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Abstract: This study presents a homogenization based on micromechanics approach for a two-phase
copper (Cu)-silver (Ag) composite undergoing finite deformations. In this approach, the high-fidelity
generalized method of cells (HFGMC) is implemented for the prediction of the effective behavior of
two cold-drawn Cu-Ag composites with different drawing strains and to obtain the field (deformation
gradient and stress) distributions in the composite. Both metals (Cu or Ag) are rate-dependent
crystal plasticity material constituents. HFGMC is applied for studying the deformation behavior of
two-phase Cu-Ag composites under uniaxial compression. The micromechanical approach has been
verified by comparison with experimental and finite element simulation results. Results in terms of
deformation behavior and field distributions are given for two different cold-drawn composites.

Keywords: two-phase Cu-Ag polycrystals; micromechanics; high-fidelity generalized method of cells;
crystal plasticity material model; deformation behavior

1. Introduction

In the last few decades, nonlinear micromechanical models of multiphase composite materials
have been the subject of interest for many investigations. The aim of these models is to study the
effect of volume fraction and the interphase effects on generating the nonlinear effective response
of the composite materials. A detailed review of this class of nonlinear micromechanical methods
can be found in [1–3], among several others. In addition, the prediction of the local deformation
process of periodic alternate multiphase materials requires the detailed description of the spacial
description of the soft and hard phases subject to different kinds of loading [4]. Hence, the formation
of constitutive equations that govern the large deformations of composite materials, which consist of
elasto-viscoplastic phases, is necessary for the modeling and analysis of their deformation behavior.
Eutectic Cu-Ag composites form an example of a layered two-phase composite structure that consists
of alternate layers of Cu and Ag lamellae inside the grains.

Semi-analytical homogenization such as a generalized method of cells (GMC) has been developed
by [1]. This method enables the modeling of complex unit-cell morphologies and is able to study the
mechanical response of heterogeneous materials. The generalized method of cells (GMC) is used to
predict the thermoelastic behavior of multiphase composites by including the thermal tangent tensor
in the constitutive law. The effective tangent and thermal tensors are functions of the mechanical and
thermal concentration tensor, respectively. The concentration tensor indicates the relationships between
the local and overall behavior. Aboudi [3] also proposed an expanded form of the micromechanical
approach to predict the hyperelastic response of viscoelastic multiphase composites. This approach
uses viscoelastic, as well as mechanical concentration tensors to form relationships between the local
and effective deformation. Moghaddam et al. [5] apply the GMC for determining the elastoplastic
behavior by employing the single-crystal plasticity constitutive model. Aboudi proposes a method that
can predict the viscoplastic, as well as thermoelastic behavior of multiphase composites. The proposed
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high fidelity generalized method of cells (HFGMC) includes second order displacement expansion in
the multi-cell configuration of the repeating unit-cell (RUC). The HFGMC has been developed in order
to predict the local distribution of stresses and strains in a refined manner that previously could not be
generated by the GMC [6].

Numerical micromechanical models for two-phase repeating unit-cell (RUC) can be achieved
using phenomenological material models at lower length scales, such as finite element, viscoplastic
self-consistent and Taylor models [5,7,8]. Another alternative model directly specified for periodic
composites is the high fidelity generalized method of cells (HFGMC). HFGMC can be considered
as a higher order extension of the generalized method of cells (GMC) [6]. In the HFGMC approach
for two-phase composites, the RUC consists of different numbers of subcells. In this approach,
the higher order displacement expansion is used in the subcells, utilizing both displacement
and stress microvariables to satisfy on an average basis, the equilibrium and continuity (traction
and displacement) equations and periodic conditions across the interface between the cells.
In Aboudi et al. [3], the HFGMC computational approach has been applied to predict the deformation
behavior of various types of multiphase composite materials (elastic, viscoelastic, thermoviscoelastic
and electroelastic). In the current work, the HFGMC was enhanced to include crystal plasticity material
modeling for two-phase copper-silver composites.

