
Article

The Emergent Behaviour of Thermal Networks and
Its Impact on the Thermal Conductivity of
Heterogeneous Materials and Systems

Chris R. Bowen 1,* , Kevin Robinson 1, Jianhui Tian 2, Meijie Zhang 3,*, Vincent A. Coveney 1,
Qiulin Xia 3 and Gary Lock 1

1 Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK; enskr@bath.ac.uk (K.R.);
vincentcoveney@outlook.com (V.A.C.); ensgdl@bath.ac.uk (G.L.)

2 CAE Analysis Room for Engineering Applications, School of Mechatronic Engineering, Xi’an Technological
University, Xi’an 710021, China; carl8@163.com

3 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology,
Wuhan 430081, China; qlin1994@163.com

* Correspondence: c.r.bowen@bath.ac.uk (C.R.B); zhangmeijie@wust.edu.cn (M.Z.)

Received: 7 March 2020; Accepted: 20 March 2020; Published: 23 March 2020
����������
�������

Abstract: The properties of thermal networks are examined to understand the effective thermal
conductivity of heterogeneous two-phase composite materials and systems. At conditions of high
contrast in thermal conductivity of the individual phases (k1 and k2), where k1 << k2 or k1 >> k2,
the effective thermal conductivity of individual networks of the same composition was seen to be
highly sensitive to the distribution of the phases and the presence of percolation paths across the
network. However, when the contrast in thermal conductivities of the two phases was modest (k1/k2 ~
10−2 to 102), the thermal networks were observed to exhibit an emergent response with a low variability
in the effective thermal conductivity of mixtures of the same composition. A logarithmic mixing
rule is presented to predict the network response in the low variability region. Excellent agreement
between the model, mixing rule and experimental data is observed for a range two-phase porous
and granular media. The modelling approach provides new insights into the design of multi-phase
composites for thermal management applications and the interpretation or prediction of their heat
transfer properties.
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1. Introduction

Interest in the thermal characteristics of multi-phase and composite materials has continued
to grow, as the need for such materials across a broad spectrum of areas has increased; sectors of
interest include aerospace, packaging, electronics, construction and processing [1–9]. Composites
with high levels of thermal conductivity are attractive for applications related to heat dissipation
and heat sinks [10], such as high-power electronics and brake friction linings, and low conductivity
composites are necessary for insulation and thermal protection. Composite materials are also being
extensively considered for spacecraft, where extremes of temperature are commonplace, requiring new
engineering solutions.

In addition to thermal management, there is a need to understand the thermal conductivity of
multi-phase media for applications which include packed bed reactors, porous media filled with a
range of fluids [11–13] and a variety of rock-soil mixtures for geothermal applications [14]. An accurate
understanding of the thermal conductivity of such multi-phase systems is vital in order to predict how
they will behave when subjected to thermal loading.
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For the majority of homogeneous materials, thermal data can readily be found in the literature or
measured using simple apparatus. However, for heterogeneous composites and two-phase systems
the situation is more complex, since the thermal properties are strongly dependant on a number of
factors; these include the volume ratio of the constituents, their individual thermal properties and
the distribution of constituents within the material. This represents a challenge since, in many cases,
a multi-phase system cannot be characterised by a single value of thermal conductivity and random
mixtures of the same volume fraction can exhibit different conductivities, due to small differences in
their spatial distribution. However, the composite approach does provide opportunities to engineer
the heterogeneity of a system and tailor the thermal conductivity for specific applications.

On the macro scale, it can be assumed that the distribution of constituents is uniform, and the
effective conductivity of the composite can be defined as the bulk average of the constituent properties.
However, for small scale analyses, or where the constituent components are large with respect to
the whole component, the effective conductivity can become sensitive to the spatial distribution of
the constituents. For random mixtures, it is possible that localised areas of high or low conductivity
component will occur and this can lead to the material having highly anisotropic thermal characteristics.
Such composite materials with a directional structure may also have different thermal conductivities
in different directions; examples include metals subjected to high levels of cold-work and fibrous
materials, which can have a higher thermal conductivity along the fibre direction. The extent of this
behaviour is dependent on a number of factors, including the volume fraction of each component,
the ratio of the thermal conductivities of the components, and the relative sizes of the individual
constituent particles. Clearly there is a need to develop new approaches to design composites and
multi-phase systems with predictable and consistent thermal properties.

