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Abstract: This review paper explores the formation of carbon nanotube (CNT) polymer composites as
a function of material and processing parameters. The effect of different polymer systems, increasing
multiwall CNT content, modification of CNTs, processing conditions, and aspect ratio are discussed
in detail for multi-walled carbon nanotubes (MWCNT) composites along with some examples for
SWCNT composites. All of these factors influence the microstructure and how the network of CNTs
forms within it. Often, researchers choose to modify the CNTs to aid in their distribution; however,
this may result in a reduction or increase in conductivity depending on many factors. The electrical
properties are directly affected by changes in the CNT network and how the material has been
processed. As soon as the network forms, percolation occurs and the conductivity increases. In order
to understand how to control the properties of CNT composites, all material characteristics and
processing conditions must be taken into account.
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1. Introduction

The electrical, mechanical, and thermal properties of a material can be greatly improved by the
addition of carbon nanotubes (CNTs). Therefore, understanding their influence within a composite
is an important endeavor. The objective of this review paper is to explore the network formation
of carbon nanotube nanocomposites, specifically within insulating matrices. The methodology
utilized are impedance spectroscopy and scanning electron microscopy (SEM), among other methods.
The importance of the amount of CNTs, type of polymer matrix, functionalization of CNTs, size of CNTs,
processing techniques, and purification will be explored by a comprehensive review of the literature.

1.1. Importance of Multiwalled Carbon Nanotube (MWCNT) Composites

The addition of nanoparticles to an insulating matrix may affect the properties significantly,
including the electrical, mechanical, and optical properties. Carbon nanotubes have excellent
mechanical strength along with high electrical and thermal conductivity [1]. CNTs have a
higher electrical conductivity than copper due to them having low resistance and few defects [2].
These properties make CNT composites a possible solution for multiple applications, including
electromagnetic interference (EMI) shielding, transparent conducting films, gas sensors, and more [3–5].

Carbon nanotubes can be thought of as single or multiple sheets of graphite rolled into a cylinder.
It is important to note that the diameter, aspect ratio, crystallinity, and crystalline orientation have a
big impact on the intrinsic properties of the composite [1]. Transmission electron microscopy (TEM)
images of representative MWCNT powder showing polydispersity are shown in Figure 1. The inset
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image shows wall thickness at a higher magnification. In this paper, MWCNTs in different matrices
will be focused on, while SWCNT composites will be briefly mentioned for comparison.
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strongly affected by Van der Waals forces owing to their small size and large surface area. Therefore, 
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There are many ways to combine the CNTs and polymer. However, they all follow the same 
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Figure 1. Transmission electron microscopy images of multi-walled carbon nanotubes (MWCNT)
powder with the inset image at a higher magnification.

Many different insulating polymer matrices have been used in the fabrication of MWCNT
composites. These include thermoplastics, thermosetting resins, liquid crystalline polymers, and
water-soluble polymers. Simultaneously, there are multiple methods used to mix the polymer and CNTs.
Melt processing, solution mixing, extrusion, mechanical stretching, spin coating, latex technology,
a conjugated method, and in-situ polymerization are examples [1,3]. Melt mixing is known for its speed,
simplicity, low cost, absence of solvents, and equipment availability in industry [3]. Therefore, melt
mixing is generally chosen to make composites rather than solution mixing or in-situ polymerization,
both of which may result in contamination from residual monomers or solvent. Another possible benefit
for melt mixing is that the shear applied may minimize the formation of MWCNT into aggregates [6].

It is important to fully disperse the CNTs within the polymer matrix to form a homogeneous
composite with the best properties. There is difficulty in achieving this since carbon nanotubes are
strongly affected by Van der Waals forces owing to their small size and large surface area. Therefore,
CNTs have a tendency to agglomerate and cause difficulties when attempting to disperse them.
Furthermore, the surfaces of CNTs have high chemical stability and may not interact with the
matrix [7].