This study presents general formulations for the HFGMC modeling framework implemented
with the crystal plasticity material model for two-phase Cu-Ag composites undergoing large
deformations. The behavior of composites with elasto-viscoplastic material constituents undergoing
large deformations is allowed to deviate far away from equilibrium and is modeled by the
HFGMC micromechanical theory. For a given constitutive model, both the micromechanical and
macromechanical governing equations based on the homogenization technique for periodic composites
are developed, wherein the instantaneous mechanical concentration tensors that relate the local
induced deformation in the phase to the current externally-applied deformation gradient are given.
Furthermore, the macroscopic constitutive equations of the two-phase composite in terms of its
instantaneous stiffness tensors are also provided.

The structure of this paper is outlined as follows. Section 2 deals with the experimental
observations for both samples. Section 3 introduces the constitutive equations of a finite
elasto-viscoplastic material model based on the isomorphy concept of the elastic laws [9]. Section 4
describes the computational methodology for HFGMC formulation. Section 5 presents results in terms
of mechanical behavior, and finally, conclusions are given in Section 6.

Notation: We use the symbolic notation given in the continuum mechanics text book of Bertram [9].
Scalars, vectors, second-order and fourth-order tensors are denoted by a, a, A and A, respectively.
The scalar, dyadic and Rayleigh product are given by ·, ⊗ and ∗, respectively, where a · b := aibi,
a⊗ b := aibjei ⊗ ej, A ∗C := CijklAei ⊗Aej ⊗Aek ⊗Ael . : denotes the double contraction between
tensors, i.e., A : B := AijBij. AT , A−1 and Ȧ denote the transpose, the inverse and the material time
derivative of a second-order tensor A. The linear mapping of a second-order tensor A by a fourth-order
tensor C is written as C [A].

2. Experimental Methodology

The two cold-drawn Cu-Ag rods having diameters of 12.42 mm (d1) and 6.73 mm (d2) are
produced by die casting. The volume fraction of each phase in the polycrystals is given as
v fAg = 0.63, v fCu = 0.37. Both samples (d1, d2) exhibit a crystallographic texture with different
strengths, respectively. X-ray analysis is used to determine the bulk texture of two different cold-drawn
Cu-Ag rods. X-ray diffraction (XRD) measurements are performed by using an X-ray tube with
a chromium-anode in point focus mode and a 1D detector with secondary Kβ filtering. The measured
texture from both samples (d1, d2) has been approximated by 100 grains as a compromise between the
precision and computational costs. More details about the initial texture and approximated texture
(100 grains) are given in [10,11]. The compression tests are carried out for both cylindrical samples on
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a universal testing machine. These tests are operated at room temperature for a constant strain rate of
10−4 s−1. The results are reported in terms of true stress (T33) and compressive strain (1− F33).

3. Constitutive Equations

3.1. Elastic Law

In the present investigation, an elasto-viscoplastic single-crystal constitutive model [9] is
considered for the lamellar structure of the Cu and Ag phases. An elasto-viscoplastic material
model is applied on the microscale to investigate the material behavior of the aforementioned Cu-Ag
polycrystals. Following Lee [12], the deformation gradient F is multiplicatively decomposed into an
elastic part Fe and a plastic part Fp:

F = FeFp (1)

where Fe is the elastic part of the deformation gradient describing elastic stretch and rigid rotation
and Fp indicates the plastic contribution from crystallographic slips. The deformation gradient with
respect to undistorted state can be defined by:

F̃ = FF−1
p (2)

From Equation (2), it can be seen that F̃ and F−1
p correspond to the elastic part and the inverse of

the plastic part of the deformation gradient.
For a prescribed macro deformation in terms of Green’s strain tensor ẼG, the second

Piola–Kirchhoff stress tensor T̃2PK is given by an anisotropic St.Venant–Kirchhoff law:

T̃2PK = K̃[ẼG] (3)

with:

ẼG =
1
2
(C̃− I), C̃ = F̃T F̃ (4)

In Equation (4), C̃ denotes Green’s strain tensor with respect to the undistorted placement. K̃
denotes the fourth-order constant stiffness tetrad for a cubic crystal. The tilde indicates that the K̃
is formulated with respect to the undistorted placement. The stiffness tetrad is represented by a six
by six Voigt matrix, and the components refer to the normalized orthonormal basis Bα of symmetric
second-order tensors [13–15], i.e., K̃αβ = Bα : K̃