There have been extensive efforts to develop models that are able to predict the thermal conductivity
of such composites and multi-phase systems. Theoretical modelling has explored the analogue between
thermal and electrical fields that satisfy the Laplace equation under steady state conditions, and circuit
network models based on series and parallel elements, as described by Deissler and Boegli [15].
Two recent excellent reviews of the range of modelling approaches are given by Kosbe and Patil [2]
and Xu et al. [10] The latter of these also includes a lumped parameter model by Hsu et al. [16] on the
thermal conductivity of fluid saturated porous media and the development of a series and parallel
network model developed by Agari and Uno [17]. In addition to thermal conductivity, attempts
to model properties of random mixtures including frequency dependent electrical permittivity and
conductivity [18,19], dielectric mixtures [20], mechanical systems [21] and magnetic permeability have
been made using methods that date back to Maxwell [22] and Lichtenecker [23,24]. Whilst some of
the theoretical framework is unclear or purely empirical in nature, such models are able to provide a
useful approximation to measured data using relatively simple relationships.

The methodology used in this paper is to analyse thermal networks and examine the characteristic
features that emerge from network behaviour. The validity of this hypothesis is evaluated by
comparison with general behaviour and experimental data. Specifically, the thermal conductivity of a
solid composite material with two components that are randomly distributed is explored. In order to
determine the effective thermal conductivity of such a system, a two-dimensional thermal network
model is constructed and analysed using thermal finite element analysis. A difference in the analysis
is that networks of two materials of thermal conductivity k1 and k2 at different volume fractions of
each constituent are examined, while varying the contrast in thermal conductivity (k = k1 / k2) between
the two materials. The impact of such contrast on the effective conductivity of two-phase mixtures is
examined as heat begins to preferentially flow through the phase of higher thermal conductivity, as the
contrast is changed from the conditions of (i) k1 << k2, where heat prefers to flow through k2, (ii) k1 ~
k2, where heat flows through both phases, and (iii) k1 >> k2, where heat prefers to flow through k1.
Networks of different volume fractions and therefore different states of percolation and inter-connection
between the two phases will be examined. Comparisons will be made with experimental data form a
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range of granular and porous media to demonstrate the potential of the approach to materials design
and interpretation of the thermal properties of multi-phase materials.

2. Methodology: Construction of Thermal Networks

Figure 1 shows an example of a typical thermal network model used in this work, which was
produced by the finite element method (ANSYS, version 8.0, Ansys Inc., Canonsburg, PA, USA).
Networks were constructed based on a 30 by 30 array of two different materials of thermal conductivity
k1 (black phase) and k2 (grey phase), where α1 is the volume fraction of k1 and α2 is the volume fraction
of k2, and α1 + α2 = 1. The size of the thermal network is similar to that previously used to study
electrical [19] and mechanical [21] networks. A constant temperature of T = 0 ◦C was applied to the
upper region of the network and a constant heat flux was applied to the base of the network, which was
constrained to the same temperature; see Figure 1. Heat flow across the corners of particles was avoided
by a small region of zero thermal conductivity at the corners of each particle, as can be seen in Figure 1.
By considering thermal conduction, with no convection or radiation effects, the temperature difference
across the network at equilibrium was determined to estimate the effective thermal conductivity of the
network (keff).
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Figure 1. An image of a typical 30 × 30 thermal network, where α1 = 0.5. A heat flux was applied to
the base, all of which are to the same temperature. The upper section of the network was held at 0
◦C. Phase k1 (black) has a variable thermal conductivity from 10−4 to 104 W·m−1

·K−1 and k2 (grey) is a
constant conductivity of 1 W·m−1

·K−1.

In the example shown in Figure 1 the volume fraction is α1 = 0.5. Networks with a range of
compositions were examined to explore the influence of the presence of percolation paths of k1 or
k2 across the network on thermal response. The term percolation is used in this paper to describe
the condition where there is a random pathway of one type of material (black or grey in Figure 1)
across the network. For α1 = 0.5, there was an equal probability for percolation of either k1 or k2

across the network, while for a fraction of α1 = 0.7, it was more probable that k1 was percolated across
the network. Likewise, for a network of α1 = 0.3, it was more probable that k2 percolated. For each
volume fraction examined (α1 = 0.3, 0.5 and 0.7), twelve different random networks were examined to
explore the variation in effective thermal conductivity as a result of the different random arrangements
of phases k1 and k2. In order to provide a large range of contrasting k1 and k2 magnitudes for the
thermal networks and explore mixtures containing phases of different thermal conductivity, the thermal
contrast (k = k1/k2) between the two phases was varied for each network. This spanned the conditions
of: (i) k = 10−4, where heat is likely to flow through the k2 phase, (ii) k ~ 1, where heat is likely to flow
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through both phases, and (iii) k = 104, where heat is likely to flow through the k1 phase. This was
achieved by setting k2 to a constant value of 1 W·m−1

·K−1 and varying k1 from 10−4 to 104 W·m−1
·K−1.

