Manuf. Mater. Process. 2024, 8, 28 3 of 8

dry-electropolishing process in its early stages, and (2) subsequently at 3, 5, 10, 20, and
30 min to monitor how geometrical and microstructural parameters evolved as a function
of time.

The initial end-mill was evaluated in terms of macro- and micro-geometry, radius (r),
and surface average roughness (Ra) parameters (Table 1). In doing so, these initial cutting
edges’ parameters and roughness values, as well as their evolution at each polishing
stage, were assessed using a focus variation laser scanning microscope (LSM) (EdgeMaster
X module—Bruker Alicona, Gratz, Austria). The Ra of the clearance was obtained in
accordance with ISO 4287 (cut-off = 0.25 mm).

Table 1. Summary of initial values in terms of geometrical parameters (diameter (Ø), number of
blades, helix angle, cutting edge radius (r), cutting edge segment on clearance face (Sα), cutting edge
segment on rake face (Sγ), and K-factor) and the average roughness parameter (Ra).

Ø (mm) Blades Helix Angle (◦) r (µm) Sα (µm) Sγ (µm) K-Factor Ra (µm)

10 4 48 7.9 ± 0.2 12.2 ± 0.3 11.9 ± 0.6 1.0 ± 0.1 0.5 ± 0.0

To better understand the main cutting parameters, a 3D reconstruction of the end-
mill and a schematic representation of the micro-geometry of the cutting edge’s profile
(accomplished using an InfiniteFocus G5 plus—Bruker Alicona, Gratz, Austria) are pre-
sented in Figure 1a,b, respectively. To obtain statistical significance, 3D measurements were
conducted on multiple profiles with 50 cutting edges (Figure 2).
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Microstructural characterization was performed before and after each dry-
electropolishing step by means of field emission scanning electron microscopy (FE-SEM,
Carl Zeiss Neon 40, Zeiss Group, Oberkochen, Germany).

3. Results

Before polishing, pre-existing defects of the end-mill were analyzed. Figure 3 corre-
sponds to FE-SEM micrographs of primary pre-existing defects found in the unprepared
end-mill—specifically burrs (Figure 3a) and chipping (Figure 3b). These damage features
were caused during the post-sintering grinding process. Such defects are primarily respon-
sible for reducing tool life under service-like working conditions; hence, it is mandatory to
improve cutting edges’ quality and minimize defects to improve tool performance [2,5].
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Figure 3. FE-SEM micrographs of pre-existing defects: (a) burrs and (b) chipping.

Figure 4 displays microstructural changes in four distinct investigated areas (red
rectangles in the upper image) before and after the dry-electropolishing procedure. Initial
defect density decreased with increased dry-electropolishing time. However, external
regions corresponding to zones 1 to 3 (Figure 4) exhibited a lower density of pre-existing
damage as compared to the internal region (zone 4), as shown in Figure 3. This may be
attributed to two factors: (1) the greater mobility of the electrolyte on the outer regions,
and (2) the proximity of the end-mill to the cathode. The simultaneous occurrence of both
effects led to a higher effective material removal rate in external regions as compared to
internal ones.

Figure 5 summarizes changes in Ra as a function of time for the clearance face
(region (2), as labelled in Figure 4). Two distinct trends were identified, both of which follow
a linear regression, as presented in Equations (1) and (2) for trends 1 and 2, respectively.

Ra = 0.452 − 0.144·t (1)

Ra = 0.172 − 0.005·t (2)

where Ra and t correspond to average roughness and dry-electropolishing time, respectively.
The R-squared values associated with linear fit are 0.98 and 0.99 for Equation (1) and
Equation (2), respectively.
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The maximum reduction in Ra occurred during the first stage (trend 1), and was
linked to the higher initial roughness achieved during pre-processing. At the beginning of
processing, the electrolyte easily removed roughness due to the presence of pre-existing
pronounced peaks. Afterwards, the roughness removal rate diminished (trend 2) at a
polishing speed of 4.5 nm/min. In that sense, after eliminating the most prominent peaks,
polishing progression decelerated.

For comparison purposes, in terms of Ra, Figure 6 shows the Ra roughness profiles
of the three main zones presented in Figure 5: the initial state (t = 0 min, Figure 6a), the
threshold between both trends (after 2 min, Figure 6b), and when the Ra was practically
stable (after 30 min of the dry-electropolishing process, Figure 6c). A ground lines reduction
was clearly visible in these profiles, in agreement with SEM micrographs presented in
Figure 4.
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After evaluating the microstructural parameters in terms of roughness and defects as
a function of dry-electropolishing time, the micro-geometrical parameters of cutting edges
were evaluated, and are summarized in Figure 7.

According to Equation (3), which was derived after fitting experimental values shown
in Figure 7a, the radius increased exponentially as the polishing time increased. However,
the growth rate did not conform to a linear trend, as it diminished slightly over time due to
the rounding effect associated with the polishing process.

Therefore, it is feasible to regulate the final radius achieved by varying dry-
electropolishing durations as:

r = 26.58 − 18.27·0.95t (3)

where r corresponds to the cutting edge’s radius. The R-square associated with the linear
fit is 0.99.

Figure 7b,c exhibit the K-factor and Sα and Sγ as functions of dry-electropolishing
time, respectively. At short polishing times Sα had a larger increase compared with Sγ.
However, after 3 min, it was possible to observe that both parameters (Sα and Sγ) reached
a plateau, with the Sα value slightly larger than the Sγ value (Figure 7c). As a result, the
K-factor stabilized and was equal to 0.75 ± 0.03, in agreement with findings reported by
Droder et al. [6]. Under these conditions, the cutting edge form obtained corresponded to a
waterfall K-factor, becoming more constant as the process time increased.
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4. Conclusions

A dry-electropolishing method was used to prepare the cutting edges of cemented
carbide end-mills. The results obtained highlight the efficiency of this technology in
reducing preliminary defects inherited from the grinding process. Cutting edge radius
parameters increased as dry-electropolishing time increased, achieving approximately
23 µm at 30 min of dry-electropolishing time. However, the growth rate was higher during
the initial stages due to the sharp geometry presented on the cutting edge. This fact was
also observed regarding roughness reduction, as well as for the other micro-geometry
parameters (Sα, Sγ, and K-factor). The removal rate was larger for the clearance face than for
rake faces due to the higher mobility of electrolytes, as well as their proximity to the cathode.
Thus, the K-factor obtained using the dry-electropolishing process for longer durations
was approximately 0.7, which corresponded to a waterfall form (K < 1). Accordingly, the
micro-geometry of cutting edges can be controlled by adjusting the polishing time applied.
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