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Abstract: In this work, a supervised machine learning (ML) model was developed to detect flow
disturbances caused by the presence of a dissimilar material region in liquid moulding manufacturing
of composites. The machine learning model was designed to predict the position, size and relative
permeability of an embedded rectangular dissimilar material region through use of only the signals
corresponding to an array of pressure sensors evenly distributed on the mould surface. The burden
of experimental tests required to train in an efficient manner such predictive models is so high
that favours its substitution with synthetically-generated simulation datasets. A regression model
based on the use of convolutional neural networks (CNN) was developed and trained with data
generated from mould-filling simulations carried out through use of OpenFoam as numerical solver.
The evolution of the pressure sensors through the filling time was stored and used as grey-level
images containing information regarding the pressure, the sensor location within the mould and
filling time. The trained CNN model was able to recognise the presence of a dissimilar material region
from the data used as inputs, meeting accuracy expectation in terms of detection. The purpose of this
work was to establish a general framework for fully-synthetic-trained machine learning models to
address the occurrence of manufacturing disturbances without placing emphasis on its performance,
robustness and optimization. Accuracy and model robustness were also addressed in the paper.
The effect of noise signals, pressure sensor network size, presence of different shape dissimilar regions,
among others, were analysed in detail. The ability of ML models to examine and overcome complex
physical and engineering problems such as defects produced during manufacturing of materials and
parts is particularly innovative and highly aligned with Industry 4.0 concepts.

Keywords: machine learning; mould filling simulations; composite materials; liquid moulding

1. Introduction

Fibre reinforced polymer composites (PMCs) are nowadays widely used in applications that
require lightweight materials such as those found in aerospace, automotive, energy, health-care and
sports, among others. Structural PMCs are processed by the infiltration of a polymer matrix in the
form of a thermoset or thermoplastic resin into a fabric preform, producing materials with optimal
stiffness, strength, fatigue performance and resistance to environmental effects [1,2]. The high level of
maturity reached as regards design and manufacture of advanced structural composites has enabled
their extensive use in civil and military aircraft applications. For instance, the A350XWB contains
as much as 53% of the structural weight of components, including carbon fuselage, wings or tail
planes [3]. The automation of process steps, the increase of part integration level as well as the
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continuous demands towards zero-defect manufacturing, guided by Industry 4.0 concepts are the
subsequent major steps that will undoubtedly allow future material optimization and cost reduction.

Liquid moulding of composites (LCM) starts with a dry fabric preform which is draped and placed
into a mould for its impregnation with a liquid resin by prescribing a pressure gradient [4,5]. After the
part is totally impregnated, the resin is cured, normally by the simultaneous action of heat sources until
the part becomes solid and can be demoulded. Nowadays, LCM techniques can deliver to the industry
high-quality and complex-shape composite articles, providing a solid out-of-autoclave alternative.

Resin transfer moulding (RTM) makes use of a closed solid mould in which the fabric is
impregnated by a pressure gradient imposed between the inlet and outlet gates of the mould. Variations
of such technologies include, among others, the replacement of a half part of the mold by a vacuum
bag in vacuum infusion (VI), the use of auxiliary flow media to induce through-the-thickness flow of
resin into the preform (Seemann composite resin infusion molding process, SCRIMP), or the use of
flexible membranes as in light RTM (LRTM).

One of the major drawbacks in LCM arises from the inherent uncertainty as regards the flow
patterns produced during resin impregnation which are strongly affected by different processing
disturbances. For instance, variations of local permeability of the fabric preform triggered by uneven
mould clamping, fabric shearing generated during draping operations or unexpected resin channels
created at mould edges, also known as race-tracking, result in non-homogeneous resin flow far from
theoretical predictions and consequently the formation of dry spots and porous areas. Counteracting
against processing disturbances requires its early detection through use of the appropriate sensor
networks as well as the implementation of the necessary corrective actions if the quality of the
composite article is intended to be secured [6]. This later objective is precisely one of the differential
concepts that emanates from Industry 4.0 smart factories which relies on the development of the
appropriate cyber-physical systems able to perform automatically diagnosis and detect possible
processing faults, as well as implement the necessary corrective actions.

Significant efforts have been made by the scientific and technical community in the last years
to spread predictive models based on artificial intelligence (AI) and machine learning concepts (ML)
to different sectors. Good examples can be found, for instance, in automated image recognition and
computer vision algorithms used in autonomous car driving, fast text language translation and facial
recognition, among others [7–9]. Such algorithms, when appropriately trained for each individual
case, open revolutionary opportunities for other less explored fields such as continuum [10] and fluid
mechanics or manufacturing. At this time, it is worth mentioning some interesting contributions close
to the topic presented in this paper [11–13]. Wu et al. [11] developed a permeability surrogate model
based on microstructural images through use of a convolutional neural network (CNN). A training set
is generated first by these authors that contains synthetic images of porous microstructures while the
corresponding effective permeability is computed, solving numerically the boundary value problem
with Lattice Boltzmann methods. The CNN is then trained to learn and link the specific features of
the microstructure (e.g., porosity) with the effective permeability value. Overall, surrogate models
are viewed as very effective methods to overcome complex problems involving strong non-linearity,
uncertainties, accelerating computation times in flow propagation through random media [14].