[
Bβ

]
:

K̃ = K̃αβBα ⊗ Bβ =



K1111 K1122 K1122 0 0 0
K1111 K1122 0 0 0

K1111 0 0 0
2 K1212 0 0

sym. 2 K1212 0
2 K1212


Bα ⊗ Bβ (5)

B1 = e1 ⊗ e1, B2 = e2 ⊗ e2, B3 = e3 ⊗ e3 (6)

B4 =

√
2

2
(e2 ⊗ e3 + e3 ⊗ e2) (7)

B5 =

√
2

2
(e1 ⊗ e3 + e3 ⊗ e1) (8)

B6 =

√
2

2
(e1 ⊗ e2 + e2 ⊗ e1) (9)
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Copper and silver constituents have a face-centered cubic (fcc) crystal structure. The three
independent elastic constants for copper are K1111 = 170 GPa, K1122 = 124 GPa and K1212 = 75 GPa
and for silver K1111 = 123.99 GPa, K1122 = 93.67 GPa and K1212 = 46.12 GPa.

3.2. Flow Rule

In general, fcc materials exhibit crystallographic slip in {111} 〈110〉 slip systems. These 12 primary
slip systems are described by the Schmid tensors S̃α := d̃α ⊗ ñα, which are given by the slip direction
d̃α and the slip plane normal ñα. The resolved shear stress τα in a slip system α can be calculated as:

τα := C̃T̃2PK : S̃α (10)

An evolution of the plastic part Fp of F is given in terms of the shear rate γ̇α and the Schmid
tensors S̃α:

ḞpF−1
p = ∑

α

γ̇αS̃α (11)

The kinetics of dislocation motion have been elaborated by the relationships between the resolved
shear stress and the plastic shear rate γ̇α of the slip system α by using the power law [16]:

γ̇α = γ̇0sgn(τα) | τα

τα
c (γ)

|m (12)

where γ̇0 is a constant reference shear rate, and the exponent m determines the strain sensitivity of
the material. The initial conditions of the evolution Equation (11) are F̃ (t = 0) = Q (t = 0) ∈ SO(3).
The orientation of the crystal is given by a proper orthogonal tensor Q (t) := gi (t)⊗ ei. Here, {ei} is
the orthonormal vector base of a fixed Cartesian coordinate system, and {gi} is the orthonormal lattice
vector base. The initial resolved shear stress at time t = 0 is given as τc (0) = τc0 .

3.3. Hardening Rule

A simple and very popular ansatz for the two types of hardening (self and latent) is the linear
hardening rule [9,17].

τ̇c
α = ∑

β

hαβγ̇β, hαβ = qαβθ (γ) (13)

where θ(γ) = dτα
c

dγ and qαβ are the matrix components, which account for self- and latent hardening of
the crystal. For the fcc cubic crystal having 12 {111} 〈110〉 primary slip systems, we consider qαβ equal
to 1.0 for the coplanar slip systems and equal to 0.9 for non-coplanar systems. The critical resolved
shear stress of all slip systems as a function of shear γ is described by a Voce-type hardening law: [18]

τα
c = τc0 + (τs + θ∞γ)(1− exp(−θ0γ/τs)) (14)

with:

γ =
∫

∑
α

|γ̇α|dt (15)

γ is given as an integral over the sum of shear rates of all slip systems. The Voce-type hardening rule
contains four hardening parameters, namely the initial resolved shear stress τc0 , a saturation stress τs,
an initial hardening modulus θ0 and a remaining hardening modulus θ∞. The material model has been
implemented in the subroutine, in conjunction with HFGMC for homogenization. A Newton–Raphson
iteration has been performed using a backward Euler scheme [19].
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Since the micromechanical analysis uses the actual stresses, let us apply the following relation
that provides the first Piola–Kirchhoff stress tensor T1PK in terms of the second Piola–Kirchhoff stress
tensor T2PK:

T1PK = FT2PK (16)

Consequently, the following incremental constitutive law of the elasto-viscoplastic material
is obtained:

∆T1PK = R : ∆F (17)

where R is the fourth-order tangent tensor of the material given by:

Rmnop = KmrpsFnrFos + T2PK
mp δno (18)

The incremental constitutive Equation (17) of the elasto-viscoplastic material will be used in the
micromechanical analysis described in the following to determine the macroscopic finite deformation
behavior of two-phase composites composed of Cu/Ag constituents.