1.2. Methods of Mixing

There are many ways to combine the CNTs and polymer. However, they all follow the same
basic mechanisms. First, the agglomerates are wetted by the polymer. This depends on the interfacial
energy between the two parties. Therefore, if the CNTs are functionalized, this step may be easier.
Second, the polymer chains must infiltrate into the agglomerates to weaken them. This action can be
represented by the Lucas-Washburn equation: [8]

h(t)2 =
rγcosθ t

2ηl
(1)

where h(t)2 is the time dependent infiltration length for the case of a fully wettable capillary. The rest
of the symbols are: ηl is the dynamic viscosity, γ is the interfacial tension between capillary and liquid,
θ is the contact angle, and r is the pore radius. This equation shows that if the agglomerates are less
packed (large pore radius), the polymer matrix will have an easier time infiltrating. It also depends on
the shear rate, molecular weight distribution, and temperatures used, since infiltration is related to the
viscosity. This equation does not consider the size exclusion (radius of gyration and pore diameter)
and external pressure. The success of the next step is dependent on the successful infiltration of the
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agglomerates. The third step is dispersion of agglomerates by rupture and erosion, and the final step is
distributing the nanotubes into the matrix [8]. Figure 2 shows three processing methods that will be
mentioned in the paper. They include mechanical mixing, melt mixing, and solution mixing. Since the
processing method used and characteristics of materials used are very important to the fabrication of
MWCNT/polymer composites, their effects will be described in the discussion.
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Figure 2. Schematics of particle processing methods used to make polymer-CNT composites.
(a) mechanical mixing; (b) melt mixing; (c) solution mixing [9].

1.3. Functionalization of MWCNT to Improve Dispersion and/or Conductivity

Functionalization, the addition of functional groups to the surface of CNTs, is one way to aid
the dispersal of carbon nanotubes. One functionalization method is to treat the CNT with oxidizing
agents such as HCl, H2SO4, H2O2, H2O2+H2SO4, 1HNO3+3H2SO4, HNO3, KMnO4, NaClO, SOCl2,
etc. The oxidation results in the formation of carboxyl (-COOH), alcohol (C-OH), and ketonic (-C=O)
groups on the surface of the CNT. The number and type of group depends on the method of oxidation.
However, it has been reported that oxidation reduces the composite’s conductivity and shifts the
percolation to higher concentrations [7].

A second method to improve dispersion is using surfactants and coupling agents. Coupling
agents have two chemically reactive groups on either end of their molecular structure. One reacts with
the fillers chemically, while the other links with the polymer through either physical entanglement or
chemical reaction. Therefore, it creates a bridge between the filler and polymer. Surfactants also have
two different groups: hydrophilic and lipophilic. The hydrophilic group gets absorbed on the surface
of fillers, thus decreasing the surface energy and breaking the aggregation. The lipophilic group is
compatible with the polymer, and acts as the bridge between the filler and polymer [10].
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1.4. Percolation and Electrical Testing

Percolation occurs when the composite reaches a critical amount of filler (CNT) that causes a
sudden decrease in the resistivity, as seen in Figure 3. When the critical volume content, pc is reached,
the resistivity jumps multiple orders of magnitude. This is because the filler reached the amount
needed to form a network through the matrix. Carbon nanotubes have a very high aspect ratio
(length to diameter ratio = L/D) of 100–1000 [4]. The higher the ratio a particle has, the lower the
percolation threshold will be [11]. The type, dispersion, alignment, and interaction of CNTs with the
matrix all have an effect on the percolation threshold. Therefore, the effect of the amount of CNTs,
type of polymer matrix, functionalization of CNT, processing methodology, and CNT size will all be
discussed. Many different methods for measuring the electrical properties are also reported, including
dielectric relaxation spectroscopy, 4-point probe and automated inline DC, and impedance spectroscopy.
Electrical measurements are important for detection of reaching the percolation threshold.
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Impedance spectroscopy is a useful technique for characterizing composites due to its high
sensitivity to all types of interfaces. It has the ability to pick up subtle changes in the CNT networks
over a range of frequencies. This data may also be fit to an equivalent circuit, which can be further
assigned to microstructural features—the interconnectivity of CNT, intrinsic CNT properties, matrix
influence, etc. There are many examples of impedance spectroscopy being used successfully to
characterize insulating matrix, conducting filler composites [1,9,12–14].

