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Abstract: Wire-laser directed energy deposition has emerged as a transformative technology in metal
additive manufacturing, offering high material deposition efficiency and promoting a cleaner process
environment compared to powder processes. This technique has gained attention across diverse
industries due to its ability to expedite production and facilitate the repair or replication of valuable
components. This work reviews the state-of-the-art in wire-laser directed energy deposition to gain
a clear understanding of key process variables and identify challenges affecting process stability.
Furthermore, this paper explores modeling and monitoring methods utilized in the literature to
enhance the final quality of fabricated parts, thereby minimizing the need for repeated experiments,
and reducing material waste. By reviewing existing literature, this paper contributes to advancing
the current understanding of wire-laser directed energy deposition technology. It highlights the gaps
in the literature while underscoring research needs in wire-laser directed energy deposition.

Keywords: metal additive manufacturing; directed energy deposition; wire-laser directed energy
deposition; modeling methods; monitoring techniques

1. Introduction

Directed energy deposition (DED), has revolutionized metallic part fabrication due
to the ability to expedite production and minimize the material waste across various
industries [1–13] including aerospace [14], automotive [15], and biomedical [16]. DED
processes utilize wire or powder as the feedstock [10,17–19] with various heat sources,
including lasers, electron beams, electrical arcs, and plasma, employed for the deposition
process. Depending on the type of selected heat source, DED processes can be classified
into electron beam DED (EB-DED) [20], laser DED (LDED) [21], plasma DED (P-DED) [22],
and wire arc DED (WAAM) [23–26]. Each type of DED process offers advantages and
disadvantages, making them more suitable for distinct applications [27,28]. Table 1 presents
the abbreviation of the AM processes and systems.

Among various heat sources utilized, LDED has gained widespread application due
to its flexibility, high energy density, and control over the heat input. LDED offers the
advantage of forming a small heat-affected zone and allows for the ease of laser power
modifications compared with the previously mentioned DED processes [21,29–31].

To compete with conventional manufacturing processes, it is essential to significantly
enhance the deposition rate and improve the buy-to-fly ratio [32]. This can be achieved by
incorporating filler metals like wire into the process. When the wire is employed as feed-
stock, it offers solutions to major drawbacks associated with powder-based processes. Wire
feedstock allows for a greater deposition rate compared to powder-based processes [33–35]
while reducing material costs, as the wire is typically cheaper than metal powder [36–38].
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Table 1. List of abbreviations used in the manuscript.

Abbreviation Full Name Abbreviation Full Name

AM Additive manufacturing HAZ Heat effected zone
MAM Metal additive manufacturing LOF Lack of fusion
PBF Powder bed fusion CCD Charge-coupled device

LPBF Laser powder bed fusion CMOS Complementary metal oxide semiconductor
DED Directed energy deposition OCT Optical coherence tomography

EB-DED Electron beam DED PI Proportional-Integral
LDED Laser DED PLC Programmable Logic Controller
P-DED Plasma DED MPC Model Predictive Control
WAAM Wire arc DED ILC Iterative Learning Control

W-LDED Wire-laser DED FEA Finite element analysis
TS Travel speed CFD Computational fluid dynamics

WFS Wire feed speed ML Machine learning

Utilizing metal powder feedstock increases contamination risks within the process
and may pose potential safety concerns, which can be avoided when wire is employed [39].
Furthermore, for microgravity applications, the use of wire feedstock instead of powder is
preferred due to its ease of handling [40–42]. Considering these aspects, wire-laser directed
energy deposition (W-LDED) emerged as a promising method for manufacturing due to
its notable advantages, including high material deposition efficiency, minimized material
waste, and a cleaner process environment [43–45]. Table 2 summarizes the fundamental
differences between wire and powder feedstock.

Table 2. Advantages and disadvantages of using wire and powder as feedstock.

Wire Powder

Cost effectiveness ✓
Deposition rate ✓
Material efficiency ✓
Material availability ✓
Build volume ✓
Dimensional resolution ✓
Multi-material deposition capability ✓
Health/Safety hazards ✓
Ease of handling/storing ✓
Contamination sensitivity ✓
Oxygen/moisture pickup sensitivity ✓

During the deposition process the wire is fed through a nozzle and exposed to the
laser beam while the laser beam and wire deposition movements are controlled through
advanced computer software. The laser beam’s energy melts the wire, fusing it to the
substrate, thus creating a durable bond. The W-LDED process is affected by various
processing parameters, including laser power, laser spot size, travel speed (TS), and wire
feed speed (WFS) [24,46,47]. Despite these advantages, various process-related challenges
can impact deposition quality and stability in manufacturing. These challenges include
issues with parameter selection, exposure to multiple thermal cycles, and limitations in
process control and repeatability [29,31,48–53].

Several review papers have been published covering various aspects of W-LDED
within the broader discussion of DED processes. Li et al. [17] provided a comprehen-
sive review of high deposition rate LDED technology, emphasizing its potential for rapid
manufacturing of large-scale components and the need for further research on process
optimization, microstructure evolution, and mechanical properties. Meanwhile, Ozel
et al. [37] discussed the challenges of achieving reliable mechanical properties and desired
microstructures in W-DED processes, with a particular focus on grain tailoring and mod-
eling methods. Abuabiah et al. [46] published a review paper focused on advancements
in W-LDED, specifically addressing monitoring and control aspects. While these articles
touched on some aspects of W-LDED, the existence of a comprehensive review on process
stability in the W-LDED process remains a gap within the literature.
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This work presents a review of the state-of-the-art in W-LDED to gain an in-depth
understanding of the process variables and the cause–effect relationship affecting pro-
cess stability. Additionally, the modeling and monitoring methods utilized in W-LDED
literature are explored to enhance the quality of fabricated parts, thereby reducing the
necessity for repetitive trial-and-error experiments, and minimizing material waste. The
deposition parameters investigated in this work are sorted into four categories as depicted
in Figure 1, where the impact of each variable on deposition quality, stability, and efficiency
has been identified.
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2. Energy Characteristics
2.1. Input Energy

Sufficient energy input in W-LDED processes is crucial to achieve high-quality deposi-
tion, ensuring that the wire melts completely and fuses effectively to the substrate. Incorrect
energy input can lead to defect formation, which prevents further fabrication [54,55].

In W-LDED, the laser is the main source of power; therefore, choosing the right laser
power, together with the TS and WFS, is important in determining the amount of energy
each point receives locally. It affects the amount of material being melted, its thermal
cycle, and the quality of the final structure. As noted in the literature, the decision on the
appropriate power depends on the type of material and the amount of wire that is being
deposited [33,56–59].

Multiple indicators have been used in research for characterizing the energy input, i.e.,
linear energy density (J/mm) [17], areal energy density (J/mm2), and volumetric energy
density (J/mm3) [47,56,60,61], all defined based on the laser spot size (Equations (1)–(3)).
Specific energy (kJ/g), as shown in Equation (4), is another widely used indicator expressed
based on wire mass per unit time [48,62].

While these indicators are valuable tools for comparing parameter sets, studies have
noted that maintaining a constant energy input does not always ensure consistent melt pool
characteristics or uniform deposition. Laser power and TS have been shown to individually
influence thermal indicators such as thermal gradients, solidification rate, and the size of
the heat-affected zone (HAZ). Therefore, the incorrect selection of these parameters can
result in irregularities in surface quality, ultimately impacting the dimensional accuracy
of the deposited part [63,64]. In Equations (1)–(4), P is the laser power (W), ρ is the wire
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material density (g/mm3), DBeam and ABeam are the diameter and cross-sectional area of
the beam, respectively, and Awire is the area of the utilized wire.

Linear Energy Density =
P

TS
(1)

Areal Energy Density =
P

DBeam × TS
(2)

Volumetric Energy Density =
P

ABeam × TS
(3)

Speci f ic Energy =
P

WFS × ρ × Awire
(4)

2.2. Laser Characteristics
2.2.1. Laser Types

Research findings indicate that optimizing and customizing the laser type for specific
materials can significantly enhance process efficiency and stability while offering economic
benefits. There are two types of lasers, continuous, and pulsed. Investigations into the
application of continuous and pulsed lasers have unveiled distinct behaviors in these laser
types, particularly in terms of melt pool formation [65]. It is observed that when continuous
lasers are used, the melt pool is dragged along the direction of deposition as the laser
moves (Figure 2a), which may lead to intolerable heat accumulation over time [66,67].
In contrast, when utilizing the pulsed laser, the melt pool freezes between the pulses
(Figure 2b), as documented by Assuncao et al. [68]. This is favorable as it reduces heat
accumulation by carefully considering the pulse duration [68]. Studies have shown that
longer pulse durations with a fixed power density increase penetration depth, signifying
higher energy utilization [69]. Another advantage of pulsed lasers over continuous lasers
is that pulsed laser allows for better heat input regulation over time during the deposition,
as demonstrated by Ye et al.’s work [70].
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Different types of lasers have been used in the literature, with diode, Nd: YAG,
CO2, and fiber lasers being the most predominant ones [66,71–73]. The findings, once
again, emphasize the importance of selecting appropriate laser types based on material
characteristics for effective and economical processes. For instance, Valentin et al.’s compar-
ison in aluminum W-LDED reveals that diode lasers, operating at a wavelength aligning
with aluminum absorption peaks, increase its absorptance. This alignment brings cost-
effectiveness as direct diode lasers tend to be less expensive than fiber lasers and addresses
material-specific considerations [74].

Liu et al. successfully deposited pure copper (Cu) using a blue laser and achieved
near-full-density samples [75]. Cu exhibits a high reflectance of the near-infrared (IR) wave-
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lengths commonly used in LDED applications, which makes the deposition challenging.
The authors noted that the absorption of the blue laser in Cu is higher compared to an
IR laser of a longer wavelength, making blue lasers a preferable choice for depositing
Cu [76,77].

Despite the growing interest in W-LDED of various materials, it is evident that the
selection of appropriate lasers and their corresponding wavelengths tailored for each
material’s specifications remains a notable research gap within the literature.

2.2.2. Laser Beam Profile

In representing the heat energy distribution, Gaussian (circular beam), annular (hal-
low beam), and pedestal (flat beam) profiles have been used to serve as distinct models
(Figure 3a–c), each offering unique profiles suited for various applications.

The Gaussian heat source exhibits a bell-shaped intensity profile (Figure 3d), with
peak intensity at the center. As shown in Figure 3f, annular heat sources present a ring-like
configuration, accurately distributing heat in a circular and well-defined shape, thereby
enhancing process symmetry compared to Gaussian beam, owing to the annular beam’s
lower intensity [78–82]. Froend et al.’s thermal analysis confirmed that, in contrast to an
annular beam, the Gaussian beam’s intensity distribution and high irradiance lead to the
formation of higher-temperature melt pools [83]. Chen et al.’s investigation reveals that
annular beams require less laser power to melt the same amount of fed wire compared to
the Gaussian distribution. This is particularly beneficial due to their lower peak energy
density and more uniform energy distribution, providing a lower thermal gradient in
the molt pool [84,85]. Goffin et al. compared a pedestal beam with a Gaussian beam to
investigate the effect each has on melt pool formation and found that a pedestal beam
heats the substrate more efficiently compared to a Gaussian beam with the same width.
This is because the flat beam can directly heat the substrate, bypassing the need for heat
conduction through the wire. This allows the substrate to achieve high temperatures with
lower laser power levels [86–88].