Although machine learning methods have been extensively used for surrogate modelling,
the ability of these technologies to link input and output datasets without taking in consideration the
underlying physics made them convenient tools for inverse modelling [12,13]. In this case, a forward
model, the physical model, enables the generation of a synthetic output dataset based on the resolution
of the governing equations (e.g., a fluids or mechanics problem) given the input dataset. Once the
output dataset is generated, it is possible to relate the outputs with their corresponding inputs through
use of regression machine learning tools. From an engineering viewpoint, such approximations are
of major importance in practical problems such as tomographic reconstruction, computer imaging
or sensors. Iglesias et al. [12] used concepts based on Bayesian inference to address the problem of
uncertainties of fabric permeability in resin transfer moulding by using information coming from
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pressure sensors. Lähivaara et al. [13] developed a solution for the determination of the material
porosity based on ultrasound tomography through use of CNN. A forward model is used to generate
the theoretical response of the ultrasound sensors to a given material with known porosity parameters.
The inverse problem is approximated with a regression based CNN which enables the determination
of the effective porosity of a material from the direct inspection of the ultrasound transducers response.

The main purpose of this work was to provide a first exploration of machine learning methods
to detect automatically flow disturbances caused by the presence of dissimilar permeability regions in
liquid moulding of composites. The detection capabilities of the model fall on the analysis of pressure
changes recorded by a distributed network of sensors. The model was developed to address the problem
of rectangular dissimilar region in a squared flat RTM mould and has been kept intentionally simple with
the purpose to explore its learning capabilities. The general description of the methodology is presented
in Section 2 including the forward model based on the resolution of the flow propagation problem in
porous media. The systematic generation of a fully-based simulation results set corresponding to the
physical problem is presented in Section 3 while the general architecture of the neural network model, its
training and deploying is described in Section 4. A general discussion on the applicability of the model
presented is done in Section 5, while some remarks and conclusions are lastly drawn in Section 6.

2. Model Description

The general description of the model is sketched in Figure 1. An L× L square flat RTM mould
containing a dissimilar material region of relative permeability β = K/K0 is analyzed, where K and K0

stand for the permeability of the fabric and the dissimilar region embedded, respectively. The position
and size of this dissimilar region are defined by x0, y0 and 2b× 2h. The forward model uses the 5-tuple
input Xinput = x0, y0, 2b, 2h, β to determine the virtual response of a set of pressure sensors Youtput

distributed over the mould surface.

Figure 1. General description of the problem. Square RTM mould containing a rectangular dissimilar
material region with relative permeability of β = K/K0, size 2b× 2h and centered at (x0, y0). K0 and K
stand for the permeability of the dissimilar region and the surrounding media, respectively.

The Latin Hypercube sampling was used to generate the different realizations of the inputs
x0, y0, 2b, 2h, β and the corresponding output dataset is generated, containing all the pressure sensor
signals for different dissimilar material cases (Youtput = Ξ[Xinput]). A supervised regression machine
learning model based on convolutional neural network is used to approximate the solution of the
inverse problem (Xinput = Ξ−1[Youtput]), thus enabling the position and size of the dissimilar material
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region to be estimated when the pressure sensor signal information is available. Such a kind of
inverse approximation permits the on-line detection of flow disturbances and possible dry spot regions
during the resin injection without accessing visually the interior of the mould and by using only the
information of the pressure sensors readings.

3. Dataset Synthetic Generation

3.1. Mould Filling Model

The model used in this work is based on the resolution of the Darcy equation for the fluid flow
through porous medium. The Darcy equation establishes a linear relation between the average fluid
velocity through the fiber preform v(x, t) and the pressure gradient ∇p(x, t), with the proportionality
factor being related to the fabric permeability tensor K(x) and the fluid viscosity µ as

v(x, t) = −K(x)
µ
∇p(x, t) (1)

In this equation, x and t stand for the position of a given point in the fabric and the time, respectively.
Assuming flow continuity, ∇ · v(x, t) = 0, the governing equation for the pressure field can be
obtained as

∇ · (−K(x)
µ
∇p(x, t)) = 0 (2)

Initial (t = 0) and boundary conditions should be given to determine the evolution of the pressure
and velocity fields during the time. Such a problem is normally defined as a moving boundary
problem because the flow front position Γ(x, t) evolves during the time until the preform is completely
filled. Normally, if the position of the flow front is known for given time t, the pressure and velocity
fields are determined by standard finite element modelling. Once such information is acquired,
updating the flow front position for time t + ∆t can be obtained. Several numerical techniques
were developed in the past to solve such problems in liquid moulding manufacturing of composites.
For instance, the finite element/control volume method uses regions associated with every node
to update information about the filling factors through use of the flow rates obtained with the
velocity fields. Such numerical methods are implemented in well-known simulation tools such
as LIMS from Advani and co-authors [15,16] or PAM-RTM from ESI group. Other ways to simulate
mould filling processes are based on the direct solving of the two-phase flow problem by using the
Navier-Stokes equations for incompressible fluids. In this case, the continuity equation∇ · ρv(x, t) = 0
is accompanied by the linear momentum equation reading as

ρ
dv
dt

+∇ · (ρv⊗ v) = −∇p + µ∇2v + S (3)

where S is known as the Darcy–Forchheimer sink term

S = −(µD +
1
2

ρ |v| F)v (4)

where D and F stand for material parameters. The second term in Equation (4) is related to inertial
effects which are negligible for the case of liquid moulding of composites under low Reynolds number
flow. In this situation, the inertial terms related to the velocity can be neglected, recovering the standard
Darcy equation with the factor D being the inverse permeability of the fabric. In two-phase flow,
the interface between the two fluids, namely resin and air in liquid moulding, is tracked by means of
the volume of fluid (VOF) approach by using α as a phase variable. This variable ranges between α = 1
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and α = 0 for the resin and air fluids, respectively. Within this approach, the α variable is continuously
updated during simulation time by using the advection equation given by

dα

dt
+∇ · (αv) = 0 (5)

OpenFoam R© (Open source Field Operation And Manipulation) [17] is a free open source Computational
Fluid Dynamics (CFD) software that can be used to solve the problems related with filling in liquid
moulding of composites. OpenFoam includes interFoam a solver for two-phase incompressible,
isothermal and immiscible fluids tracking interfaces with the VOF method. Details and performance
of the algorithms used to track interfaces as well as pressure and velocity solvers for two-phase flow
can be found in [18].