3. Results and Discussion

Thermal networks with randomly distributed elements were modelled with a range of k1 and k2

volume fractions (α1 = 0.3, 0.5 and 0.7) and twelve individual random networks were analysed at each
volume fraction, to examine the variability of the network thermal conductivity as a consequence of
the different random distributions of the k1 and k2 phases within each network.

3.1. Thermal Networks with α1 = 0.5

The thermal network output for twelve realisations of the random network with a 50:50 ratio of
k1:k2 (namely α1 = 0.5) are shown in Figure 2. At conditions of high contrast in thermal conductivity
of the individual phases (left- or right-hand of Figure 2), the thermal conductivity of each network
is sensitive to the distribution of the phases across the network, as it prefers to flow through k1 or
k2; see Figure 3b,f. However, the thermal networks have an emergent region in the central region of
Figure 2, where there is a low variability in the thermal conductivity of individual random networks.
In the central region, the contrast (k = k1/k2) between the two phases values is relatively low (k1/k2 ~
10−2 to 102) and the heat flux can flow through both phases, as seen in Figure 3c–e. As a result, there is
a low dependency of effective thermal conductivity on the arrangement of the network.

In the region of low network variance, which we define as the emergent region, a logarithmic
mixing rule can be used to describe the effective thermal conductivity (keff) of the network,

keff = kα1
1 k1−α1

2 (1)

Dividing Equation (1) by k2 gives rise to,

keff

k2
=

[
k1

k2

]α1

(2)

From Equation (2), the gradient of log (keff/k2) versus log (k1/k2), as shown Figure 2, equals the
fraction of material with thermal conductivity k1 (namely α1). Figure 2 shows that there is good
agreement between the slope of the emergent region in the centre of Figure 2 and the volume fraction
of k1. Similar observations have been made on resistor-capacitor [17,18], capacitor-capacitor [20] and
mechanical networks [21], and the log[k1/k2] extent of the emergent region has been shown to increase
with network size [25,26].

3.2. Origin of the Power-Law

The origin of such a power law has been discussed for dielectric [19,27,28], mechanical [21] and
thermal mixtures [17]. For a random array of particles, the random nature of the inter-connections
ensures that locally, within the network, it is equally possible to find components that are either
connected in series or in parallel. Each case is initially considered, where for a parallel connection,

keff = α1k1 + (1− α1)k2 (3)

At extremes of contrast for a parallel condition, when k1 << k2 and k1/k2 is small then keff ∝ k2,
leading to a flattening of the blue line in Figure 2b. When k1 >> k2 and k1/k2 is large, then keff ∝ k1,
leading to a line of gradient of one in Figure 2b. For n parallel components with fraction αn and thermal
conductivity kn, this can be generalised to,

keff =
∑
αn(kn)

1, where
∑

αn = 1 (4)
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For the case of series connection,

k−1
eff = α1k−1

1 + (1− α1)k−1
2 (5)

At extremes of contrast for the series case, when k1 << k2 and k1/k2 is small then keff ∝ k1, leading to
the red line with a gradient of one in Figure 2b. When k1 >> k2 and k1/k2 is large, then keff ∝ k2,
leading to a flattening of the red line in Figure 2b. For n series components this can be generalised to,

(keff)
−1 =

∑
αn(kn)

−1 (6)

Figure 2b shows that the randomly organised thermal networks exhibit an effective thermal
conductivity that is located between the parallel and series bounds; namely between the blue and red
lines in Figure 2b, respectively. A generalised case between the upper bound (parallel) and lower
bound (series) can therefore be considered as,

(keff)
v =

∑
αn(kn)

v (−1 ≤ v ≤ 1) (7)
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A random mixture lies between the two cases of the series and parallel bounds, therefore if v→ 0
the approximation of (x)n

→ 1 + n ln x is valid and Equation (7) becomes,

ln keff =
∑
αn ln kn (8)

Equation (8) results in the logarithmic mixing law of Equation (1), which can be used to describe
the network response when the contrast in thermal conductivity between the two phases is not too
large; this corresponds to the condition k1/k2 ~ 10−2 to 102 in Figure 2.

When there is a high contrast in thermal conductivity (high or low k1/k2) in the network,
the variability between the individual networks of the same composition increases; see the left- or
right-hand side of Figure 2. At these high contrast conditions, the inter-connectivity of the two phases
is important due to presence, or lack of, percolation paths of inter-connected k1 or k2 region. As an
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example, when k1 >> k2 and k1/k2 is high, the heat will preferentially flow through k1. This is clearly
evident in Figure 3b,f, where the contrast k = 10−3 (heat flows through the grey k2 regions) and k = 103

(heat flows through the black k2 regions), respectively.