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 6 of 54 
 

 

conduction through the wire. This allows the substrate to achieve high temperatures with 
lower laser power levels [86–88]. 

 
Figure 3. (a) Donut-like laser arrangement using six diode lasers (Meltio M450); (b) laser burn prints 
of Gaussian and pedestal beam profile (reproduced with permission from [87]: copyright 2021, 
Springer); and (c) the annular laser spot (reproduced with permission from [82]: copyright 2023, 
MDPI). Energy distribution of (d) Gaussian (reproduced with permission from [84]: copyright 2022, 
Elsevier Ltd.); (e) pedestal (reproduced with permission from [87]: copyright 2021, Springer); and 
(f) annular arrangements (reproduced with permission from [84]: copyright 2022, Elsevier Ltd.). 

2.2.3. Beam Irradiance and Focal Spot Size 
The laser beam irradiance or intensity inversely correlates with the focal spot size 

since it is defined as the power per unit area. As the experimental research suggests, once 
the wire diameter is selected, the diameter of the laser beam can be set nearly the same as 
the wire diameter to ensure the accurate positioning of the heat source around the wire 
[56,89,90]. 

Froend et al.’s investigation into adjusting the focal spot area and its impact on laser 
beam irradiance reveals that high irradiance, associated with a small focal spot area, pro-
motes the formation of rough surface quality due to heat accumulation and higher melt 
pool temperature [91]. In contrast, reducing the laser beam irradiance by increasing the 
spot size results in a more stable process and improved surface quality due to low-tem-
perature gradients and enhanced cooling rates [83]. Applying a large focal spot area con-
tributes to achieving a uniform temperature distribution with minimal gradients, influ-
encing surface tension and viscosity, as noted by Goffin et al. [86,87], who observed more 
effective substrate heating when using a larger Gaussian beam compared to a smaller one 
[83,92,93]. Kotar et al.’s experiment utilizing a continuous fiber laser further supports 
these findings, indicating that the smallest focal spot area results in a Gaussian distribu-
tion with the highest intensity at the wire axis, while increasing the focal spot area trans-
forms the profile to a ring-type distribution with lower energy intensity at the center 
[85,94].  

2.2.4. Focal Distance 
In the W-LDED process, it is crucial to carefully adjust the distance between the laser 

focal point and the melt pool in the Z direction. Maintaining a nominal focal distance 
while keeping other parameters constant ensures a stable process. A high offset position 
causes the beam to focus on the wire, while a low offset leads to insufficient melting of the 

Figure 3. (a) Donut-like laser arrangement using six diode lasers (Meltio M450); (b) laser burn
prints of Gaussian and pedestal beam profile (reproduced with permission from [87]: copyright 2021,
Springer); and (c) the annular laser spot (reproduced with permission from [82]: copyright 2023,
MDPI). Energy distribution of (d) Gaussian (reproduced with permission from [84]: copyright 2022,
Elsevier Ltd.); (e) pedestal (reproduced with permission from [87]: copyright 2021, Springer); and
(f) annular arrangements (reproduced with permission from [84]: copyright 2022, Elsevier Ltd.).
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2.2.3. Beam Irradiance and Focal Spot Size

The laser beam irradiance or intensity inversely correlates with the focal spot size
since it is defined as the power per unit area. As the experimental research suggests, once
the wire diameter is selected, the diameter of the laser beam can be set nearly the same
as the wire diameter to ensure the accurate positioning of the heat source around the
wire [56,89,90].

Froend et al.’s investigation into adjusting the focal spot area and its impact on laser
beam irradiance reveals that high irradiance, associated with a small focal spot area,
promotes the formation of rough surface quality due to heat accumulation and higher melt
pool temperature [91]. In contrast, reducing the laser beam irradiance by increasing the spot
size results in a more stable process and improved surface quality due to low-temperature
gradients and enhanced cooling rates [83]. Applying a large focal spot area contributes
to achieving a uniform temperature distribution with minimal gradients, influencing
surface tension and viscosity, as noted by Goffin et al. [86,87], who observed more effective
substrate heating when using a larger Gaussian beam compared to a smaller one [83,92,93].
Kotar et al.’s experiment utilizing a continuous fiber laser further supports these findings,
indicating that the smallest focal spot area results in a Gaussian distribution with the
highest intensity at the wire axis, while increasing the focal spot area transforms the profile
to a ring-type distribution with lower energy intensity at the center [85,94].

2.2.4. Focal Distance

In the W-LDED process, it is crucial to carefully adjust the distance between the laser
focal point and the melt pool in the Z direction. Maintaining a nominal focal distance
while keeping other parameters constant ensures a stable process. A high offset position
causes the beam to focus on the wire, while a low offset leads to insufficient melting of the
wire [95,96]. Experiments on the effect of focal position on process stability reveal that at a
low focal position, the laser beam is too large on the substrate, acting as a beam with low
intensity. As a result, the wire collides with the substrate without receiving sufficient energy
to melt uniformly. On the other hand, at a high focal position, the laser beam encounters
the wire above the substrate, initiating the melting of the wire tip at an excessive height
before reaching the substrate [57,97–99].

To further control the laser intensity and heat input, a slight defocusing of the laser is
widely employed in the literature, either by moving the laser beam in the Z direction or
increasing the focal spot size [100]. This is primarily done to reduce the laser’s peak energy
density and to prevent the overheating of the substrate and the wire at the laser focus point.
As evident in Figure 4, both positive (i.e., focusing above the substrate) and negative (i.e.,
focusing below the substrate) defocusing techniques have been utilized in Gaussian beams
where negative defocusing is the predominant choice [51,101–103].

The evolution of the laser spot pattern with increasing defocusing offset is illustrated
in Figure 5. It is evident that when the beams fully overlap, the energy has the highest
intensity. However, increasing the defocusing distance slightly reduces the overlap and,
consequently, the laser’s peak energy. If the beams do not overlap with each other and the
wire (as shown in Figure 5d), the energy will not be sufficient to melt the wire.
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3. Feed Wire Characteristics
3.1. Wire Size

In W-LDED the material is being deposited at high rates ranging from 1.5 to
48 cm3/min [10,24]. The deposition rate

.
m, as defined in Equation (5), depends on the WFS,

the wire diameter (r), and the density of the wire being deposited (ρ) [61,83]. This insight
emphasizes that employing thicker wire and faster feeding speed leads to an increased
deposition rate.

.
m = (WFS)πr2ρ (5)

The wire diameter utilized in W-LDED processes spans over a wide range, typically
varying from 0.1 to 1.2 mm [24,65,66]. Smaller wire diameters are associated with improved
dimensional accuracy and the ability to attain small features on the component. However,
it is crucial to consider that using smaller wire diameters extends the process time due to
the lower volume of material feeding into the melt pool [56]. Literature predominantly
includes the use of wire with diameters around 1 mm [104,105].

The deposition rate closely interplays with laser power and significantly affects the
process efficiency. A high deposition rate substantially impacts the dynamics of the melt
pool and affects the dimensions of the resultant beads [106]. Research suggests that in-
creasing the deposition rate while maintaining a constant power level results in the partial
melting of the wire [10]. Consequently, based on this understanding, upper and lower
limits for the WFS based on specific laser power inputs can be established [107].

To regulate the deposition rate, speed ratio or K value have been used in literature to
correlate WFS and TS (Equation (6)) [25,62,108–110].
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Speed Ratio =
WFS

TS
(6)

This is proven to be a robust indicator for evaluating the influence of various process
parameters on defect formation during the deposition process [62]. Notably, as observed
by Wang et al. in depositing Al alloy, there exists an inverse relationship between porosity
levels and speed ratio when energy remains constant. The authors observed that under the
same speed ratio, the attainment of the lowest porosity level is associated with applying
the highest energy [61].

3.2. Types of Wire Feeding
3.2.1. Lateral Wire Feeding

The lateral feeding technique is commonly used in W-LDED. However, it introduces
challenges in fabricating complex components [84]. The lateral feed approach, observed in
W-LDED processes, involves feeding filler material laterally at an acute angle relative to the
substrate to a Gaussian laser beam, resulting in a process with directional dependency. In
lateral feeding, the wire can be fed into the melt pool at different orientations relative to the
deposition direction. The choice of wire feeding direction significantly impacts the quality
and accuracy of the deposition. Front feeding, back feeding, and side feeding are different
scenarios that have been investigated in the literature [111]. Front feeding, where the sub-
strate is moving away from the feeding nozzle (Figure 6a), has been identified as a favorable
configuration, demonstrating a high deposition rate with a smooth surface [47,112].
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In the front feeding scenario, a continuous melting of the wire is observed, which is
induced by laser irradiation, metallic vapor radiation, and melt pool radiation [17], creating
a high-temperature melt pool (Figure 7) [113,114]. Syed et al. suggested that this leads to
a favorable flow characteristic of the molten metal in the melt pool and results in a low
surface roughness [115].
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Side feeding, similar to front feeding, yields a smooth deposition but introduces
uneven edges due to the wire reacting with the melt pool on one side, resulting in a
disproportionate deposition of material on that particular side [113]. Conversely, back
feeding, where the movement is towards the feeding nozzle (Figure 6b), disrupts melt pool
flow, causing process fluctuations. The energy for melting during back feeding primarily
comes from metallic vapor and melt pool radiation, which is insufficient for the complete
melting of the wire, leading to continuous feeding of the wire into the substrate [47]. This
may result in collisions with the solidified parts of the previous deposit, causing a partially
melted deposition that deviates from the normal track. This eventually leads to lower
dimensional accuracy and deposition rates compared to front feeding [24]. While most of
the existing literature agrees upon this, Xiao et al. [116] conducted an experiment involving
CO2 laser depositing aluminum and demonstrated good efficiency and stability through
back feeding the wire. Therefore, it can be understood that the optimal wire feeding
orientation for achieving a high-quality deposition is laser and alloy dependent. Future
research endeavors should investigate this variation for different lasers and materials
utilized to optimize deposition processes.

The wire’s position within the melt pool must be considered as it influences the melt
pool characteristics. The wire can be positioned in the melting pool’s leading edge, center,
or trailing edge (Figure 8a). In front feeding, when the wire is located at the trailing end of
the melt pool, it is farther away from the laser beam. Consequently, the wire experiences
less irradiation by the laser beam, which may result in insufficient melting and potential
entanglement in the track [63]. Conversely, placing the wire at the front of the melt pool
can help avoid this issue. Positioning the wire at the center causes reflection of the laser
beam, leading to increased surface roughness compared to the leading-edge placement. As
noted in several studies, front feeding with the wire at the leading edge of the melt pool
demonstrates superior performance in terms of surface finish, geometry control, and overall
sample quality, suggesting minimal disturbance to the melt pool in this configuration [117].
In contrast, as demonstrated by Syed et al., rear feeding achieves optimal results when the
wire is at the trailing edge of the melt pool [115].
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The wire feeding angle (α) is another factor impacting the quality of the deposited
layer in lateral wire feeding setups, as the angle at which the wire is fed can affect the laser
absorptivity. An optimal angle of approximately 45◦ has been identified and used in the
literature as it leads to the highest deposition weight and laser absorptivity [47,113]. The in-
fluence of the wire feeding angle on surface roughness exhibits variability, with an increase
observed in front feeding and a decrease in rear feeding as the angle is elevated [115].