3.2. Mould Filling Simulations Containing Dissimilar Material Regions

The bi-dimensional problem of a square mould of dimensions L× L× t containing a rectangular
region with different permeability is modeled in this section as shown in Figure 2a. This geometrical
definition constitutes the base of the mould filling forward problem to be solved by computational
fluid mechanics. For simplicity, macroscopic unidirectional flow is induced by the application of a
constant pressure condition p0 at x = 0 while p = 0 is set in the opposite edge at x = L. Slip-free
conditions are applied in the remaining faces of the mould.

A rectangular region with centre (x0 = α1L, y0 = α2L) and size (b = α3L, h = α4L) with dissimilar
permeability K = βK0 is inserted in the model, where K0 = 10−12 m2 stands for the permeability of the
surrounding material. For simplicity, both permeabilities, K0 and K, were assumed to be isotropic and
representative of angle-ply 2D woven preforms although simulations can be carried out by assuming
anisotropic behavior without any loss of generality.

Accordingly, the set of non-dimensional numbers α1, α2, α3, α4 and β corresponds to the position,
size and relative permeability of the dissimilar region defined as a 5-tuple (α1, α2, α3, α4, β) object.
A uniform brick cell discretization of the domain was used with in-plane dimensions L/100 and with
a single cell in the mould through-the-thickness direction. Thus, the models contain 10,000 brick
cells which were judged fine enough to capture accurately the flow front position evolution during
time. The two fluids selected for the interFoam solver corresponded to water and air, for simplicity.
Their density and kinematic viscosity were set to 1000 Kg/m3 and ν = 10−6 m2/s for the water, and 1
Kg/m3 and ν = 10−8 m2/s for the air, respectively. Despite the simplicity of the model presented in this
work, more complicated problems including different mould shapes, inlet and outlet configurations
among others can be addressed and used for synthetic training of the artificial intelligence method.

To fully explore the problem space, the involved variables were presented in non-dimensional
form as x̂ = x/L, p̂ = p/p0 and t̂ = t/t0 where t0 = µL2/2Kp0 and p0 the injection pressure,
respectively. This latter value of t0 corresponds exactly to the mould filling time for a perfectly
homogeneous distribution of the permeability (β = 1). A network of 3× 3 pressure probes equally
distributed in the surface L× L of the mould is used to record the time evolution p̂i=1,9(t̂) of the fluid
pressure (Figure 2b).

Figure 3 shows the position of the front flow for different times obtained for a case with α1 = α2 = 0.25
and α3 = α4 = 0.125. The relative permeability in this case was set to β = 0.1. In the early stages,
the flow progresses uniformly until it reaches the position of the first dissimilar material region. As the
permeability inside the dissimilar region is lower than the surrounding media (β = 0.1), the flow
delays with respect to it. Lastly, the flow progresses until the outlet gate but first in the upper part of
the mould far from the dissimilar material region. Such a non-uniform flow presented in Figure 3 is
reflected in the probe pressure evolution as shown in Figure 4a.
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Figure 2. (a) Definition of the model containing a dissimilar rectangular region with center coordinates
(x0, y0), size 2b × 2h and permeability K = βK0, (b) 3 × 3 network of pressure sensors equally
distributed on the mould surface.

Figure 3. Snapshots of the flow progress through the mould for different non-dimensional times
t̂ = 0.02, 0.1, 0.2, 0.4, 0.8 and 1.0. The mould contains a square region of size 0.25L centered at x0 = 0.25L
and y0 = 0.25L with relative permeability of β = 0.1. Flow progress from left to right. Red and blue
colours correspond to phase values of α = 0 and α = 1, respectively. For the sake of clarity, white
dashed lines corresponding to the dissimilar material region were superimposed.

The evolution of the nine pressure sensors evenly distributed over the surface of the mould is
presented in Figure 4, again expressed as non-dimensional numbers p̂ = p/p0 and t̂ = t/t0. Results
for three different cases were presented in this figure and correspond to a square region of size 0.25L
located at three positions (a) α1 = 0.25, α2 = 0.25, (b) α1 = 0.5, α2 = 0.5 and (c) α1 = 0.75, α2 = 0.75.
The shape of the pressure sensor evolution curve was similar in all of them. A sudden increase is
produced when the fluid reaches the sensor position and progressively stabilizes to a steady-state
value consistent with the pressure gradient induced between the inlet and outlet gates. The dashed
lines in Figure 4 were obtained by assuming no dissimilar material region by setting β = 1.
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Figure 4. Non-dimensional pressure evolution p̂(t̂) for the nine sensors distributed in the mould
containing a 0.25L square dissimilar material region at (a) α1 = 0.25, α2 = 0.25, (c) α1 = 0.5, α2 = 0.5
and (e) α1 = 0.75, α2 = 0.75. Dashed lines corresponds with the pressure sensor evolution in the
absence of dissimilar material region. The pressure changes ∆ p̂(t̂) in (b,d,f) are as the difference,
or perturbation, between the local pressure value with and without dissimilar material region.
For visualization purposes, the non-dimensional time was arbitrarily extended to t̂ = 2.