4. Computational Methodology

The HFGMC micromechanical modeling theoretical framework with periodic microstructure is
shown in Figure 1. The composite with a periodic microstructure is shown in Figure 1a with respect
to the initial global coordinates (x1, x2, x3). The repeating unit-cell (RUC) geometry of a two-phase
periodic composite is divided into an orthogonal number of subcells, defined with respect to initial
local coordinates (y1, y2, y3) (see Figure 1b). The RUC of the two-phase composite is separated into
Nα, Nβ and Nγ subcells in the y1, y2 and y3 directions, respectively. Each subcell contains a different
homogeneous elasto-viscoplastic material. The dimensions of subcell (αβγ) along the 1, 2 and 3 axes
are denoted by dα, hβ and lγ, respectively. In each subcell, a local coordinate system (yα

1 , yβ
2 , yγ

3 ) is
introduced, and the origin is located at the center of the subcell (see Figure 1c).

In the framework of HFGMC micromechanical formulation, the increment of the displacement
vector is expanded to second-order as follows:

∆w(αβγ) = ∆w̄ + ∆w(αβγ)
(000) + ȳ(α)1 ∆w(αβγ)

(100) + ȳ(β)
2 ∆w(αβγ)

(010) + ȳ(γ)3 ∆w(αβγ)
(001)

+
1
2
(3ȳ(α)21 − d2

α

4
)∆w(αβγ)

(200)

+
1
2
(3ȳ(β)2

2 −
h2

β

4
)∆w(αβγ)

(020)

+
1
2
(3ȳ(γ)23 −

l2
γ

4
)∆w(αβγ)

(002)

(19)

where ∆w̄ = [∆F̄ · x] consists of the externally-applied mechanical loading, and the unknown
coefficients ∆w(αβγ)

(lmn) are determined, as shown in the following, by implementing the constitutive
relations, equilibrium equations together with the interfacial and periodic conditions in the average
(integral) sense.
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lγ
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Cu/Ag Cu/Ag

Cu/Ag

Cu/Ag

Cu/AgCu/Ag

Cu/Ag Cu/Ag

Cu/Ag Cu/AgCu/Ag
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Cu/Ag

Cu/Ag
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H
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α
=1

,…
,N

α

γ=1,…,Nγ

Figure 1. Schematic illustration of a two-phase composite. (a) Cu-Ag composite containing multiple
repeating unit-cells (RUCs), defined with respect to global coordinates (x1, x2, x3); (b) the repeating
unit-cell (RUC), defined in the local coordinates (y1, y2, y3); it is separated into Nα, Nβ, Nγ subcells,
in the y1, y2 and y3 directions, respectively; and (c) a characteristic subcell (αβγ), defined within a local
coordinate system (yα

1 , yβ
2 , yγ

3 ) whose origin is located at the center.

The increments of the components of the deformation gradient tensor are:

∆F(αβγ)
11 = ∆F̄11 + ∆w(αβγ)

1(100) + 3ȳ(α)1 ∆w(αβγ)
1(200) (20)

∆F(αβγ)
12 = ∆F̄12 + ∆w(αβγ)

1(010) + 3ȳ(β)
2 ∆w(αβγ)

1(020) (21)

∆F(αβγ)
13 = ∆F̄13 + ∆w(αβγ)

1(001) + 3ȳ(γ)3 ∆w(αβγ)
1(002) (22)

∆F(αβγ)
21 = ∆F̄21 + ∆w(αβγ)

2(100) + 3ȳ(α)1 ∆w(αβγ)
2(200) (23)

∆F(αβγ)
22 = ∆F̄22 + ∆w(αβγ)