Abioye et al. [112] supported these findings by conducting a study using stainless
steel wire to investigate the impact of wire angle on the wire-laser interaction, determining
42 degrees as the optimal front feeding angle. These observations indicated that the wire
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exhibited rapid interaction at higher angles or failed to engage with the laser beam before
reaching the substrate, resulting in partially melted wire. On the other hand, the wire
tip remained in prolonged interaction with the laser beam at lower wire feed angles,
causing the wire to melt before reaching the substrate [58,112]. Figure 9b demonstrates the
schematics of lateral wire feeding considering various laser defocusing positions.
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3.2.2. Coaxial Wire Feeding

Coaxial W-LDED represents a valuable enhancement to the existing processes, offering
a directional independent method with high deposition rates and precision [72,118,119].
Unlike lateral deposition heads, the use of concentric or coaxial heads (Figure 9a) elim-
inates the need for table or head rotation, allowing material deposition in virtually any
direction [73,89,120]. Specialized optics have been developed to shape the laser beam in
a way that enables wire feeding through the center of the beam to ensure a distribution
of laser radiation over the wire [121–123]. The coaxial approach consists of feeding the
wire in the center of multiple single lasers (donut shape) or inside an annular laser beam,
providing diverse options for the process [54,79,124,125].

Despite the advantages of the coaxial head, few studies have hinted at the challenges
faced by using this feeding head [126]. It is stated that during the conversion of the optical
path, the division and refocusing of the laser beam within the head introduce complexities
by affecting the laser spot shape at varying working distances [127]. This complexity
also contributes to higher sensitivity to height deviations with this head type [116,128].
Therefore, despite being directionally independent, its broader industrial adoption is
hindered due to the processes’ sensitivity to disturbances [125]. In contrast with lateral
wire feeding, in coaxial wire feeding, the positive defocusing of the beam cannot result
in a stable process as it leads to wire melting above the substrate, which is detrimental to
the process.

4. Bead Geometry

Process parameters affect bead geometry as they directly influence the thermal cycle
under which the material is deposited and solidified during the process. These parameters,
such as laser power, WFS, TS, and focal position, control the amount of heat input, cooling
rate, and material flow dynamics [10,129]. Variations in these parameters lead to changes
in the deposited bead’s shape and size (Figure 10). Therefore, careful control of process
parameters is crucial to achieve a desirable bead geometry and quality, and to preserve the
integrity of the deposition [130].
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By increasing the laser power and the energy per unit length, there is an observed
increase in bead width and a decrease in bead height. As laser power increases, the melt
pool temperature increases significantly; therefore, a larger melt pool is formed due to
the remelting of the substrate. Simultaneously, the solidification rate of the melt pool
diminishes, causing the molten metal to flow outward before cooling [47,56,108,110].

Sheikh et al. investigated the width and height of the bead by increasing pulse duration
and observed consistent results, attributed to the similar influence that increasing pulse
duration has on increasing laser power [65].

With increased TS, the melt pool and the fed wire are exposed to a lower input energy
density [47,131,132]. This results in a reduction in the volume of the melt pool. Therefore,
an increase in TS leads to a decrease in bead height and a marginal reduction in bead
width [110]. The smaller change in width than in height is attributed to the fixed laser beam
size, which limits the minimum melt pool width reduction at high TS [65].

Higher WFS is linked to an elevation in bead height and a slight reduction in bead
width, as Akbari et al. [56] noted when using copper-coated steel. Similarly, Huang et al. [47]
confirmed the height increase with an increase in WFS in aluminum alloy. However, an
increased mass of wire resulted in an augmented melt pool volume per unit length and,
consequently, increased bead width [108]. Such deviations exist in the literature when
utilizing various materials with increasing WFS. This might be attributed to the surface
tension of the employed material. Another possibility is the variations in the assigned
parameters during deposition. The difference in the deposition stability window of each
material results in varying amounts of wire being fed to the process. Considering constant
energy for melting the wire and the substrate, at high WFS, more energy is consumed
for melting the increased fed wire, leaving less available energy for melting the substrate.
Consequently, both the melt pool and the bead width decrease. On the other hand, with
smaller WFS, more energy is available for melting the substrate, which enlarges the melt
pool and results in wider beads [72,110,132]. Figure 11 demonstrates the schematic trends
observed in the literature with increasing power, TS, and WFS.
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4.1. Beads Characteristics

Several parameters have been introduced in the literature to evaluate the resulting
bead shape. Bead shapes can be numerically quantified in terms of dilution, aspect ratio,
and contact angle.

4.1.1. Dilution

In the W-LDED process, dilution refers to the mixing of the wire feedstock with the
substrate or the previously deposited layer during the deposition process. Controlling
dilution is essential for producing high-quality weld beads with the desired properties and
structural integrity [125,133].

Low dilution is generally preferable as it indicates minimal mixing of the substrate
with the fed wire, leading to a more stable and reliable process (Figure 12a). In contrast,
high dilution can result in poor bead appearance and increased susceptibility to defects
such as pores and cracks (Figure 12b) [58,89].
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of dilution.

As demonstrated in Equation (7), dilution is calculated based on the ratio of the
penetration area into the base material (i.e., Ap) to the total area of deposited material (i.e.,
Ap + ABead) in the cross-section of the bead [34,54,134].

Dilution =
Ap

Ap + AB
(7)

The degree of dilution is observed to have a positive correlation with laser power, melt
pool temperature, and TS while having a negative correlation with WFS [39,58,109,110,126,135].

The correlation between the dilution and power was supported by Ji et al., where
an increase in the focal distance decreased the dilution [100], and by Demir et al., where
an increase in pulse duration resulted in higher dilution [66]. Kotar et al. observed that
constant energy input during the process leads to heat accumulation and a gradual increase
in dilution [85].

Research has noted that dilution can be limited to below 20–30% in W-LDED using
appropriate parameter combinations [58,109].

These findings were supported by Liu et al.’s research, which indicated that high
dilution resulted in a significant remelting of previously deposited layers and build rate
efficiency was compromised. While low dilution is generally preferred, very low dilution
leads to lack of fusion (LOF) and thus, weak bonding between the layers [136,137].
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4.1.2. Aspect Ratio

Aspect ratio has been widely utilized in the context of W-LDED to characterize the
geometry of the bead at the cross-section by expressing the relation between the bead width
and height as expressed in Equation (8) [47,58,138].

Aspect Ratio =
W
H

(8)

As shown in Figure 13a, a low aspect ratio suggests that the bead is taller compared
to its width, whereas a high aspect ratio indicates a flatter weld bead, meaning it is wider
relative to its height [62,102,137]. In the literature, it is suggested to aim for beads with an
aspect ratio higher than three to ensure the formation of defect-free beads with a favorable
appearance [89,139].
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Similar to the dilution degree, the aspect ratio showed a direct correlation with
laser power and TS while having an inverse correlation with WFS under various con-
ditions [39,58,125]. Demir et al. confirmed these findings using a pulsed laser and observed
that increasing the pulse duration (i.e., the time during which the laser is applied) results
in a very high aspect ratio [66].

4.1.3. Contact Angle

The contact angle of deposited beads is defined as the angle between the tangent line
at the point of contact of the bead and the surface of the substrate and is a critical factor
influencing the wetting behavior of the beads on the surface [58]. The proper control of the
weld bead contact angle ensures even spreading and strong adhesion, while an improper
angle can lead to defects such as LOF and porosity.

The contact angle (β) is calculated from bead height (H) and width (W) values
(Equation (9)) [62,138].

β = 2arctan
(

2H
W

)
(9)

Figure 14 demonstrates the schematics of beads with different contact angles. Abioye
et al. recommend maintaining the contact angle below 80 degrees for favorable bead
formation and good wettability. This is because beads with a contact angle higher than
80◦ will have a cylindrical shape on the substrate, leading to the formation of pores when
adjacent beads are deposited [58].
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Figure 14. Schematic representation of bead with (a) acceptable contact angle and (b) high
contact angle.

Contact angle exhibits a negative correlation with laser power and TS while having
a positive correlation with WFS [58,126]. Ding et al. studied the influence of pressure on
the bead formation and observed a decrease in contact angle by decreasing the pressure to
1 Pa. This is due to the reduced vaporization temperature at lower pressure, which leads to
more vapor generation and less material deposition, resulting in wider beads and lower
heights. The same finding was supported by Gu et al. for SS 316 deposition in a vacuum
environment [40,140].

Table 3 provides a summary of dilution, aspect ratio, and contact angle relationship
with processing parameters.

Table 3. Summary of dilution, aspect ratio, and contact angle relationship with processing parameters.

Dilution Aspect Ratio Contact Angle

↑ Power ↑ ↑ ↓
↑ TS ↑ ↑ ↓
↑ WFR ↓ ↓ ↑

In W-LDED, using parameters that result in maximum deposition rate is found to
result in cylindrical bead formation on the substrate. However, having beads with a
cylindrical shape leads to the formation of pores between adjacent beads in multi-bead
deposition due to their high contact angle. When the deposition rate reduces, the bead
shape gradually transforms into a semi-circle and further, to a parabola with an increase in
the bead’s width and a decrease in its height. Semi-circle, parabola, and ellipsoidal shapes
are suitable alternatives to cylindrical beads for a stable and defect-free deposition of tracks
consisting of multiple beads [56,141]. This suggests that the ideal deposition geometry
is identified by a process combination that maximizes the bead height while avoiding
defect formations.

5. Deposition Stability Analysis
5.1. Single-Track Deposition

After establishing the optimal process parameters for depositing defect-free single
beads with low dilution, low contact angle, and an appropriate aspect ratio, multiple beads
should be overlapped to form a track. The way these beads overlap during single-track
deposition significantly influences surface roughness and defect formation, as incorrect
overlap distances can result in the appearance of gaps and cracks between adjacent beads.
Four different situations emerge when choosing different overlapping distances, as can be
seen in Figure 15 [65,142]. As demonstrated in Figure 15a, when the overlapping distance
(d) exceeds the bead width (w), no overlap occurs, and valley areas between the beads
form. When d is less than w, overlapping occurs; however, the overlap is smaller than the
total valley area, and therefore, the gap between the beads is not fully filled (Figure 15b).
Figure 15c demonstrates a situation in which d equals the optimal distance. This results in a
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flat surface, minimizing irregularities as the overlap matches the total valley area. As shown
in Figure 15d, when d is less than the optimal distance, excessive overlap leads to a loss of
geometric accuracy and poor surface quality with high average surface roughness. This is
because the subsequent bead is partially deposited on top of the previous bead instead of
beside it [143,144]. Continuous measurement enhances consistency in part quality accuracy
and minimizes gap formation during deposition. The overlapping ratio has been used
in the literature to achieve optimal part quality, as defined in Equation (10) [62,145,146].
Figure 16a,b demonstrates the gaps formed during multi-bead deposition due to the
incorrect lateral overlap ratio.