2. Factors that Affect the Electrical Properties of Composites

2.1. Differences in Polymer Systems

It is important to compare different polymer systems: PMMA, polyethylene (PE), polypropylene
(PP), polycarbonate (PC), polyamide (PA), and epoxy. The graphs in Figure 4 compare percolation
thresholds and maximum conductivity values for several polymer systems disregarding processing
methods and size of MWCNT. In Figure 4a, it can be seen that percolation thresholds were below
10 wt% in all cases, with majority being less than 2 wt%. Typically, melt mixing accounts for the higher
percolation thresholds as it distributes the MWCNTs more evenly. In Figure 4b, the majority of the
maximum conductivity values are below 30 S/m at concentrations varying from about 0.01 to 22 wt%.
Values above 100 S/m were disregarded as outliers [15,16] since they do not seem to fit the patterns
established by the majority of trends. Nevertheless, it is important to try to investigate why these
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cases are so different. For more details about the percolation and maximum conductivity for specific
polymer matrices and MWNT content, please see Table S1 in the supplementary file.J. Compos. Sci. 2020, 4, x FOR PEER REVIEW 5 of 27 
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In Table 1, the percolation thresholds and filler structure for different polymer systems are given.
When comparing the filler structure to the percolation threshold, it can be seen that the threshold is
higher for randomly distributed structures and lower for segregated structures.

2.2. Effect of Increasing the Amount of MWCNT

Finding the balance between amount of MWCNT used and the resultant properties in composites
is important to creating a composite that satisfies the needs of a given situation. In order to do that,
the MWCNT content needs to be increased until percolation is achieved. Some papers report in weight
percent or volume percent.

Figure 5 displays data for a PMMA/MWCNT composite that was made via melt mixing and
measured using AC impedance with a frequency range of 1 to 105 Hz at 30 ◦C [1]. The carbon
nanotubes used were created using catalytic chemical vapor deposition (CCVD) and had dimensions
of 10–30 nm in diameter and 1–10 µm in length. From Figure 5a,c, it can be seen that samples with less
than 8.5 wt% MWCNT show little change and are highly capacitive. The dielectric constant in this case
showed much more variation than the others. For the 10 wt% sample, it can be seen in Figure 5b that
the dielectric constant decreases with increasing frequency. This may be attributed to charge release
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between the filler and matrix interfaces. There is also a large gap between 8.5 and 10 wt% MWCNT for
the dielectric constant, which indicates that the percolation threshold appears within that range [1].

Table 1. Percolation threshold values from recent research on carbon nanotube (CNT)-polymer
composites. Modified from [20].

Polymer Type Filler Type Filler Structure Percolation
Threshold (Wt%) Ref.

HDPE a MWCNT Randomly distributed 2 [58]

PMMA SWCNT Randomly distributed 0.3 [59]

UHMWPE b MWCNT Randomly distributed 3.1 [60]

HDPE a MWCNT Segregated 0.311 [61]

SAN particles c MWCNT Segregated 0.032 [62]

UHMWPE b/PMMA CNT Segregated 0.3 [63]

PMMA MWCNT_DMF Segregated 0.0095 [20]

PMMA MWCNT_MeOH Segregated 0.051 [20]

PMMA MWCNT (blended) Randomly distributed 0.45 [20]

PMMA MWCNT d Segregated 0.05 [9]

PMMA MWCNT e Randomly distributed 3.85 [9]