The pressure perturbation ∆ p̂ is also presented in the same figure, defined as the difference
between the local pressure p̂ = p/p0 obtained in the problem containing the dissimilar region and the
problem without dissimilar region. The pressure evolution and/or the perturbations caused by the
presence of the dissimilar region could help to ascertain the position, size and intensity of the defect.
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However, given that its complexity with respect to the random position and size make the problem
intractable in terms of mathematical complexity, data science or statistical techniques could be more
appropriate for such kind of inverse problems.

The position of the sensor with respect to the location of the dissimilar material region influences
the evolution of the pressure. If the sensor is placed upstream from the dissimilar material region,
an increase in the pressure is produced as compared with the case without the defect. This effect
can be observed in sensors 1, 2 and 3 in Figure 4c,e. However, if the sensor is placed downstream
from position of the dissimilar material region, the pressure is delayed to some extent as shown
in sensors 1, 2 and 3 in Figure 4a. Both effects are reflected in the pressure perturbation ∆ p̂(t̂) in
Figure 4b,d,f, exhibiting a positive change if the sensor is placed upstream and negative in the opposite
case. The information of the pressure p̂, or the pressure perturbation ∆ p̂, recorded by the sensors was
stored as a footprint image and is presented in Figure 5a,b for the three cases presented previously by
using a pressure sensor network of 3× 3.
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Figure 5. (a) Sensor footprints corresponding to the plot cases presented in Figure 4. The vertical and
horizontal axis of the images corresponded with the non-dimensional time t̂ and sensor position i = 1, 9.
The color intensity reflects the sensor non-dimensional pressure p̂, (b) Pressure perturbation ∆ p̂(t̂)
evolution footprint. For visualization purposes, the non-dimensional time was arbitrarily extended to
t̂ = 2.

3.3. Dataset Generation

Once the forward problem is defined, the complete dataset should be generated. A uniform
covering of the whole variable space of the model, namely α1, α2, α3, α4 and β, results in intractable
problem size. For simplicity, the variables were assumed to follow uniform random probability
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distributions as Uα1,α2(0.150, 0.850), Uα3,α4(0.075, 0.150), Uβ(10−2, 10−1). Uα1,α2 and Uα3,α4 distributions
ensure that the dissimilar material region is entire contained in the mould surface. Assuming,
for instance, ten different random realizations of the aforementioned variables, the number of
combinations is 105 which seems unfeasible from a practical viewpoint. Thus, instead of trying to cover
uniformly the whole variable space, more efficient techniques for variable sampling should be used.
In this work, a set of 3000 simulation cases was generated by means of the Latin Hypercube sampling
technique by using PyDOE software package [19]. This number of simulations were enough to maintain
the accuracy of the model. Mould filling simulations were run sequentially by OpenFoam for each
of the α1, α2, α3, α4 and β combinations provided with the Latin Hypercube method. The automation
of the computational process was carried out by using PyFoam, a Python library that manipulates
and control OpenFoam running cases. Instances of the problem corresponding to each of the
α1, α2, α3, α4 and β combinations were generated by modifying OpenFoam dictionaries topoSetDict
and controlDict. Once an individual simulation finished, normally in a few minutes in a regular
laptop, the pressure probes dataset is stored. This process is followed by a new job submission until the
whole dataset is created. Lastly, the dataset generated including the pressure sensor signals are stored
as a bi-dimensional array that contains time and sensor position together with their corresponding
5-tuple model variables α1, α2, α3, α4 and β. Datasets were serialized into a Python pickles to provide
easy access in subsequent training tasks.

4. Building, Training and Deploying Machine Learning Models

ML scripts were built by using the Python Keras R© API (application programming interface) and
their main features are presented in this section. Keras is a high-level neural network API, written
in Python and capable of running on top of TensorFlow R©, CNTK R©, or Theano R© [20]. This work
has selected, among those available in the published literature, a kernel architecture made with a
CNN. The main purpose is to describe a novel methodology to build and deploy a machine learning
algorithm able to track flow disturbances produced during manufacturing of composites by liquid
moulding rather than establish the most effective and robust model architecture that can be used.

4.1. CNN Machine Learning Networks

CNN machine learning networks are preferred for classifying images in computer vision problems
depending on specific image features [21,22]. However, this work seeks to predict a set of continuous
scalar variable by regression rather than use algorithms as classifiers. The most effective CNN
architecture is somewhat difficult to establish from a priori statements. The number of layers, their
interrelations, kernels and filters are often result from trial-and-error numerical experiments driven
by an accuracy criterion. A typical CNN architecture is formed by a sequential set of convolutions
and pooling operations carried out over the image dataset. In this paper, the dataset is composed of
the pressure probes footprint images obtained with the mould filling simulations. The results of the
convolution process are transmitted to the inputs by using a fully connected neural network (FCNN).