µc =
W − d

w
(10)
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Figure 16. Pore formation due to incorrect overlap.

By modifying the lateral overlap between adjacent beads, Bernauer et al. demonstrated
that an optimal overlapping distance exists, at which good wettability and surface quality
can be achieved [56,125]. Sheikh et al. measured the average surface roughness (Ra) [147] of
layers deposited using different lateral overlap ratios and achieved an Ra lower than 8 µm
for the optimum overlap ratio employing SS304 wire with a 100 µm diameter as depicted
in Figure 17 [65]. Consistent with these findings, several studies stated that exceeding the
optimal lateral overlap leads to reduced material efficiency and accuracy, whereas low
lateral overlap compromises surface topography [58,148]. The range of optimum overlap
ratios in different studies varies from 20% [141] to 70% [65], indicating that the selection of
the appropriate overlapping distance depends on the processing parameters employed,
material properties, and the diameter of the wire being used. Churruca et al. conducted
experiments depositing multiple beads using an overlap ratio of 40% while varying laser
power, WFS, and TS. This resulted in beads with different aspect ratios. Interestingly,
despite employing the same overlap ratio, the deposition quality varied, with pores and
gaps evident in the track consisting of beads with lower aspect ratios [89].
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Publishing Limited).

5.2. Multilayer Deposition

During single-track deposition, a limited process region is identified to achieve stable
and defect-free results. Once the optimum parameter combination is determined, multiple
tracks can be sequentially deposited by raising the deposition head in the Z-direction by
the assigned layer thickness amount.

To better understand the height increment or layer thickness [110] in the multilayer
process, the vertical overlap between successive layers should be considered due to its
significant influence on the height increment suitability. The overlap ratio, as defined in
Equation (11), represents the ratio of the overlap height (HO) to the height of a single bead
(H B), as illustrated in Figure 18a [47,62].

η =
HO

HB
(11)

When assigning the overlap ratio (η) during the process, three distinct cases emerge.
With an appropriate η (Figure 18a), the height and width of deposited layers remain
unchanged, ensuring stable melt pool size and continuous deposition process. As shown
in Figure 18b an excessively large η results in laser-induced remelting of the previous layer,
causing a significantly large width with decreased height. Too small of an η (Figure 18c)
leads to a gradually narrowing width of the deposited layer and an increasing height,
making continuous deposition unfeasible [47,62,141].
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Maintaining process stability in multilayer deposition might be challenging as more
successive layers are deposited. One challenge arises from the increase in temperature
within the deposition area during multilayer deposition. This can potentially result in
heat accumulation in the previously deposited layers and occurs when constant laser
power is employed throughout the process [57]. Another concern emerges when a poor
connection forms between vertical layers [47]. This occurs when there is a mismatch
between the assigned and the actual height increment, resulting in a non-consistent laser
spot size [114], which leads to irregular deposition and process failure [111,125]. As
observed by Akbari et al. [149], high height increment increases the risk of fusion problems
and droplet generation, while low height increment will cause the wire tip to deviate from
the toolpath and an un-melted wire to stick out of the deposited material. This motivates
the need to correctly determine and adjust the height increment after each successive layer
to ensure process stability.

Zapata et al. [110] employed a material independent calculation for height increment
( Hl) in their study, as shown in Equation (12) based on the cross-sectional area of wire
( Aw), the width of the bead (W b) and the speed ratio (i.e., the ratio of WFS to TS).

Hl =
Aw

Wb
× speed ratio (12)

The research revealed that when the height increments were set as calculated, defect-
free multilayer processes could be achieved, particularly at lower speed ratios. However, at
higher speed ratios, larger deviations were observed. This was attributed to the increased
volume of deposited material, which subsequently resulted in an increase in layer thickness
and wider tracks over successive layers, causing more heat accumulation [33,35].

W-LDED offers the potential for depositing inclined geometries. However, the depo-
sition of inclined walls presents significant challenges [35,127,150,151]. These challenges
arise from issues such as inadequate support for overhanging structures, uneven heat
distribution across inclined surfaces, and difficulties in accurately filling tight angles or
curves relative to the building direction [126,127]. The gravitational forces acting on molten
material during deposition can lead to the sagging or collapse of unsupported features,
compromising the part’s structural integrity [152,153]. Moreover, an uneven heating of
inclined surfaces can result in surface irregularities [153]. Few studies have investigated
this aspect in lateral wire feeding systems. Shaikh et al. [65] successfully fabricated an
inclined wall deposited at an angle of 73◦ with respect to the substrate, while Demir et al.
conducted experiments depositing multiple inclined surfaces ranging from 46◦ to 69◦

relative to the building direction and achieved high-quality geometries (Figure 19) [66].
Akbari et al. demonstrated deposition at an angle of 55◦ with respect to the substrate,
mentioning that fabrication at lower angles was possible; however, further experiments
have not been conducted [51]. Current literature does not offer any studies regarding coax-
ial W-LDED deposition at inclined angles and the associated issues related to maximum
possible overhangs.
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(reproduced with permission from [66]: copyright 2018, Elsevier Ltd.).

6. Deposition Quality

The defects present in W-LDED can be classified into internal and external defects.
Employing wire feedstock in conjunction with a laser beam results in the formation of
unique defects, i.e., external defects, which are attributed to the continuous mechanical
connection that the wire establishes between the deposited part and the deposition head.
Understanding these defects is crucial as they can severely impact the overall process
stability and prevent further deposition. Once stable deposition is achieved, the emergence
and the cause effects of internal defects can be investigated. Motta et al. used the term
“deposition with defects” to describe these types of deposition where no external defects
were present, yet the deposition consisted of internal defects [57].

6.1. External Defects

External defects such as stubbing and dripping are visible during the process and
pose significant challenges. Once they are formed, these defects are detrimental to process
stability and result in a high surface roughness onto which further deposition is not possi-
ble [56,57,110]. These defects contrast with the desirable condition of “stable deposition”,
where beads lack such issues. Defect-free deposition is known to be the result of successful
liquid bridge transfer, i.e., a stable molten metal transfer from the wire tip to the melt
pool [93,154–156].

Dripping occurs when excessive heat input melts the wire above the substrate before
it has reached the melt pool [112]. Consequently, the link between the wire tip and the
melt pool breaks, forming a droplet at the wire end due to the minimization of surface
energy [57,84]. The surface tension between the droplet and the wire tip is much higher
than the gravitational force on the droplet, which prevents the droplet from detaching from
the wire tip [114,157,158]. This droplet grows and eventually drops down by gravitational
force, causing an unstable deposition of the material, and dripping occurs. Figure 20a
shows the starting moment of the dripping formation. Figure 20c indicates a rough single
track deposited with wire dripping [56,97,149].

Dripping occurs with high laser power, inadequate focal offset (i.e., high offset), or
a combination of insufficient WFS and TS. To address this issue, the WFS and TS can be
increased to an optimal value until there is sufficient material deposited and a smooth
deposition is achieved [57,84,95,128,150,159,160].

Stubbing occurs due to insufficient heat input, causing unmolten wire pieces to stick
to the deposited part [51,57,149]. Relatively low laser power in correlation with high
WFS, TS, and low focal offset can both lead to stubbing. Stubbing can be avoided by
carefully increasing the laser power, decreasing WFS as well as adjusting the focal offset [95].
Figure 20b–d indicates the starting point of stubbing formation and its presence in layer
deposition, respectively.
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Figure 20. (a) Dripping defect formation, (b) stubbing defect formation (reproduced with permission
from [57]: copyright 2018, Elsevier Ltd.), (c) deposition track containing dripping, and (d) deposition
track containing stubbing (reproduced with permission from [110]: copyright, MDPI).

Abranovic et al. introduced another type of external defect, namely melt pool oscilla-
tion, which results in the fabrication of tracks characterized by ripples and rough surfaces
as shown in Figure 21 [161]. Melt pool oscillation refers to a phenomenon in which the size
of the melt pool fluctuates regularly, evident by a flickering appearance. This occurs due to
the rapid evaporation of material from the surface of the molten metal when exposed to a
high-power laser beam [162]. In line with this observation, increased ripple formation on
the deposited track was noted with higher laser power, leading to an increase in surface
roughness [65]. Ripple formation is less detrimental to the fabrication process compared to
other external defects at small scales. However, in severe cases, consecutive layers cannot
be deposited on a track with a very rough surface.
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Figure 21. The track deposited with an oscillation defect (reproduced with permission from [161]:
copyright 2024, Elsevier Ltd.).

Figure 22 depicts a schematic of the process feasibility map, illustrating the possible
regions for the formation of different defects and stable deposition. The diagonal lines
indicate constant linear energy densities. Moving over these lines, it can be observed that
the process stability changes, emphasizing the importance of selecting appropriate laser
power and TS.
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6.2. Internal Defects

Like in any other AM process, defects such as pores and cracks might be present
in W-LDED. The three types of porosity presented in AM-produced parts are gas pores,
LOF, and keyhole pores. Gas pores display a spherical morphology and have diverse
origins, including solubility differences, moisture reaction, and hydrogen precipitation
during solidification [70,163,164]. Factors like insufficient vapor escape time, feedstock,
or substrate contamination, as well as trapped shielding gas, can also lead to gas pore
formation. LOF exhibit irregular shapes and can often be found in the overlap areas
between adjacent deposition tracks [165,166]. Unoptimized process parameters, such as
inadequate power, high TS, and WFS, can contribute to the formation of LOF defects. On
the other hand, in keyhole porosity, excessive energy input triggers keyhole mode, resulting
in large, irregularly shaped pores [167]. This leads to the evaporation of the material in
the middle of the melt pool; the top of the melt pool is then enclosed by recoil pressure,
resulting in entrapped gas within the melt pool center [168].

Cracking, a common issue in AM processing includes solidification cracks initiated
during insufficient melt and liquation cracks caused by reheating and stress on previously
solidified layers [169]. The use of high energy density during laser processing results in
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an elevated temperature gradient, which intensifies the crack formation in the produced
parts due to increased residual stress [170]. This is supported by Churruca et al.’s study
on Stainless Steel 316L and Wang et al.’s research on Al alloy. The crack formation was
observed due to high thermal stress when employing high laser power at high TS [61,63,89].
Figure 23b illustrates an example of crack formation in a single bead due to an improper
selection of laser power.
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Figure 23. Cross-section of a single bead (Al alloy) containing (a) gas pores and (b) cracks due to
incorrect power and high TS (reproduced with permission from [63]: copyright 2022, Elsevier Ltd.).

Using wire feedstock instead of powder minimizes the formation of gas-trapped pores,
and their formation is mostly observed in materials that readily oxidize (e.g., aluminum
alloys) [47,61,63,171–173]. The most predominant type of pore observed in W-LDED is due
to the gap formed between adjacent beads when employing an incorrect lateral or vertical
overlap ratio attributed to the bead’s aspect ratio, as explained in Section 5.2.