PMMA MWCNT f Agglomerated 1.96 [9]
a High density polyethylene b Ultrahigh molecular weight polyethylene c Poly(styrene-co-acrylonitrile d Mechanically
mixed e Melt mixed f Solution mixed.
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Similar to the previous figures, Figure 6 displays the data for PMMA and PMMA/MWCNT
composites that were melt mixed and tested using dielectric relaxation spectroscopy (DRS) (frequency
range 10−2–106 Hz) and four point probe DC conductivity [3]. The nanotubes were created using
CVD and had average dimensions of 9.5 nm in diameter and 1.5 µm in length. For PMMA and
0.5 wt% MWCNT, the conductivity increases linearly with frequency, indicating an insulating behavior.
For samples of 0.75 wt% MWCNT and above, a DC leveling out may be seen at a critical frequency.
Therefore, the samples become conductive and the percolation threshold is between 0.5 and 0.75 wt%.
At concentrations higher than 1 wt% MWCNT, there is saturation, and conductivity increases with the
amount of conducting filler. The drop in conductivity at frequency greater than 3× 104 Hz indicates that
the measurements were outside the upper experimental limit of the apparatus. Therefore, the authors
switched from DRS to four-point probe and re-measured the samples containing more than 1 wt%
(Figure 7). This figure also displays the expected properties for a variety of important applications [3].
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The conductivity versus frequency of MWCNT/polyamide 6 (PA6) composites for increasing
amounts of CNT is shown in Figure 8. These composites were created by diluting a 20 wt% masterbatch
of MWCNT/PA6, then melt mixing and compression molding. The CNTs had an outer diameter of
10 nm and a length of 10 µm. In this case, the beginning of percolation can be seen at 5 wt% MWCNT,
and the same change from frequency dependent to independent behavior seen in Figure 6 can also be
observed here [4].
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Logakis et al. [59] studied the impedance spectra for room temperature vulcanization silicon
rubber (RT-SR) and MWCNT composites (Figure 9). The carbon nanotubes used were 10–30 nm in
diameter and 10–15 µm in length and were chemically modified in ethanol with a coupling agent,
γ-aminopropyltriethoxy silane. In each plot, it can be seen that there are two semi-circles. Therefore,
the composite’s equivalent circuit can be represented as two parallel RC circuits, as depicted in
Figure 9e. Instead of using ideal capacitance, the authors used constant phase elements (CPEs) [64].
While the authors did not provide an equation that takes into account the inductance element shown
in their equivalent circuit, the complex impedance for their samples may be expressed using the
following equation:

Z∗ =
R1 − jCPE1R2

1

1 +ω2CPE2
1R2

1

+
R2 − jCPE2R2

2

1 +ω2CPE2
2R2

2

+ jwL (2)

R1 and CPE1 are produced by the polarization of the interfacial layer of MWCNT and RT-SR,
while R2 and CPE2 are the resistance and capacitance of the polarization of MWCNT at high frequency.
The authors used ZVIEW2 to simulate the sample and found that R1 and R2 decrease and CPE1 and
CPE2 increase with the loading of MWCNT [64]. Inductance values were not provided.

This section has illustrated through multiple examples that increasing the content of MWCNT
causes a percolation threshold to be reached. This in turn causes a jump in conductivity and a change
from insulator to conductor behavior. Figures 5–7 may be the same polymer system, MWCNT/PMMA,
but they all achieved very different percolation thresholds. This may be caused by differences in
MWCNTs characteristics or processing conditions used.
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(c) 0.029, and (d) 0.032. (e) Equivalent circuits of the MWCNT/RT-SR composites [64].

2.3. Effect of Processing Methods

The processing of the composites can also have a strong effect on the resultant properties. The CNTs
may end up dispersed, segregated from the matrix, or agglomerated depending on the processing.
This section will cover the ways that processing may affect the formation of a CNT network and
therefore the electrical properties.

Past research conducted by this group compared three different mixing methods (mechanical, melt,
and solution as in Figure 2 using otherwise the exact same source of materials and final compaction
method [9]. Polydisperse PMMA was used with a particle size in the range of 10−100 µm. MWCNTs
with a nominal diameter 8 nm but were found to be 20 nm in some cases and 0.5–2 µm in length. In all
cases, the samples go from capacitive behavior (−90◦ on phase degree graphs) to inductive behavior
(90◦) as the CNT content increases. For the phase degree graphs, 0◦ indicated resistive behavior.
The changes described can be seen in Figure 10. Mechanical, solution and melt mixtures percolated at
0.05 phr, 2 phr, and 4 phr, respectively. The difference in processing resulted in three very different
microstructures: segregated, agglomerated, and distributed, respectively. The even distribution of
the melt mixing causes the CNTs to not touch to form a network until a higher CNT concentration is
reached [9].
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Figure 10. Impedance magnitude and phase angle vs. frequency for (a,b) mechanically, (c,d) melt, and
(e,f) solution mixed CNT-PMMA composites [9].