The CNN architecture used in this work is sketched in Figure 6, and more precisely detailed in
Table 1. More information is given below:

• Convolution2D (Conv2D). This corresponds to an image operation based on the application of a
given set of filters to enhance specific features of the image. If the input image is A (see Figure 5
with footprint of 9× 100) the 2D convolutions of this individual image may be obtained, namely
B, by applying the kernel function F, as

B(i, j) = F ∗A = ∑
k

∑
l

Fk,l Ai−k,j−l (6)

where F stands for the filter applied and ∗ the convolution operator. The operation can be
parametrized by using different filter sizes, strides, paddings, activation functions or kernel
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regularization. Filters of size (nk, nk, nchannel) are intended to highlight specific features in time
and space produced by the presence of the dissimilar material region in the mould. Input image
dimensions are given by (nw, nh, ncanal), where nchannel = 1 for greyscale images, and output
image dimensions are calculated by (nw − nk + 1, nh − nk + 1, 1). For instance, the first Conv2D
layer in Figure 6 uses a (4, 4, 1) kernel with an input grayscale image object of (9, 100, 1). This filter
operation produces an output image of (9, 50, 32) for this first convolution. Filters normally make
use of a certain step, named stride, that move the convolution filter along the x and y axis of the
input image. Padding is the parameter which maintains the size of the output images resulting
from the convolution B. Keras uses the padding=’same’ technique to avoid image edge trimming.
Lastly, when convolution is completed, a ReLu (Rectified Linear Unit f (x) = max(0, x)) is used
as cut-off function thus avoiding negative outputs that can be generated.

• MaxPooling (MaxPooling2D). This is applied to reduce the dimensions of the convolution filtered
images with the purpose of obtaining more efficient and robust characteristics. The model uses a
2× 2 pooling filter, taking the maximum value of the pixels in the neighborhood as the result for
a given point. For instance, Figure 6 shows MaxPooling operations used to reduce the image size
from 9× 50 to 8× 25 in the first convolution.

• Batch normalization (BatchNormalization). This seeks to alleviate the movements produced in
the distributions of internal nodes of the network with the intention of accelerating its training.
Those movements are avoided via a normalization step, constraining means and variances of
the layer inputs. Furthermore, it reduces the need for dropout, local response normalization and
other regularization techniques [23].

• Flatten (Flatten). This operation splits up the characteristics, transforming them and preparing for
obtaining a vector-type object [24]. It is used as training input of the subsequent fully-connected
neural network (FCNN).

• Dense (Dense). The fully-connected layer is implemented by one or several dense functions.
Each layer obtains n inputs from the precedent layer or, in case of the first dense layer, n inputs
from the Flatten layer. Then, these inputs are balanced by the neural network weights and bias,
and transformed into a set of outputs for the following layer according to their specific activation
functions. The final dense layer contains a five-component vector-type to perform the regression
on the values of α1, α2, α3, α4 and β. Particularly, the neural network used in this work contains
three fully connected layers, containing 128, 256 and 512 neurons respectively.

Table 1. Convolutional Neural Network structure and parameters used.

Layers Specifications

Conv2D 32 4× 4 filters with 2× 1 stride and padding same
activation ReLu + L2 Regularization 5× 10−4

Batch Normalization -

MaxPooling2D 2× 2 filter with 2× 1 stride

Conv2D 64 4× 4 filters with 2× 1 stride and padding same
activation ReLu + L2 Regularization 5× 10−4

Batch Normalization -

MaxPooling2D 2× 2 filter with 2× 1 stride

Flatten -
Fully Connected 128 (activation ReLu+ Dropout 0.4)
Fully Connected 256 (activation ReLu+ Dropout 0.25)
Fully Connected 512 (activation Softmax+ Dropout 0.5)

Fully Connected 5 (α1, α2, α3, α4, β)
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Figure 6. Sketch of the convolutional neural network (CNN) used in this work.

4.2. Training Machine Learning Models

Numerical training experiments started with the pressure probe footprints generated by using
mould filling simulations. A set of 3000 images of pressure footprints was used in the CNN model with
the purpose of predicting the five variables of position, α1, α2, size α3, α4 and the relative permeability
β. Both datasets, pressure probe footprints, as well as the the five variables were already normalized in
the [0, 1] interval so no extra treatments were required.

The first step was to split randomly the dataset generated into two pieces usually known as
training and test sets. Training and test sets contained all the data in a ratio of 80/20. The test set was
qualified as a never-before-seen dataset with the intention to evaluate the model under new data not
used during training.

The subsequent step deals with training of the CNN model by using Keras. The network described
in the previous section was coded in Keras by a sequential linking of two convolutional layers and three
dense layers (see Figure 6 for more details). Each layer applies some tensor operations with the input
data, and these operations make use of weight and bias factors. The weight and bias factors are the
intrinsic attributes of the different layers used and are considered the parameters where the learning
capacity of the network resides. A total of 860517 parameters was used in the CNN model, Table 1.
The determination of the network parameters is carried out by minimization of a norm defined as the
sum of the squared differences between the truth values of the variables (Xi = α1, α2, α3, α4, β) and the
predicted ones by using the CNN network. This Mean Squared Error (MSE) is used in this work as loss
function to minimize (MSE = 1/N ∑N

i=1(Xpred
i − Xtrue

i )2 with N the size of the dataset). The iterative
method for minimizing the loss function in combination with a gradient descent called Adadelta
were used to this end. The exact rules governing a specific use of gradient descent are defined by the
Adadelta [25] Keras optimizer. Training was carried out after not more than 5000 epochs by using 64
as the batch size and lasted around 16 hours with a 10 cores Intel Xeon W-2155CPU-3.30 GHz machine.
The evolution of training and test losses against the number of epoch training cycles is presented in
Figure 7. The best model configuration obtained produces a minimum MSE of ≈ 10−2 after training
which was judged accurately enough for modelling purposes.