Compared to other AM methods, the beams utilized for the W-LDED process have
relatively large spot sizes due to the wire diameter range. Therefore, the keyhole formation
is minimized. As noted by Motta et al. [57], in a stable deposition, the size of the melt pool
is two/three times the wire diameter without significant change throughout the process.
This results in a complete melting of the fed wire, minimizing the LOF defects once an
appropriate power is selected. This is supported by Mamphekgo et al. using SS 309. As
depicted in Figure 24, LOF defects were detected in their experiment between layers, and
were resolved by increasing the laser power [59].
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Figure 24. LOF between layers formed due to insufficient laser power of (a) 700 W and (b) 900 W.
(c) No LOF is present when using laser power of 1000 W for SS 309 (reproduced with permission
from [59]: copyright 2023, EDP Sciences).

7. Deposition Characteristics
7.1. Shielding Gas

W-LDED, like most AM methods, requires an inert environment to minimize in-
process oxidization, a significant challenge that can impact the properties of the produced
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sample. Argon, helium, and nitrogen are mainly used as shielding gas in MAM processes.
Argon is predominantly used in the literature for W-LDED due to its ability to withstand
external disturbances effectively, minimize atmospheric gas diffusion, and provide eco-
nomic advantages.

Two types of gas shielding systems—central and local—have been employed in the
literature. Conventional LDED heads typically feature central shielding gas feed mecha-
nisms, i.e., filling the entire fabrication chamber with inert gas. However, central shielding
can be costly and has disadvantages, including limitations on the possible size of fabricated
parts due to the chamber size [174,175]. This method is known to cause turbulence in the
gas stream, resulting in a higher and problematic intake of oxygen [54].

A further reduction of oxidation can be obtained by implementing local shielding only
in the fabrication area [101]. The latter approach, as developed and evaluated by Bernuar
et al. for coaxial W-LDED, offers benefits regarding gas usage, equipment complexity, and
setup duration [174]. Their study examined the effects of shielding gas flow rate on bead
geometry and the temperature of the melt pool. Results showed that an increased gas flow
rate leads to a decrease in melt pool temperature and results in smaller beads. This is due
to the cooling effect of the shielding gas. Beads produced with local shielding exhibited
a brighter surface, indicative of reduced oxygen presence, as discoloration serves as an
indicator of residual oxygen. Additionally, as illustrated in Figure 25, an increased flow
rate was found to decrease ripples in the bead [176], which is attributed to a higher cooling
rate resulting from convection in increased shielding gas flow [174,177].
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7.2. Scanning Strategy

The deposition path plays a critical role in wire-based deposition, influencing the
appearance of deformation and defects during the deposition. Kelbassa et al. compared
two fabrication processes based on unidirectional and bidirectional scanning strategies [178].
The unidirectional strategy (Figure 26a), featuring multiple starting and end points per
layer, results in excessive material buildup at the starting points and a lack of material at the
ending points as observed in the experiment conducted by Ding et al. (Figure 27) [150]. In
contrast, the bidirectional strategy (Figure 26b), with only one starting and one end point per
layer, provides more uniform deposition and minimizes anomalies in solid structures [179].
Similar findings were observed in other research, emphasizing that bidirectional paths with
a 90◦ rotating orientation after each layer facilitate more uniform growth and minimize
defects compared to the unidirectional strategy [89,180–182]. Nickel et al. noted that
unidirectional deposition led to distortion, while two-dimensional strategies minimized
distortions due to a more uniform heat flow [183]. Singh et al. suggested depositing the
initial line on the periphery of the profile and implementing a bidirectional path with 45◦

scanning patterns and a 90◦ orientation change in successive layers to prevent excessive
material outflow at the edges, thereby improving dimensional accuracy [184]. Pujana et al.
employed the same strategy, which successfully fabricated 3D geometries [89].
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Gao et al. introduced the wiggle deposition pattern, which involves a 90◦ turn every
few millimeters during scanning to balance deposition in scanning and transverse direc-
tions, as shown in Figure 26c. This approach ensures a transverse deposition displacement
slightly shorter than the melt pool width, leading to a dynamic melt pool flow due to the
oscillation of thermal gradient. This is found to result in a more stable melt pool due to a
more symmetric laser absorption [118].

Cai et al. conducted novel research investigating W-LDED deposition with an oscil-
lating laser beam and compared the results with non-oscillating laser deposition. It was
observed that the energy distribution shifts from a Gaussian to a broader pattern with
oscillation, resulting in decreased peak energy density and promoting molt pool spreading.
This led to a significant enhancement in the surface quality and uniformity of the deposited
layer [185].

7.3. Heating the Substrate

In W-LDED, irregularities in the initial layer deposition can arise from the temperature
of the substrate. When the substrate is cold, the quality of the first deposition may suffer
due to rapid cooling, leading to heat-sink effects that cause irregularities like cracks or
porosities in the bead [186]. To address this issue, Akbari et al. emphasized the impor-
tance of preheating the substrate to slow down the cooling rate during the initial layer
deposition [56]. Several studies have shown that preheating the substrate results in a more
uniform heat distribution within both the substrate and the deposited bead. It reduces the
possibility of defect formation while promoting dense bead formation by limiting thermal
gradients and allowing sufficient time for trapped gas to release from the melt pool [187].
The literature indicates that depositions on preheated substrates consistently yield uniform
bead shapes and minimize bonding defects, such as LOF. Moreover, Froend et al. observed
that increasing the preheating temperature does not compromise the surface quality of the
deposited layers but may slightly enlarge the bead [62,83]. The improved bead quality
associated with preheated substrate temperatures is attributed to enhanced fusion, as less
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energy is needed for melting. However, in the absence of preheating, reducing parameters
such as TS or deposition rate may be necessary to achieve a defect-free deposition, which is
contrary to the primary advantage of W-LDED, which favors high deposition rates. Tech-
niques like induction heating can be employed to attain the required substrate temperature
for optimal deposition conditions [24,149,188].

7.4. Wire Feeding Temperature

The integration of the hot-wire technique for preheating the wire feedstock is a
key strategy to increase the deposition rate of W-LDED, leading to increased produc-
tivity [34,151,189]. In this method, the wire is preheated to a temperature slightly below
its melting point through an electrical current prior to being exposed to laser radiation.
The laser power is then utilized to form a fusion layer on the substrate, facilitating the
bonding of the filler material. This allows for lower energy input, thereby enabling higher
TS, deposition rates and ultimately reducing the overall equipment costs [34,190]. It should
be noted that the preheating voltage and current should be optimized for the process to
achieve the mentioned benefits [54,190].

This is confirmed by Lui et al. as they redefined the linear energy density (Equation (1))
for heated wire as shown in the following equation. In Equation (13) PL represents the
laser power (W) and PHW is the power for preheating the wire (W). According to the
presented equation, the laser power necessary for sufficient melting at a given TS can be
reduced [191,192].

E =
PL + PHW

TS
(13)

Liu et al. further investigated the impact of increasing linear energy density ( J
mm )

on the bead’s penetration depth into the substrate, employing both cold and hot wire
techniques and an increase in penetration depth was observed for both cases. The study
revealed that, at a consistent linear energy density, the hot wire exhibited greater penetration
into the substrate compared to the cold wire, attributed to fusion enhancement as can be
seen in Figure 28 [192].
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Moreover, Bambach et al. compared the bead penetration into the substrate using both
cold and hot wires, keeping the laser power constant, and noted a significant penetration
reduction in the case of hot wire DED. This is because the cold wire process requires a
lower TS at the available laser power, creating a deeper melt pool as can be observed in
Figure 29 [54].
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In an experiment by Kisielewicz et al., varying levels of preheated wires were studied.
The findings revealed that increasing resistive pre-heating improved fusion, consequently
enhancing penetration depth. Notably, this approach avoided the typical side effects of
increased laser power, such as bead geometrical inconsistency. The research suggests that
adjusting preheating levels can be an effective strategy to optimize fusion and penetration
without the drawbacks associated with solely increasing laser power [34].

The wire-resistant current, a crucial factor influencing wire melting and feeding, is
addressed by Zhu et al. It is observed that when the current is too low, i.e., when the wire
tip temperature is below the melting temperature, the hot-wire tip sticks on the surface
frequently (Figure 30a). On the other hand, when the wire current is too high, fusing and
spattering occurs because the hot-wire temperature reaches its melting point before con-
tacting the substrate (Figure 30c) [108]. Huang et al. conducted an experiment studying the
melting behavior of pre-heated aluminum alloy wire using resistance heating. The authors
proposed a calculation method presented in Equation (14) to derive the appropriate hot-
wire current based on the WFS and wire diameter and reported good agreement between
the calculated wire current from the suggested method and the experimental results [193].
In the following equation, I is the heating current, t is the heating time, R is the heating
resistance, Cs is the specific heat of solid wire, ρs is the solid wire density, D is the wire
diameter, Tp is the desired wire preheating temperature, and T0 is the room temperature.

RI2t = Csρs(WFS)π
1
4

D2(Tp − T0) (14)

Liu et al. reported the same instabilities as Zhu et al. [108] in preheating with different
voltages by noting that at a high voltage, arcing occurred, and large spatters were gener-
ated [191,192]. They also compared the influence of increasing laser power and preheating
voltage on the process stability and geometrical appearance of the beads. It was proposed
that an increase in laser power influenced the stability of the deposition, however, its
effect is not as pronounced as the voltage. On the other hand, the laser power had a more
significant effect on the geometry of the bead compared to the applied voltage. This finding
aligns with the results suggested by Kisielewicz et al. [34] and Su et al. [194].
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7.5. Building Strategy

During continuous multilayer deposition with constant processing parameters, the
temperature of the deposition area rises, resulting in heat accumulation in the deposited
layers. The heat accumulation becomes apparent through observable changes in color,
resulting from thermal radiation at high temperatures. This leads to defect formation and
reduces dimensional accuracy due to an unstable thermal load [35,57,63,125,195]. Various
strategies have been studied to resolve heat accumulation and reduce defect formation, such
as power decay and interlayer cooling [63,125,196]. Motta et al. tested both continuous and
discontinuous strategies to identify process stability over consecutive layers and reduced
heat accumulation. It was observed that the process employing a continuous strategy
became unstable after some layers due to heat accumulation resulting in dripping. The
power decay strategy i.e., gradually decreasing power after each layer (Figure 31b), helped
avoid defect formation by maintaining a stable thermal load [57]. This result was confirmed
by Abioye et al. and Silva et al., who observed flattened layers with constant laser power
due to excessive heating, which is detrimental to process stability [64,112].
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Wang et al. investigated two types of discontinuous building strategies by applying
both power decay and interlayer cooling (Figure 31c) during the multilayer deposition of
Al alloy [61]. In the former, laser power was decreased with increasing layer number. In the
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latter strategy, the last deposited layer was cooled before the deposition of the next layer
and the laser power was kept constant. The power decay experiment eventually led to heat
accumulation after consecutive layers and gas pores increased with no detected cracks or
LOF. However, the authors applied a small power reduction of 50 W per layer which could
have been attributed to the emergence of heat accumulation.

Compared to the power decay strategy, Wang et al. achieved lower porosity by re-
ducing temperature and heat accumulation using the interlayer cooling strategy through
consistent melting and solidification conditions. However, the amount of gas pores in-
creased as the deposition of consecutive layers continued, and cracks were observed along
the building direction, which indicates the change in heat transfer behavior when layers
are being deposited on cooled layers [61,63].