3.3. Thermal Networks with α1 = 0.7

The thermal network response for a 70:30 ratio of k1 and k2 (namely α1 = 0.7) is shown in Figure 4.
As can be seen in the inset image of Figure 4, the k1 regions (black) are present in greater amounts,
and are more likely to percolate across the network, while k2 (grey) is in the minority and is therefore
less likely to percolate across the network. For this type of network, since the k1 (black) regions are
highly interconnected, when k1→ 0 and k1 << k2 (left-hand side of Figure 4), the thermal conductivity
approaches zero. When k1 >> k2 and k1 → ∞ the thermal conductivity of the network approaches
infinity, corresponding to right-hand side of Figure 4. In the central emergent region, there is again
limited variability between the 12 individual networks of the same composition. This also a good
correlation between the slope of the network response with the fraction of k1, with a predicted gradient
of 0.7 from Equation (1).
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3.4. Thermal Networks with α1 = 0.3

The response of a network with a 30:70 ratio of k1 and k2, namely α1 = 0.3, is shown in Figure 5.
For a 30:70 ratio of k1:k2 regions (namely α1 = 0.3), there is a limited number of k1 (black) components
and they are therefore unlikely to percolate across the network, while there is a majority of k2 (grey)
regions, which are therefore likely to percolate across through the network; see inset of Figure 5 for an
example of such a network. In this case, when k1 << k2 the k1 regions act to limit heat flow and the
network value approaches a constant value (left-hand side Figure 5), which is dependent on the extent
of the percolated region of k2. The variability observed between individual thermal networks of the
same composition is dependent on the level of tortuosity of the k2 percolation paths for each network.
When k1 >> k2, the k1 regions have high thermal conductivity and the network approaches another
constant, but larger, value (right-hand side in Figure 5), which is a mixture of k1 and k2 phases; again,
the variability depends on the fraction of k1 and k2 that contribute to the thermally conductive path at
this condition. Clearly, in the central emergent region, the response is less network dependent, as heat
is able to flow through both k1 and k2 regions in a similar manner to Figure 3c–e. There is also good
correlation between the slope of Figure 5 and the k1 fraction of α1 = 0.3, as predicted by the logarithmic
mixing rule of Equation (1).
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Figure 6 presents a summary of the typical thermal response of thermal networks for a complete
range of compositions, namely α1 = 0.1–0.9. At the extremes of thermal conductivity contrast where
k1/k2 < 10−2 or k1/k2 >102, the gradient becomes zero or one, as the heat transfer is dominated by a
series or parallel connection of k1 or k2 regions. In the central emergent region, the gradient can be
seen to gradually increase as the fraction of k1 increases from 0.1 to 0.9, as is predicted by Equation (1).
This form of overall response in Figure 6 is also comparable, qualitatively, with data presented by
Ackermann et al. [13] and Hsu et al. [16], although this work has demonstrated that when the contrast in
thermal conductivities of the two phases is modest, the thermal networks exhibit an emergent response
with a low variability in the effective thermal conductivity of mixtures of the same composition.
However, at conditions of high contrast individual networks of the same composition become sensitive
to the spatial distribution of the constituents and the presence of series or parallel connected percolation
paths across the network, with a gradient of zero or one in Figure 6.
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4. Application of Thermal Networks

4.1. Comparison with Experimental Data

While good agreement between the logarithmic mixing rule and the thermal networks is observed,
it is of interest to compare the mixing rule with experimental data. This would need a mixture of two
phases on known volume fraction (α1 and α2), where one phase can be changed in value and spans
the conditions of low to large contrast, k = k1/k2. Such materials and multi-phase systems have been
explored, such as packed powder beds, granular media and porous materials filled with different
saturants [11,12,29–34].

Figure 7a presents data summarised by Kaviany [32], based on the work of Nozad et al. [11,12],
for beds of packed particles (with thermal conductivity, ksolid) that are filled with fluids (kfluid) with a
fraction of 0.38. Good correlation is observed with the power law mixing rule, Equation (1), for low
thermal contrast (ksolid/kfluid . 101.5), but the agreement is lost at higher levels of contrast, as is
observed in the thermal network models. Figure 7b present data presented by Woodside et al. [29]
and summarised by Feng et al. [30], which include porous rocks filled with different media; in this
case good agreement with the power law is observed for conditions up to ksolid/kfluid . 103. The good
agreement with experimental data indicates that the mixing rule can be used for prediction of the
effective conductivity of multi-phase mixtures at moderate levels of thermal conductivity contrast.