It is worth highlighting the similarity of MSE loss curves obtained for both training and set
datasets which is an indicator of reasonable model performance for unseen data. Highly dissimilar
behaviour of these two curves usually indicates overfitting, which is a common problem in machine
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learning. If the complexity of the network and number of network parameters is too high, not in
correspondence with the datasets size, overfitting is produced. In this case, the accuracy obtained after
training can be excellent but the error corresponding to the test dataset could be still unacceptable and
indicates a deficient model generalization for new unseen data. Several strategies were implemented
in this work to alleviate possible overfitting problems according to recommendations found in the
literature, namely data-augmentation, L2 regularization and dropout rate in fully-connected layers.

An augmented dataset is generated from the pressure sensor signal by adding a white noise to
each image of the training set. The white noise generated follows a normal distribution N(0, 0.001)
with zero mean and 0.001 standard deviation. The augmented dataset contains then a total of
14,400 images, with 2400 being from the original set computed with OpenFoam and the remaining
12,000 the augmented one. L2 regularization techniques add a constraining term to the MSE loss
function which is proportional, with a regularization factor of λ = 5× 10−4, to the total sum of the
squared values of the parameters of the network (MSE = 1/N ∑N

i=1[(X
pred
i − Xtrue

i )2 + λε2
i ]). Thus,

the presence of data outliers is penalized preventing possible overfitting. Lastly, dropout rates were
applied in the fully-connected neuron layers, entailing random dropping out, setting to zero, a number
of output features of the layer during training producing a less regular structure. The loss curves that
correspond to the case without any of the strategies used to alleviate overfitting are also presented in
Figure 7. Although the training loss in this case was excellent, and close to 10−4, the differences with
the test loss were unacceptable. Thus, the model in this case was unable to generalize with the same
precision level with new unseen data.

Figure 7. Training and test MSE (mean square error) losses evolution against the number of epochs
training cycles. The data include losses obtained with and without the application of techniques to
alleviate overfitting (data augmentation, L2 regularization and dropout).

The comparisons between the ground truth values of the variables, α1, α2, α3, α4 and β, and the
predicted ones through use of the CNN are gathered in Figure 8. The figure includes both training
and test datasets. As a first approximation, the correlation between predicted and ground truth values
was fairly good. This was especially true for the position of the dissimilar material region α1, α2,
Figure 8a,b. The network in this situation was able to learn in a highly efficient manner from the given
footprint by using only the features associated with the rise up of the pressure signals. However,
the accuracy attained for the remaining variables was, in general, more modest although the overall
trends were perfectly captured, Figure 8c,d,f. A plausible explanation for this accuracy reduction could
be attributed to the similarity of the pressure fields generated by the presence of the dissimilar material
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region. Two regions defined with similar values of size and/or relative permeability produce very close
fluid pressure fields almost indistinguishable, producing nearly no single-valued pressure footprints.
This reduction of accuracy was more evident in the case of the relative permeability parameter β which
is essentially controlled by the pressure gradients. Figure 8e shows the previous statement. Pressure
field differences for two small values of β may differ only slightly when the macroscopic flow reached
the outlet gates, thus producing again almost equal pressure footprints. Nonetheless, the accuracy
was judged to be reasonable for the automatic detection of the position and severity of the dissimilar
material region.

The histograms of the individual absolute errors computed as Xpred − Xtrue corresponding to
the five variables are also presented in Figure 8f. As mentioned previously, the prediction of the two
position variables (α1, α2) was excellent and the error in this case exhibits a Dirac-like type function
with 90% of the data lying within an absolute error band of less than 3%. It should be pointed
out that the model variables were expressed in non-dimensional and normalized form and thus,
the absolute errors were expressed in percentage. The error distribution for the remaining variables
was, of course, more flatten and the plausible reasons were discussed previously. The fraction of the
total data corresponding to predictions with absolute error lying in the ±10% and ±20% error band
are presented in Table 2 for the sake of completion.

Table 2. Fraction of the total data with absolute error falling within the ±10% and ±20% bands.

Error α1 α2 α3 α4 β

±10% 0.5% 3.0% 49% 35% 42%
±20% 0.2% 0.0% 16% 3% 15%

Figure 9a is presented to illustrate the overall performance of the model. The plots contain some
dissimilar material regions selected randomly together with the corresponding predictions by using the
test dataset and the 3× 3 sensor network size. As discussed previously, the accuracy of the predictions
was fairly good, thus showing the ability of the proposed model to capture the presence of dry regions
during liquid moulding.

The accuracy of the model was also addressed for some additional cases including different
pressure network sizes of 2× 2, 3× 3 (baseline) and 4× 4 corresponding to 4, 9 and 16 equally spaced
pressure sensors. It should be noted that as OpenFoam simulations were run a single time, saving
the pressure probe evolution at the locations corresponding to each specified network, there was no
need for further recalculations. The three models were trained by using the same procedure previously
explained and the corresponding MSE losses obtained for the 2× 2, 3× 3 and 4× 4 networks were
0.016, 0.011 and 0.012, respectively. The MSE losses obtained for the 3× 3 and 4× 4 networks were
very similar between them. Such results seem to indicate that the dissimilar material region size used
in this study, following the uniform distribution Uα3,α4(0.075, 0.150), is perfectly captured even with
the 3× 3 network. Increasing the number of sensors to 4× 4 will not result in a better accuracy of
the model for such dissimilar material region size. Accordingly, the sensor network size should be
previously determined if a minimum dissimilar material size is sought. The predictions for the ground
truth cases presented in Figure 9a by using the 2× 2, 3× 3 and 4× 4 network are now summarized in
Figure 9b for the sake of completion.