Table 4 summarizes various W-LDED experiments, including the wire material and
size utilized, substrate material, employed laser type, laser characteristic (continuous or
pulsed), type of machine used, and the shielding gas employed.

Table 4. Summary of feedstock and substrate material, feeding type, laser type, laser classification,
shielding gas, and the machine types used in W-LDED literature.

Wire
Material

Diameter
(mm)

Wire Feeding
Type Laser Type Laser

Classification
Substrate
Material

Shielding
Gas

Machine
Type Ref.

AA4043 1.2
Lateral

Front feeding
30◦

Fiber laser
Diode laser Continuous AA5083 Argon Custom Built [74]

AA4043 0.4 Coaxial Fiber
laser Continuous Ti6Al4V Argon Custom Built [140]

AA4047 0.4
Lateral

Front feeding
30◦

Nd:YAG
laser Pulsed AA5754 Argon Custom Built [67]

AA5A06 1.2

Lateral
Front, back

feeding
45◦

Fiber
laser Continuous AA4043 Argon

KUKA
6-axis Robot
(Augsburg,
Germany)

[47]

AA5A06 1.2 Lateral
45◦

Fiber
laser Continuous AA5052 Argon Custom Built [193]

AA5078 1 Coaxial Disc
laser Continuous AA5078 Argon

KUKA
6-axis
Robot

[122]

AA5083 1 Coaxial Disc
laser Continuous AlSi1MgMn - *

KUKA
6-axis
Robot

[110]

AA5087 1
Lateral

Front feeding
35◦

Fiber
laser Continuous AA 5754 Argon

CNC-supported
XYZ-machining
center (IXION
Corporation)

[62]

AA5087 1
Lateral

Front feeding
35◦

Fiber
laser Continuous AA5754 Argon CNC Controlled

Machine [83]

AA5356 1 Coaxial Fiber-guided
disk laser Continuous AlSi1MgMn Nitrogen

CoaxPrinter
(Precitec GmbH &
Co. KG, Gaggenau,

Germany)

[35]

AA5356 1.2 - Fiber
Laser Continuous AA5052 - KUKA

6-axis Robot [106]

AA7075 1.2
Lateral

Front, back, side
feeding 45◦

Disk
laser Continuous A7075 Argon CNC Controlled

Machine [63]
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Table 4. Cont.

Wire
Material

Diameter
(mm)

Wire Feeding
Type Laser Type Laser

Classification
Substrate
Material

Shielding
Gas

Machine
Type Ref.

AA7075 1.2 - Disk
laser Continuous AA7075 Argon CNC Controlled

Machine [61]

AlSi10Mg 1.6

Vertical wire
feeding,

Inclined laser
50◦

Fiber
laser Continuous AA6061 Argon Custom Built [64]

Ti6Al4V 1.2
Lateral

Front feeding
55◦

Diode
laser Continuous Ti6Al4V Argon KUKA

6-axis Robot [114]

Ti6Al4V 1.2 Coaxial Disk
laser Continuous Ti6Al4V Argon KUKA

6-axis Robot [84]

Ti6Al4V 1
Lateral

Front feeding
50◦

Fiber
laser Continuous Ti6Al4V Argon Custom Built [131]

Ti6Al4V 1.2 Lateral
30◦

Fiber
laser Continuous Ti6Al4V Argon KUKA

6-axis Robot [197]

Ti6Al4V 1 Coaxial Diode
lasers Continuous - Argon Meltio M450

(Jaén, Spain) [184]

Ti6Al4V 1.2
Lateral

Front feeding
30◦

Fiber laser
Diode laser Continuous AA5083 Argon Custom Built [74]

Ti6Al4V 1.2
Lateral

Front feeding
45◦

Customized
Laser Continuous Ti6Al4V Argon CNC Controlled

Machine [198]

Ti6Al4V 1.6 Lateral
30◦

Fiber
laser Continuous Ti-6Al-4V Argon Custom Built [48]

Ti6Al4V 1.2
Lateral

Front, side, back
feeding

Diode
laser Continuous Ti6Al4V Argon CNC Controlled

Machine [113]

NAB 1.14 Lateral Fiber
laser Continuous NAB -

ABB
6-axis Robot

(ABB Robotics,
Västerås, Sweden)

[199]

AWS ER
100S-G 1.2 Lateral

Front Feeding
Fiber
laser Continuous - Argon KUKA

6-axis Robot [56]

Mild steel
Lincoln ER

100S-G
1.2

Lateral
Front feeding

40◦
Fiber
laser Continuous - Argon KUKA

6-axis Robot [150]

H11 1.2 Lateral
46.5◦

Diode
laser Continuous 42CrMo4

alloy steel Argon 5-axis CNC
machine [141]

SS 301 0.5
Lateral

Front feeding
30◦

Nd:YAG
laser Pulsed SS 316 Argon Custom Built [66]

SS 304 1.2 Lateral
35◦

Fiber
laser Continuous SS 304 - - [93]

SS 304 0.5 Coaxial Co2
Laser Continuous SS 304 - - [72]

SS 304 0.1 Lateral
20◦

Nd:YAG
laser Pulsed SS316 Argon Custom Built [65]

SS 308L 1.2
Lateral

Front feeding
45◦

Diode
laser Continuous 590-MPa-

class steel Argon Custom Built [108]

SS 308 1 Coaxial Fiber
laser Pulsed SS 316 Argon ABB

6-axis Robot [57]
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Table 4. Cont.

Wire
Material

Diameter
(mm)

Wire Feeding
Type Laser Type Laser

Classification
Substrate
Material

Shielding
Gas

Machine
Type Ref.

SS 308LSi 1.2
Lateral

Front feeding
42◦

Fiber
laser continuous SS 304 Argon CNC Controlled

Machine [112]

SS 309 1 Coaxial Diode
lasers Contiguous SS304 Argon Meltio

M450 [59]

SS 309 0.9 Coaxial Diode
lasers Continuous AISI 1018 Argon Meltio M450 [159]

SS 316L 0.8 Coaxial Fiber
laser Continuous C45 Carbon

Steel Argon ABB
6-axis Robot [89]

SS 316LSi 1 Coaxial Disk
laser Continuous SS 304 Argon KUKA

6-axis robot [174]

SS 316LSi 1.2 Lateral
Side feeding

Fiber
laser Continuous SS 304 Argon KUKA

6-axis Robot [51]

SS 316L 0.8
Lateral

Front feeding
35–45◦

Fiber
laser Continuous SS 316L Argon ABB

6-axis Robot [33]

SS 316 0.9 Coaxial Diode
laser Continuous SS316 Argon Meltio

M450 [118]

SS 316 0.8 Lateral
Front feeding

Fiber
laser Continuous SS 316 Argon ABB

6-axis Robot [148]

SS 316 1 Coaxial Disk
laser Continuous SS 304 Argon KUKA

6-axis Robot
[125,
126]

SS 316L 1 Coaxial Disc
laser Continuous SS 304 - KUKA

6-axis Robot [110]

SS 316 0.6 Coaxial Fiber
laser Pulsed SS304 Argon Custom Built [81]

DSS 2209 1.2 - Fiber
laser Continuous DSS 2205 - ABB

6-axis Robot [34]

DSS 2209 1.2 Lateral Fiber
laser continuous DSS 2205 Argon ABB

6-axis Robot [190]

DSS 2209 1.2 - Fiber
laser Continuous DSS 2205 Argon

Nitrogen
ABB

6-axis Robot [101]

DSS 2209 1.2 Lateral Fiber
laser Continuous DSS 2205 Argon ABB

6-axis Robot [151]

DSS 2209 0.8 Coaxial Fiber
laser Continuous SS Argon KUKA

6-axis Robot [95]

INC 718 1 Coaxial Diode
laser Continuous SS 304 Argon Custom Built [54]

INC 718 1 Lateral
Front feeding

Diode
laser Continuous INC 718 Argon 5-axes CNC

machine [130]

INC 718 0.89 Coaxial Fiber
laser Continuous INC 718 Argon ABB

6-axis Robot [102]

INC 718 0.9 Coaxial Diode
lasers Continuous INC 718 Argon µPrinter (Additec,

USA) [73]

INC 718 0.9 - Fiber
laser Continuous INC 718 Argon Custom Built [200]

INC 625 1.2
Lateral

Front feeding
42◦

Fiber
laser Continuous SS 304 Argon CNC controlled

table [58]

* The “-” entries denote missing information that was not provided in the respective references.

8. Monitoring and Control

The W-LDED deposition process presents significant challenges due to its tendency to
deviate from stable deposition (i.e., no dripping or stubbing) when encountering distur-
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bances. Identifying the main cause of process failures can be challenging with numerous
variables involved, particularly when failures result from multiple factors. Therefore, it
is essential to implement real-time monitoring and control to maintain a stable process
with a high deposition rate. Monitoring and controlling ensure deposition quality and
efficiency in W-LDED by detecting sources of disturbance. Therefore, the processing pa-
rameters can be optimized in order to achieve stable deposition while preventing material
waste [35,107,127,201,202].

The deposition is monitored to collect data on aspects such as bead geometry, bead
height, melt pool temperature, and geometry to achieve process stability. Based on the
analysis of this data, decisions are made to compensate for any deviations from the target set
point. The controller thereafter adjusts the recognized problem accordingly by modifying
related parameters to enhance the part’s final quality [34,46,203,204].

Different types of monitoring systems have been introduced in research, such as high-
speed and infrared cameras, pyrometers, and thermocouples. Depending on their operating
principles, these systems can be positioned in direct or indirect contact with the deposition
area. Some of these monitoring systems, such as cameras and pyrometers, can be mounted
off-axis or coaxially relative to the deposition head. By positioning the monitoring system
coaxially, measurements can be acquired independent of the deposition direction. This
setup allows for the monitoring of various parameters such as the temperature, size, and
shape of the melt pool, as well as the width of the bead. On the other hand, an off-axis
camera placement enables the capture of geometrical data on bead height, total height of the
part, temperature, or the position of the head relative to the part. Implementing multiple
monitoring modules at different angles helps mitigate the dependency of measurements
on deposition direction [127,144,157,205–212]. Moreover, Iravani et al. [205] highlighted
the complexity introduced by the requirement for camera calibration, which may vary
with different deposition parameters or materials. To address this complexity, alternative
temperature and height monitoring sensors have been suggested.

Figure 32a illustrates the schematics of a monitoring system. Figure 32b,c show the
height and the width of the deposited bead captured by integrated cameras.
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Figure 32. (a) Schematics of W-LDED monitoring setup, (b) bead’s width measurement obtained by
the top camera, and (c) bead’s height measurement acquired by the front camera detecting the shape
of the projected laser line (reproduced with permission from [213]: copyright 2010, Elsevier Ltd.).

Thermocouples, pyrometers, and infrared (IR) cameras are used to monitor the melt
pool’s temperature during the processes. Thermocouples are often in direct contact with the
build plate, enabling temperature measurements [122,214]. Alternatively, both pyrometers
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and IR cameras can be integrated into the processing head, allowing for unrestricted
movement and directional independent data acquisition [85]. However, using these sensors
for applications with high emissivity poses challenges to data collection [83,135,206].