2(010) + 3ȳ(β)
2 ∆w(αβγ)

2(020) (24)

∆F(αβγ)
23 = ∆F̄23 + ∆w(αβγ)

2(001) + 3ȳ(γ)3 ∆w(αβγ)
2(002) (25)

∆F(αβγ)
31 = ∆F̄31 + ∆w(αβγ)

3(100) + 3ȳ(α)1 ∆w(αβγ)
3(200) (26)

∆F(αβγ)
32 = ∆F̄32 + ∆w(αβγ)

3(010) + 3ȳ(β)
2 ∆w(αβγ)

3(020) (27)

∆F(αβγ)
33 = ∆F̄33 + ∆w(αβγ)

3(001) + 3ȳ(γ)3 ∆w(αβγ)
3(002) (28)

After lengthy manipulations [3] in which the equilibrium equations in the subcell, interfacial
conditions between the subcells and periodicity conditions are imposed in the average sense,
the following equation is obtained:

∆F(αβγ) = A(αβγ) : ∆F (29)
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whereA(αβγ) is a fourth-order concentration tensor, which relates the local increment of the deformation
gradient in the subcell ∆F(αβγ) to the externally-applied one ∆F. Consequently, once the increment of
the deformation gradient in the subcell has been established, the increment of the first Piola–Kirchhoff

stress (∆T1PK(αβγ)) in the subcell can be readily determined. Thus, Equation (17) can be rewritten
as follows:

∆T1PK(αβγ) = R(αβγ) : ∆F(αβγ) (30)

where R(αβγ) is the fourth-order tensor of the material within subcell (αβγ).
In the numerical implementation of HFGMC, the analytical derivation of the HFGMC model [20]

is implemented and coupled with the crystal plasticity material model for two-phase Cu-Ag composites.
Each subcell contains either Cu or Ag material constituents. Each subcell in the RUC is labeled by the
indices (αβγ) with α = 1, ..., 10, β = 1, ..., 10 and γ = 1, ..., 10. The material parameters for both samples
(d1, d2) are listed in Table 1 [11]. The repeating unit-cell (RUC) is subject to uniaxial compression for
two different textured Cu-Ag samples (d1, d2) to study the deformation behavior.

Table 1. Material parameters.

Material γ̇0 (s−1) m(−) τc0 (MPa) τs (MPa) θ0 (MPa) θ∞ (MPa)

sample: d1

Cu 0.0001 80 5.5 167.6 7964 9.2
Ag 0.0001 80 5 200.9 4501 20

sample: d2

Cu 0.0001 80 5.5 241.4 14,000 105
Ag 0.0001 80 5 227.6 12,746 50

5. Numerical Results

In order to illustrate an application of these constitutive equations, we consider two different
textured samples (d1, d2) whose material properties are given in Table 1. Figure 2A,B illustrates
the uniaxial mechanical response calibrated from the proposed elasto-viscoplastic HFGMC model
compared to the experimental and finite element simulation results under isothermal conditions.

In Figure 2A, the Cauchy stress T33 variations with 1 − F33 are caused by the application of
uniaxial compression in the Z direction of the large Cu-Ag sample d1. In addition comparisons
between the true stresses based on the experimental investigations and finite element simulations [11]
of the two-phase Cu-Ag sample d1 are shown. The slight difference in the yield stress predicted
by the HFGMC method may be attributed to the fact that in the HFGMC model, the constitutive
equations and boundary conditions are implemented in a point-wise manner and in the average sense,
respectively. The correspondence of the HFGMC plot to the experimental data and finite element
simulated curve is reasonable.
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Figure 2. The macroscopic response of Cu-Ag sample d1 (A) and sample d2 (B) subjected to uniaxial
compression loading. Comparison between the high-fidelity generalized method of cells (HFGMC),
the experimental results and finite element simulation results [11].