Lastly, the flow progress predictions for the case presented in Figure 3 are now shown in Figure 10.
This case corresponded to a 2b = 2h = 0.25L square region centred in x0 = 0.25L, y0 = 0.25L and
relative permeability of β = 0.1. The pressure footprint presented in Figure 4a was used as input to
predict the position, size and relative permeability yielding the 5-tuple (0.258, 0.241, 0.118, 0.117, 0.083)
from the ground truth values of (0.250, 0.250, 0.125, 0.125, 0.1). OpenFoam simulations were run
subsequently and the corresponding flow patterns gathered in Figure 10. The agreement between the
ground truth flow patterns shown in Figure 3 and the predicted ones was excellent, 4.9 · 10−2 MSE,
considering that the only information used comes from a discrete network of pressure sensors.
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Figure 8. Comparisons between the ground truth values of the variables, (a) α1, (b) α2, (c) α3, (d) α4

and (e) β including training (green) and test (red) data sets, (f) Histograms of the absolute error
corresponding to each of the variables used in the regression.
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Figure 9. Comparisons between the ground truth and predictions for five randomly selected dissimilar
material regions in terms of position and (a) size for the test data set using the 3× 3 sensor network
size, (b) Same results as previously shown but with different sensor network of 2× 2, 3× 3 and 4× 4.

Figure 10. Snapshots of the flow progress through the mould for different non-dimensional times
t̂ = 0.02, 0.2, 0.4, 0.8 and 1.0 corresponding to the predicted values for the case shown in Figure 3. Flow
progress from left to right. Red and blue colours correspond to phase values of α = 0 and α = 1,
respectively. For the sake of clarity, white dashed lines corresponding to the dissimilar material region
were superimposed.

4.3. Deploying Machine Learning Models

The CNN model and the weights resulting after training were saved for subsequent predictions
with new unseen data that could come, for instance, from the manufacturing laboratory. To this end,
the model architecture and the corresponding weights were stored by using json format (JavaScript
Object Notation) and hdf5 Hierarchical Data Format (HDF) respectively. Once the network was trained,
it could be deployed subsequently and evaluated at any time by loading the model, weights and the
new unseen data without the need of retraining.
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5. Discussion

Model Robustness

The previous section was devoted to describing a new machine learning model to detect
automatically the presence of a dissimilar material region during manufacturing of composites by
liquid moulding. Examination of the model architecture, training procedure, accuracy and the ability
to generalize a response under new unseen data was analyzed in detail. However, a deeper assessment
of its robustness should be conducted to address other relevant effects and uncertainties that could
potentially arise during the manufacturing process. Among others, these involve the presence of
increasing pressure signal noise, as well as possible sensor malfunctions or the size of the sensor array
used. Additionally, the response of the trained model through use of different type of unseen data was
evaluated. For instance, the response to other dissimilar material region shapes instead of a rectangular
one, the rectangle size out of the distribution used for training, as well as the presence of simultaneous
regions during filling, will be analyzed.

As described previously, a white noise signal following a Gaussian distribution N(0, 0.001) was
originally superposed on the pressure footprints to improve the overfitting response of the model and
its capability to generalize for new unseen data inputs. Once the model was trained, the prediction
ability with white noise corrupted data was checked. Figure 11a shows the pressure evolution
corresponding to the nine sensors installed in the model with white noise of N(0, 0.01) for the case
presented in Figure 4a. Such corrupted signals were used to determine the lack of accuracy due to
the presence of noise and the results presented in Figure 11b in terms of MSE. It was evident that for
increasing noise standard deviation, some of the pressure signals may overlap hampering the adequate
prediction of the model. It should be pointed out again, that the main sources of model deviations
from ground truth values were related to the α3, α4 and β variables, and more specifically to β related
with the permeability. Unsurprisingly, the position of the dissimilar material region was still well
predicted by the model even if the noise signal level was increased.
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Figure 11. (a) Corrupted pressure signal with white noise following the Gaussian distribution
N(0, 0.01), (b) MSE as a function of white noise standard deviation σ.
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Another possible source of lack of prediction capacity of the model is sensor malfunction.
During manufacturing, it is not unusual that sensor signals can be lost due to a malfunction problem or
inadequate wiring. In this case, if a sensor signal is lost from the early beginning of the test, the sensor
footprint image will be undoubtedly altered creating a zero-pressure reading in the columns presented
in Figure 5a. Under such circumstances, the trained model was not able to recognize the new patterns
created by the signal lost and the accuracy of the model was destroyed. Although this can be considered
an important shortcoming of the model, it can be easily circumvented if the network is previously
trained with data including a signal lost which is time inexpensive for the limited number of sensors
used. For instance, pressure footprint datasets used for the 3× 3 network can be trained removing one
of the sensor readings leading to a (8, 100) size images rather than the baseline (9, 100) ones.