Various monitoring systems employ methods such as structured light projection or
laser triangulation to measure the deposition’s height. However, real-time measurement
using these techniques poses challenges due to its dependency on the deposition direction.
Consequently, measurements are typically conducted after the deposition of each layer is
complete [127,215]. Various types of cameras, such as CCD (charge-coupled device), IR
cameras, and CMOS (complementary metal oxide semiconductor), have been employed in
research. Utilizing these monitoring systems allows for in-process monitoring; however,
the brightness of the deposition area makes it difficult for the camera to accurately monitor
the process [208,215,216]. A novel and promising approach is using optical coherence
tomography (OCT) for real-time height measurements [217–219]. The OCT system, which
consists of a bright laser spot for illumination, a spectrometer, and an interferometer to
detect interference, measures the deposition height by calculating the offset between the
reference height and the melt pool distance [35]. OCT does not suffer from the limitation of
the formerly introduced method and therefore it is preferred over in-process cameras.

Open-loop and closed-loop controllers can be implemented in the system. In open-
loop control, the control system does not receive feedback from the process output to
adjust the control inputs; instead, it relies solely on predefined control signals based on
the desired setpoints. Therefore, it is typically used in well-understood and relatively
stable processes [220]. Gibson et al. noted the capability of open-loop controllers to modify
process parameters in preprogrammed W-LDED operations [221]. The research suggests
that certain operations require specific in-process adjustments at targeted setpoints, making
open-loop control less suitable for such applications.

On the other hand, in closed-loop control, the controller continuously receives feedback
from sensors monitoring the process. This feedback is compared to the desired setpoints,
and corrective actions are taken to minimize the error between the actual and desired
outputs. Closed-loop control is more robust and adaptable than open-loop control, as it
can dynamically adjust control inputs in response to disturbances in the process. Therefore,
it is commonly used in W-LDED to maintain process stability. Various controllers such as
PI (Proportional-Integral), PLC (Programmable Logic Controller), MPC (Model Predictive
Control), and ILC (Iterative Learning Control) have been utilized in research to implement
closed-loop control strategies in W-LDED processes [128,135,174,213,222,223].

The simultaneous adjustment of various process parameters is necessary to address
all disturbances present in a complex process like W-LDED. It is important to recognize
that due to the interdependence of the parameters, implementing multiple controllers to
address individual issues may not yield effective control [224]. An investigation of the
literature reveals that research on in-process multivariable control in W-LDED still requires
further development.

The pioneering research by Heralic et al. introduces various control systems to the
W-LDED process. The authors characterize the process as repetitive, leading them to
employ an ILC system to improve deposition accuracy. A 3D scanning system is utilized to
monitor the process disturbances. The effectiveness of the ILC controller is demonstrated,
resulting in defect-free surfaces through adjustments of the WFS or focal position of the
laser head to correct inaccurate layer heights [97,111]. Previous research by the same
authors investigated the effects of varying laser power and WFS. The geometry of the layers
was observed using cameras for melt pool imaging and width calculation, while a laser line
scanner tracked the height of the previous layers. It was found that the melt pool width
can be controlled by a PI controller and by adjusting the WFS. Meanwhile, the layer height
can be adjusted using a feed-forward compensator and changing the laser power [107,213].

To monitor and control the height of the deposited layer, Garmendia et al. utilized a
laser scanner capable of distance calculation through laser triangulation. Employing this
system in a closed-loop process, they corrected the layer height by adjusting the WFS [144].
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Additionally, Hagqvist et al. investigated implementing the same setup for height mea-
surement, where defects in layer height were compensated by adjusting the focal position
of the beam. Both techniques effectively prevented defect formation (Figure 33) [97,144].
Similarly, Takushima et al. employed a laser line scanner to measure the height of the bead
in real time, where the control system could adjust the WFS to maintain a desirable bead
height [98].
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Becker et al. employed an OCT sensor in the deposition head and tracked the bead
height using a closed-loop controller. A PI controller adjusted the WFS in response; there-
fore, the resulting part was closer to the desired geometry with a more uniform layer
structure. The authors also emphasized the limited need for post processing due to the
enhanced surface quality of the part [35].

Mbodj et al. designed a control system using an MPC controller capable of considering
various material properties and process parameters. Using this system, the layer height
was continuously monitored, and a constant height was maintained by controlling the
temperature input [222].

Gibson et al. investigated three distinct control modes utilizing thermal cameras
to monitor melt pool size by adjusting laser power and deposition rate. The first mode
employed closed-loop control for melt pool size by modifying laser power, focusing on the
real-time control of the geometry of the bead (Figure 34). The second mode introduced
a controller that modified the deposition rate and TS per layer to independently control
average laser power and therefore the melt pool size. Lastly, a third controller integrated
the previous modes by regulating power for the real-time control of the melt pool size while
adjusting deposition rate and TS per layer to control average laser power. Results indicated
that the first mode facilitated both intralayer and interlayer control, the second mode
enhanced geometric accuracy, and the third mode reduced printing time while maintaining
print quality comparable to the first mode [203,221].

Beranuer et al. utilized an in-axis pyrometer paired with a PI controller to ensure the
melt pool temperature remains within a desired range. This coaxial monitoring system
facilitated temperature measurement without accessibility constraints, allowing the con-
troller to address observed deviations by adjusting the power. The implemented system
led to a decreased probability of defect formation and minimized the need for multiple
trial-and-error-based adjustments in the deposition process, consequently reducing both
fabrication time and cost [125].

Consistent with this approach, the authors applied the same concept replacing the
controlling module with a PLC controller. Using this system, they established an initial
temperature range under various process conditions to achieve stable deposition. The
relationships between melt pool temperature, resulting geometry, and material properties
were analyzed for beads. It was observed that melt pool temperature directly correlates
with the bead’s width and dilution. Consequently, melt pool temperature was monitored as
an input parameter to a pyrometry-based closed-loop control system, and it was controlled
through laser power modification [128,135].
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Figure 34. (a) Example of melt pool image captured by a thermal camera, (b) increase in melt pool
temperature and size resulting from increased laser power (reproduced with permission from [221]:
copyright 202, MDPI), and (c) example of regulating melt pool temperature by varying laser power
set by the PI controller during the deposition of a weld bead (reproduced with permission from [125]:
copyright 2022, Journal of Laser Applications).

Additionally, the authors introduced a concept for a multivariable process control
system, utilizing an IR camera for measuring melt pool temperature and OCT for bead
height tracking while controlling parameters such as WFS and laser power. However, an
experimental validation of this proposed framework is still pending [135,225].

Kotar et al. investigated the influence of laser power and WFS on the melt pool
temperature using a coaxially mounted pyrometer in a machine equipped with an annular
laser beam. The temperature of the melt pool was controlled by adjusting these parameters
based on their observed correlations [85].

Similar to this study, Motta et al. employed an off-axis camera as well as a laser scanner
to observe the laser power distribution on the working plane and the resulting melt pool.
The distance between the laser head and the deposition plane was adjusted accordingly to
avoid process failures such as stubbing and dripping [57].

Baghdadchi et al. and Kisielewicz et al. utilized wire resistive pre-heating to increase
the deposition rate. By employing cameras alongside voltage/current measurement circuits
the authors monitored the deposition process. Real-time monitoring of the current/voltage
and the resultant link between the melt pool and the wire tip was conducted. A PLC con-
troller was used to adjust the preheating current/voltage accordingly to ensure consistent
liquid bridge transfer (Figure 35a). This method yielded a stable molten metal transfer
resulting in a high-quality deposition [34,190,226].
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Figure 35. (a) Stable transition link between the molten wire tip and the melt pool, (b) narrowing
transition link between the molten wire tip and the melt pool, and (c) break of the transition link and
occurrence of arcing (reproduced with permission from [34]: copyright 2021, MDPI).

Table 5 presents a compilation of W-LDED research involving monitoring and control
systems. Each entry in the table includes details such as the type and location of spe-
cific monitoring systems, the controller used, the manipulated variable, and the aspects
controlled with the system’s assistance.
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Table 5. Summary of the utilized monitoring and control systems in W-LDED.

Input Variable Controlled Variable Monitoring Sensor Position Controller Ref.

TS Layer height Structured light
scanner Off-axis Closed loop [127]

Deposition head Z position Layer height Structured light
scanner Off-axis Closed loop [144]

Deposition head Z position Laser power High speed camera,
Laser line scanner Off-axis Closed loop [57]

WFS Layer height OCT In-axis Closed Loop,
PI Controller [35]

Input temperature Bead height Laser profilometer In-axis MPC [222]

WFS,
Deposition head Z position Layer height 3D scanning system In-axis

ILC,
Step-height

compensator
[111]

Laser power,
WFS Bead geometry Cameras,

Projected laser line
In-axis,
Off-axis

PI-controller,
Feed-forward
compensator

[213]

Laser power,
WFS Bead geometry Camera,

Projected laser line Off-axis Closed loop [107]

Laser power, Deposition rate, Melt pool size,
Laser power Thermal camera In-axis Closed loop [203]

Laser power Melt pool size Thermal camera In-axis Closed loop [221]

WFS,
Laser power

Bead height, Melt pool
temperature

OCT,
IR camera In-axis Closed loop [125]

Laser power Melt pool
temperature Pyrometer In-axis PI controller [126]

Laser power Melt pool temperature Pyrometer In-axis PLC [128]

WFS Bead height Camera,
Laser line scanner

In-axis,
Off-axis Closed loop [98]

Laser power, WFS Melt pool temperature Pyrometer In-axis Closed loop [85]

Wire Preheating voltage and
current Liquid bridge transfer Camera,

Measurement circuit
In-axis

Off-axis PLC [34]

9. Modeling and Predicting W-LDED Process

Process prediction models have been widely investigated in the literature to advance
the complex multi-physics W-LDED process by enabling operators to simulate parameter
adjustment and predict the resultant outputs. Prediction models expedite the development
of W-LDED processes, promote a deeper understanding of the physics, and enhance process
stability and productivity in applications. These models are typically validated against
experimental data to demonstrate their accuracy and ultimately reduce time, costs, and
waste associated with experimentation.

The literature discusses various techniques, including numerical, analytical, empirical,
and machine learning (ML) approaches, to develop physics-based models of W-LDED.
Numerical methods, including finite element analysis (FEA) and computational fluid
dynamics (CFD), have been extensively employed to investigate the underlying physics
of the process. By minimizing assumptions, numerical methods generate more realistic
models, offering insight into the temperature distribution, bead and melt pool geometry as
a function of time. However, the complexity of highly dynamic processes such as W-LDED
poses challenges in modeling due to the substantial computational resources and time
required [40,50,93,146,227–229].

Analytical models have also attracted attention for predicting the W-LDED process,
aiming to lower the overall expenses. These models rely heavily on assumptions rather
than numerical methods [125,193,230–232].
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As a relatively new approach, ML is gaining popularity in W-LDED. This method
optimizes the deposition process by predicting the influence of various processing param-
eters on deposition geometry and quality [173,180]. By adapting accurate databases, ML
enhances process stability and accuracy, resulting in defect-free and efficient deposition.
Empirical models, which rely on experimental data rather than theoretical principles, often
serve as databases for training ML models to identify and learn patterns and relation-
ships within the data. However, the limited availability of training data and its lack of
connection to the physics of the process can make adapting ML with reasonable accuracy
challenging. To date, research exploring this method in W-LDED is limited, potentially due
to the complexity mentioned earlier [233–238]. The available research on the mentioned
modeling methods (i.e., numerical, analytical, and ML approaches) is described in the
following sections.