4.2. Thermal Conduction in Porous Materials

Another example of thermal networks which experience a range of thermal conductivity
contrast values between their individual phases is porous refractories and ceramics at elevated
temperatures. These materials are of interest as high temperature insulation materials for space,
aerospace, power generation and high temperature processing applications [35–37]. It is assumed that
the material contains pores at a porosity fraction, p, and represents a two-phase system, consisting
of a refractory ceramic, which can be assumed to have a relatively temperature insensitive thermal
conductivity (kceramic) and pores, of which the thermal conductivity (kpore) is sensitive to temperature,
due to radiation heat transfer across pore surfaces. At low temperatures, the thermal conductivity of
the pore is small, and the effective conductivity is dominated by the ceramic (kceramic >> kpore). At a
sufficiently high temperature, radiation across pores increases so that the condition (kceramic ~ kpore) is
met and the effective conductivity of the porous material can be described by the logarithmic mixing
rule, namely

keff = kp
pore k1−p

ceramic (9)

The effective thermal conductivity of a pore due to thermal radiation has a strong temperature
dependence and can be estimated from:

kpore = 4εσγdpT3 (10)

where ε is the emissivity, σ is the Stefan–Boltzmann constant, γ is a geometric factor (0 ≤ γ ≤ 1) that
depends on pore shape, dp is the maximum width of the pore with respect to the thermal gradient and
T is the absolute temperature. Substitution of Equation (10) into Equation (9) gives rise to,

keff =
(
4εσγdp

)p
k1−p

ceramic

(
T3

)p
(11)

This leads to a power-law temperature dependency of the effective thermal conductivity,

keff

k1−p
ceramic

∝

(
T3

)p
(12)
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If the thermal conductivity of the ceramic is relatively insensitive to temperature in the temperature
range of interest then,

keff ∝

(
T3

)p
(13)
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Therefore, in the emergent region where kceramic ~ kpore, the thermal conductivity of the porous
materials should be proportional to T3p and a graph of log(keff) against log(T3) should have a gradient
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that is equal to the porosity fraction of the material at high temperature. Figure 7c presents experimental
high temperature thermal conductivity measurements on refractory ceramics [38] and aerogels/fibrous
ceramic composites [39] at temperatures up to 1600 K. Relatively good correlation between the slope
and the fraction of porosity based on Equation (13) can be observed. Potential errors can be the
assumption of not taking into account the change in kceramic in the temperature range (which can be
reduced using Equation (12), if the data is known) and other contributions to effective conductivity,
such as convection within pores or changes in the conductivity of the gas within pores with temperature.
In this case, the application of thermal networks provides a new method to interpret and predict the
high temperature conductivity of porous ceramics and refractories.

5. Conclusions

This paper has examined the properties of thermal networks to understand the effective thermal
conductivity of two-phase composite materials and systems. At conditions of high contrast in thermal
conductivity of the two phases, namely when k1 << k2 or k1 >> k2, the effective thermal conductivity
of thermal networks at the same composition exhibited greater variability and were sensitive to the
connectivity of the phases and presence of percolation paths across the network. However, when the
contrast in thermal conductivities of the two phases are more modest (k1/k2 ~ 10−2 to 102) the thermal
networks exhibit an emergent region where there is a low variability in the effective thermal conductivity
of random mixtures of the same composition. It has been shown that for the two-phase thermally
conductive composites, a logarithmic mixing rule can be used to predict the effective conductivity in the
emergent region, thereby providing a rapid and simple approach to predicting the thermal properties.
This region is also of interest in the design of new composites with predictable and isotropic properties,
since in this region both phases are contributing to the effective conductivity, thereby inherently leading
to reduced variability. The work provides new limits for the use of such mixing rules for multi-phase
systems, since at conditions of high contrast in thermal conductivity, the heat flow is strongly governed
by the percolation paths across the network and no longer follows the logarithmic mixing rule and is
dominated by series or parallel connected percolation paths.

Good agreement with experimental data was observed for a range of multi-phase media such as
packed beds and porous media filled with a range of fluids. The potential of the approach to provide
new methods to interpret the temperature dependent behaviour of high temperature ceramics was
demonstrated. This new approach can inform future directions on multi-phase systems; these can
include the extension of the concept to three-dimensional systems, where the percolation paths
can be three-dimensional in nature, an extension to thermal mixtures with more than two phases,
and the introduction of interfacial resistances or thermal stresses. The modelling approach therefore
provides new insights for the design of heterogeneous multi-phase composites for thermal management
applications and the interpretation and prediction of their thermal response.
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