Figure 12 shows the robustness of the trained model against new unseen data with a structure
different than those data used for training. For this exercise, the model was evaluated by using pressure
signals obtained with circular dissimilar material regions, see Figure 12a and double size rectangle
regions following the Uα3,α4(0.150, 0.300) distributions, see Figure 12b. Although the geometry used
in these two cases produced, of course, different pressure footprints than those used for training of
the baseline problem, the results obtained from the model were still reasonable in location and area
indicating an adequate detection of specific patterns even if non-standard images are used.
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Figure 12. Comparisons between the ground truth and predictions for different dissimilar material
realizations: (a) Circular, (b) Double size rectangular, (c) Two equal rectangles, (d) Two equal rectangles
with CNN model trained with a new double rectangle data set.

The case of two rectangular regions deserves additional and specific comments. In this case,
two equal rectangle dissimilar material regions were generated randomly but assuming centered x-y
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symmetry so the problem variables used for the regression remain the same, Figure 12c. Independent
pressure footprints corresponding to two rectangle problems were generated with OpenFoam and
the baseline model with a 3× 3 sensor network size was used to predict the position of an unique
equivalent dissimilar material region. Unfortunately, in this case, the response was misleading and the
model was unable to detect the specific features of this outlier case. The prediction of the model was
obviously a single rectangular region that neither matches the averaged position nor the area of the two
input rectangles, Figure 12c. As mentioned previously, such problems were easily circumvented by
additional training of the CNN model with the new data set corresponding to 3000 random realizations
of the two rectangular dissimilar material regions. The CNN was trained again and the new predictions
presented in Figure 12d for the same individual case presented in c. Now, the model was able to detect
perfectly the two rectangles with a precision level meeting the expectations (see error histograms in
Figure 8f). This simple exercise demonstrated the prediction capability of the CNN architecture trained
with the appropriate dataset.

6. Conclusions and Final Remarks

A supervised regression machine learning model based on a convolutional neural network is
presented in this work to predict the position, size and relative permeability of a dissimilar material
region inside a square mould subjected to a macroscopic one dimensional flow in liquid moulding.
The presence of the dissimilar material region produces distortions of the pressure field and flow
patterns which can be detected by a discrete network of sensors equally distributed over the mould
surface. The use of a fully-based experimental approach to build machine learning models in materials
manufacturing would be challenging due to cost factors. To avoid this issue, dataset augmentation
based on simulations becomes crucial to success. This was the approach used in this paper which makes
use of extensive modelling of mould filling through use of OpenFoam as the fluid mechanics solver.

The forward model described in the paper is able to generate the pressure probes evolution
during the filling time and these data were properly stored as a pressure footprints. A total of
3000 random realizations for the five variables describing the position, size and relative permeability
of a rectangular dissimilar region were generated by computer. The inverse problem to predict the
five variables from the regression of the individual pressure footprints was based on the use of a
convolutional neural network which was able to learn from specific features of the artificial images
generated. The CNN had two sequential convolutional layers and three fully-connected neuron layers
to relate the pressure footprints with the corresponding position, size and relative permeability of
the dissimilar material regions. The model architecture and training were implemented in Keras,
a high-level neural network API. The determination of the network parameters was carried out by
minimizing the mean square error loss over an increasing number of epochs. Training was carried
out by using some numerical strategies to alleviate overfitting, producing a model able to generalize
the response under new unseen data not used during training. The model yielded excellent accuracy
for the center position of the dissimilar material region while the one corresponding to its size and
relative permeability was good but more modest as shown in the error histograms distribution in
Figure 8f. Taking into account the difficulties and scatter associated with the permeability measurement,
the accuracy attained by the model was judged to be coherent with the experimental limitations. Lastly,
the model robustness against new data with structure not used during training is analyzed in detail.
In addition, the effects of sensor malfunctions, noise signals, presence of simultaneous dissimilar
regions, different shapes among others were studied. It should be remarked that the purpose of this
work was to establish a general framework for fully-synthetic-trained machine learning models to
address the occurrence of manufacturing disturbances without placing emphasis on its performance,
robustness and optimization. In summary, the following conclusions can be drawn:

• Machine learning and artificial intelligence strategies open revolutionary opportunities in
material science and, more specifically, in materials and parts manufacturing. The ability of
these technologies to deal and overcome complex physical and engineering problems that
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relate different datasets, as sensors and dissimilar material regions in this work, is highly
aligned with Industry 4.0 concepts. In the future, this will enable the development of efficient
cyber-physical systems to detect defects automatically during manufacturing while guaranteeing
the implementation of the appropriate corrective actions.

• Some of the major concerns and drawbacks of the application of machine learning methods in
manufacturing of structural composites are related with enormous costs and development times
associated with the experimental generation of the large datasets required for training. A way of
easing the burden on experimental tasks is to involve the cooperative help of simulation results
to create augmented datasets. Of course, it could be argued that the accuracy of processing
simulation tools to predict the involved variables is dubious, specially if manufacturing disturbances
should be taken into account. This paper has presented a fully simulation-based machine learning
model, although the purpose in future implementations will be to combine both experimental and
model datasets.

• Many modelling techniques involve machine learning algorithms and include different architectures
and methods. It should be noted that similar or even better results could be obtained by using
other approaches not examined here. The aim of the paper was not to provide the optimum model
configuration but to analyze the ability of machine learning to detect automatically flow disturbances
occurring during liquid moulding by testing a simple problem. A future objective will entail examining
of integration into a complete system able to detect manufacturing disturbances while implementing
automatically the required corrective actions to maintain a constant quality of the manufactured part.
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