In Figure 2B, the composite mechanical response to uniaxial compression loading of the two-phase
Cu-Ag sample d2 is shown by the macroscopic mechanical response (T33 vs. 1 − F33). Besides,
the comparisons between the experimental and finite simulation results [11] are shown. The HFGMC
deformation behavior is in reasonable agreement with the experimental and finite element-simulated
curve. However, there is a slight difference in the yield stress and strain hardening in the HFGMC
approach. The difference may be due to the heterogeneity in the microstructure and the identified
material parameters for sample d2. In addition, the governing equations and boundary conditions
are enforced in a point-wise manner and in the average sense, respectively. As seen in Figure 2A,B,
the mechanical response are identical in the elastic and elastoplastic region. It can be seen that there is
a smooth transition from the elastic to elastoplastic region. The mechanical response however coincides
with the corresponding experimental and finite element simulated results. Here, the nonlinearity of
the elasto-viscoplastic material is well observed.

The distribution of the constituents (Cu/Ag), deformation gradient F33 and the first
Piola–Kirchhoff stress T1PK

33 for sample d1 is examined in Figure 3. Figure 3a shows the distribution of
the material in the plane y2-y3 at y1 = D/9, i.e., (Nα = 2) on the examined cross-section. Here, Cu and
Ag constituents with different color contours are shown in the figure (see Figure 3a). Figure 3b,c shows
the axial deformation gradient F33 and the first Piola–Kirchhoff stress T1PK

33 , respectively. The results
show that all subcells are under compression F33 < 1, and the stresses are distributed accordingly for
the hard (Cu) and soft (Ag) phase, respectively. The distribution of the F33 and T1PK

33 for the sample d2

in the plane y2-y3 at y1 = D/9, i.e., (Nα = 2), is demonstrated in Figure 4. It can be clearly observed
that subcells are under compression F33 < 1 (see Figure 4a). The stress distribution shown in Figure 4b
presents that the HFGMC homogenization under a crystal plasticity material modeling predicts the
expected distribution at the macroscale.
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Cu

Ag

(a)

(b) (c)

Figure 3. (a) Material distribution in the plane y2-y3 at y1 = D/9 i.e., (Nα = 2) on the examined
cross-section; (b) the induced axial deformation gradient (F33) distribution in the plane y2-y3 at
y1 = D/9, i.e., (Nα = 2) within the RUC of the large sample d1 subjected to uniaxial compression
loading; (c) the induced first Piola–Kirchhoff stress (T1PK

33 ) distribution in the plane y2-y3 at y1 = D/9,
i.e., (Nα = 2) within the RUC of the large sample d1.

Cu

Ag

(a) (b)

Figure 4. (a) The induced axial deformation gradient (F33) distribution in the plane y2-y3 at
y1 = D/9, i.e., (Nα = 2) within the RUC of the small sample d2 subjected to uniaxial compression
loading; (b) the induced first Piola–Kirchhoff stress (T1PK

33 ) distribution in the plane y2-y3 at
y1 = D/9, i.e., (Nα = 2) within the RUC of the small sample d2.

6. Conclusions

A new elasto-viscoplastic micromechanical formulation for the HFGMC is proposed using
elasto-viscoplastic material for Cu and Ag constituents. A HFGMC micromechanical model is
employed for the prediction of the mechanical response of two-phase Cu-Ag composites for two
different samples (d1, d2) in which each constituent (Cu or Ag) is considered as a rate-dependent
elasto-viscoplastic material. The reliability of the micromechanical model prediction is investigated
by comparison with the experimental results and finite element simulations, which is valid under
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a uniaxial compression loading. The stress-strain results for both samples under uniaxial compression
show that the effect of plastic deformation behavior is significant.

This HFGMC homogenization model has the advantage of modeling a two-phase periodic
composite by discretizing the RUC into quite a few subcells. For example, in the present investigation,
10 × 10 × 10 subcells are sufficient to provide good accuracy. Besides, the running time of the
program is quite short (several minutes). In addition, due to the rectangular shape of the subcells,
the discretization of the repeating unit-cell is quite simple.

The proposed HFGMC model is shown to be effective for two different Cu-Ag composites
calibrated using available experimental data and finite element simulation results. The results of the
deformation behavior of the two-phase composites from the proposed HFGMC show the applicability
of the proposed model to the wide range of crystalline materials, as well as the multiphase composites.
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