9.1. Numerical Modeling

Nie et al. established an FEA-based thermal model for W-LDED to model the de-
position process when preheated wire is employed. The model accurately predicted the
temperature profile of the deposition area and melt pool temperature as illustrated in
Figure 36. The model indicated periodic temperature changes during multilayer deposition
and mapped the process stability window. The model was validated against data obtained
from four thermocouples integrated into the build plate [214].
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In a recent study, Ai et al. conducted an analysis of molten metal behavior and layer
formation processes in W-LDED using 316L stainless steel wire. The investigation focused
on the temperature and flow fields within the melt pool. The findings revealed a periodic
transport of molten metal into the pool, forming droplets along the 316L stainless steel wire.
Subsequently, gradual solidification occurred, resulting in layers with rippled surfaces. The
results were validated and demonstrated good agreement with experimental findings [239].

Hu et al. proposed a numerical simulation to analyze the melt pool dynamics at
different regions during the liquid bridge transfer mode. Utilizing the model’s quantitative
characterization, it was observed that the conduction mode is the main form of heat transfer
in the front and trailing part of the melt pool, whereas convection is dominant in the center
of the melt pool. The model accurately predicted the bead and the melt pool geometry and
confirmed that the most favorable deposition quality could be achieved with a uniform
liquid bridge transfer mode, as opposed to a non-uniform or breaking bridge [93].

Wei et al. conducted a simulation in ANSYS to explore the complex multi-phase
dynamics of W-LDED utilizing a hot wire. Surface tension and capillary forces were
considered to analyze temperature distribution across gas–liquid–solid interfaces during
deposition. The simulation accurately represented the geometries of both the melt pool
and the deposited layer, exhibiting good agreement with experimental data, as shown in
Figure 37 [154].
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Zapata et al. applied an FEA model to simulate an annular laser beam implemented
within a coaxial head. The model predicted the resultant temperature field and the melt
pool shape for single and multilayer processes. The model’s accuracy was confirmed
through validation against thermocouples employed during deposition [122].

Lee et al. explored the impact of interlayer cooling time and tool path strategy on part
distortion in Ti-6Al-4V components fabricated by W-LDED. Utilizing an FEA model, they
conducted simulations validated against experimental data, including temperature and
distortion measurements. Their findings indicated that minimizing interlayer cooling time
and employing a bidirectional tool path with 180◦ rotation reduced part distortion and
achieved a symmetric stress distribution [196].

Using an FEA model, Chua et al. investigated the effect of unidirectional and bidirec-
tional scanning strategies on the temperature distribution of multilayer deposition. The
model suggested that in layers deposited using a bidirectional pattern, the temperature
at the middle of the layer is slightly lower than those deposited using a unidirectional
pattern. This is explained by the fact that the bidirectional pattern allows one side of the
layer to cool for a longer duration before the laser beam returns to irradiate the same area
for subsequent layer deposition [240].

Similar to this study, Gao et al. utilized Flow 3D to examine and compare the thermal
conditions associated with bidirectional and wiggle deposition patterns. The simulation
revealed that in the case of wiggle deposition, the laser absorption is more symmetrical com-
pared to the former strategy, resulting in a more dynamic flow within the melt pool [73,118].

Recognizing the significance of the laser focal point size and its position relative to
the deposition track, Ji et al. employed an FEA model to compute the bead and melt
pool geometry. Additionally, the temperature profile during deposition was predicted to
determine the optimal focal distance. The model accurately depicted melt pool temperature
variations with varying focal positions. The predicted temperature was validated against
the experimental results obtained from the IR pyrometer [100].

Elaborating on the effect of the laser beam on the deposition process, Goffin et al.
explored the influence of laser beam shape on the efficiency of the W-LDED process using a
simulation model implemented in the COMSOL Multiphysics model. The results unveiled
the significant impact of beam geometry and spot size on the substrate temperature by
utilizing Gaussian and pedestal beams. The simulations illustrated that larger beam sizes
were more effective in achieving desirable heat distributions compared to smaller sizes.
Furthermore, the pedestal beam was observed to heat the substrate more efficiently than a
Gaussian beam with similar width [87].

Gu et al. employed a CFD model to study the effect of a vacuum atmosphere on bead
formation. The simulation results indicated that reducing pressure decreased the deposition
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rate and led to beads with high aspect ratios and low contact angles. To compensate for
this effect, the model suggested using lower laser power or higher TS [40].

A simulation for the continuous wire feeding process was developed by Guo et al. to
model the heat transfer and geometric morphology of multilayer deposition under various
overlap ratios, determining the optimal overlap ratio as evident in Figure 38. This model
enhanced the geometric shape of the deposited layers and prevented defects in multilayer
deposition [146].
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9.2. Analytical Modeling

Huang et al. used an analytical model to predict the geometrical properties of de-
posited Al alloy based on process parameters such as laser power, TS, and WFS. It is
claimed that the model can predict the geometry by knowing the processing parameters
and vice-versa. Using the established model, the authors found that the highest deposition
rate could be achieved with a lateral wire feeding angle of 45 degrees [47]. The authors
established another analytical model to calculate the required temperature for preheating
the wire based on the wire tip temperature to avoid the occurrence of dripping. The model
revealed that maintaining a stable melting depends on regulating the wire tip temperature
through the WFS and preheating current at specific laser power levels [193].

Zapata et al. developed an analytical model to investigate the effect of processing
parameters on assigning the layer height in a multilayer deposition. It was observed that
with the help of the model, layers without dripping and stubbing could be achieved [110].

Li et al. utilized analytical modeling to predict the geometry of the bead, melt pool,
and its penetration into the substrate. The model demonstrated high accuracy, particularly
when high laser power, high TS, and low WFS were employed [117]. The authors also
developed a model capable of predicting the shape of deposited tracks on inclined surfaces,
which can be a valuable tool for repair applications [129].

9.3. ML Modeling

An ML prediction method was introduced by Mbodj et al. to improve the deposition
quality of single-layer geometry. The authors used a neural network model to study
the impact of processing parameters on bead geometry. The model was validated with
experimental data and indicated an acceptable error, suggesting the potential for high-
quality deposition [180].



J. Manuf. Mater. Process. 2024, 8, 84 38 of 48

Yang et al. employed the random forest ML algorithm on a limited dataset to predict
melt pool geometry based on assigned processing parameters, aiming for defect-free
deposition. The results indicate the random forest model performs reasonably well in
predicting melt pool dimensions, albeit within a constrained region of the stability window
due to the limited availability of experimental data [228].

Liu et al. introduced an ML model for predicting and visualizing bead geometry.
This tool facilitated the authors in filtering out process parameters leading to defective
deposition, while also aiding in understanding the relationships between the resulting
geometry and different process combinations to improve process quality [137,241].

Table 6 presents a summary of the W-LDED literature that utilized modeling and
predictive approaches. The table showcases the modeling approach employed (i.e., nu-
merical, analytical, or ML) and the software used (if applicable). Additionally, the table
provides details on the process inputs and predicted outputs and the materials employed
in the studies.

Table 6. Summary of modeling and predicting methods utilized in W-LDED.

Process Input Predicted Output Modelling Approach Material Ref.

Different deposition strategy Temperature field Numerical
FEA Ti6Al4V [240]

Different ambient pressure Bead geometry Numerical
CFD-ANSYS SS 316 [40]

Different beam shape and
sizes

Bead geometry,
Melt pool temperature

Numerical
COMSOL SS 316 [87]

Increasing deposited layers Melt pool temperature,
Temperature profile

Numerical
FEA H13 [214]

Different parameter set Bead geometry,
Melt pool geometry

Numerical
ANSYS SS 304 [154]

Varying overlap ratio Geometry of the multi-track
deposition

Numerical
Fluent 5A06 aluminum [146]

Different parameter set Melt pool temperature, Melt
pool geometry

Numerical
FEA AA5078 [122]

Different deposition strategy Temperature field Numerical
Flow 3D 316L SS [118]

Different scanning strategies Temperature field Numerical
Flow 3D INC 718 [73]

Different focal position Melt pool temperature Numerical
COMSOL 304 SS [100]

Different parameter set Temperature field Numerical
FE-model Al-mg [182]

Different parameter set Melt pool temperature Python Ti-6Al-4V [48]

Wire tip temperature Wire preheating temperature Analytical ER5A06 [193]

Different parameter set Bead geometry Analytical ER5A06 [47]

Different parameter set Bead geometry,
Melt pool geometry Analytical SS 316 [117]

Different parameter set Bead geometry ML
Neural networking INC 718 [180]

Different parameter set Bead geometry Empirical model INC 718 [233]

Different parameter set Melt pool geometry ML Ti6Al4V [228]

Different parameter set Bead geometry ML Ti6Al4V [137]
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10. Conclusions

In conclusion, the study of W-LDED is critical in AM for providing powder-free
deposition and high deposition rates. The comprehensive review of the state-of-the-art in
W-LDED has outlined critical factors influencing process stability, ranging from energy
input, laser characteristics, wire feeding techniques, bead, and deposition characteristics, to
monitoring, control, and modeling techniques. Therefore, understanding the influence of
these variables is necessary for achieving an efficient and high-quality deposition.

Various monitoring and control systems have been identified as integral components
for ensuring stable and defect-free depositions. These systems enable real-time data anal-
ysis to detect emerging anomalies during the deposition process and apply necessary
adjustments, thereby contributing to the continuous improvement of the process. Addition-
ally, the implementation of prediction models, including numerical, analytical, empirical,
and ML methods, offers promising paths for enhancing the predictive capabilities of the
W-LDED process, leading to process optimization.

Despite recent advancements, significant gaps remain in the literature, particularly in
optimizing laser selection for different materials considering their unique properties. More-
over, limited studies are available addressing the specific geometrical challenges associated
with fabricating complex geometries such as parts with inclined surfaces. Additionally,
there has not been much research on multi-material deposition, highlighting a notable
gap in the literature. Addressing the challenges inherent in the multi-material deposition
process using W-LDED, such as ensuring proper material compatibility and deposition
quality across different materials, represents a critical area for future research efforts.

While modeling techniques have advanced, there remains a gap in comprehensive
models that account for complex phenomena such as material flow dynamics and phase
transformations. Future efforts should focus on developing more accurate and predictive
models to better simulate W-LDED processes and processing parameter optimization. Fur-
thermore, there is a significant gap in integrating ML algorithms to enhance process control.
Future research should explore the development of ML-based approaches for predicting
optimal process parameters and adjusting process variables in real-time to improve deposi-
tion quality and efficiency. Integrating multiple control modules to address interconnected
process disturbances could enhance deposition quality and efficiency, particularly in com-
plex geometries and multi-material deposition scenarios. Therefore, there is a compelling
need for comprehensive studies on multivariable control strategies tailored to the unique
requirements of W-LDED processes.

Addressing these challenges presents an opportunity to uncover new paths for inno-
vation and advancement in the field, thereby enhancing the capabilities and applications of
W-LDED in AM.
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