The percolation thresholds of multiple polymer systems and methods of processing are compiled
in Figure 11, not taking into account the sizes of either the CNTs or the matrix particles [1,3,9,15,17–57].
A few general trends can be noted. Epoxy shows lower percolation thresholds than the other polymers
consistently. Melt mixed composites showed among the highest percolation thresholds, likely due to
high dispersal of CNTs. Solution mixed samples generally have percolation thresholds less than 1 wt%
with some higher. This method has the most variation in outcome microstructures and percolation
thresholds. This is presumably due to functionalization, which can both help and hinder formation
of the filler network. The mechanically mixed method is less commonly used, but consistently
showed <~0.5 wt% as a percolation threshold. This method results in a grain-like, segregated network
microstructure that pushes the filler to the edges of the matrix particles [9].
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Figure 11. Percolation thresholds for several carbon nanotube/polymer composites with different
processing conditions [1,3,9,15,17–57]. For more details about individual points, please see Table S1 in
the supplementary file.

Figure 12a demonstrates how annealing may affect the conductivity of injection molded
polycarbonate plates containing MWCNTs. After annealing at 230 ◦C for 1 hr, the conductivity
jumps several orders of magnitude. Figure 12b shows an increase in conductivity with annealing
time for different MWCNT amounts. This suggests that annealing allowed the microstructure to
change in a way that enhances the conductive network. The theory of the authors is that a secondary
agglomeration occurs that enhances the conductivity [65].
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Figure 12. Percolation for injection molded polycarbonate plates with MWCNTs before and after
annealing: (a) at room temperature (solid state) and (b) time evolution of the conductivity during
annealing in the melt at 230 ◦C for samples with different MWCNT contents [65].

Another example of annealing (Figure 13) was studied by Combessis et al. using very low density
polyethylene (VLDPE) [66]. The samples were annealed at 200 ◦C, 104 ◦C above the melting/softening
temperature of the matrix, VLDPE. As the annealing time increased, the percolation threshold decreased
and the conductivity increased. The final percolation threshold of 0.14 vol%, obtained after 1440 min
of annealing, has fair agreement with the theoretical value. This mechanism is referred to as dynamic
percolation, which is a type of filler auto-assembly mechanism [66].
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Figure 13. Variation of conductivity with filler amount at different annealing steps for
MWCNT/VLDPE [66].

Figure 14a,b compares the influence of thermal history on electrical conductivity in an amorphous
matrix polymer (PC with 1 wt% MWCNT) and a semi-crystalline polymer (PP with 2 wt% MWCNT).
In part a, heating above the glass transition temperature, Tg, allows secondary agglomeration to occur,
which increases the conductivity. When cooled, it maintains the new microstructure and conductivity.
In Figure 14b, the sample was heated from 100 ◦C to 200 ◦C rapidly (PP’s Tm = 145 ◦C ) and annealed
for 5 h, then it was cooled below the crystallization temperature at 0.2 K/min. The authors claim that the
initial low conductivity may be caused by a CNT network that was partially destroyed by the pressure
of compression molding. During melting and annealing, the secondary agglomerates were formed,
and the cooling trapped the CNT network. The decrease in conductivity is due to immobilization of
charge carriers that were partially prevented from interacting due to the crystalline portions [8,67].

J. Compos. Sci. 2020, 4, x FOR PEER REVIEW 12 of 27 

 

 

Figure 13. Variation of conductivity with filler amount at different annealing steps for 
MWCNT/VLDPE [66]. 

Figure 14a,b compares the influence of thermal history on electrical conductivity in an 
amorphous matrix polymer (PC with 1 wt% MWCNT) and a semi-crystalline polymer (PP with 2 
wt% MWCNT). In part a, heating above the glass transition temperature, Tg, allows secondary 
agglomeration to occur, which increases the conductivity. When cooled, it maintains the new 
microstructure and conductivity. In Figure 14b, the sample was heated from 100 °C to 200 °C rapidly 
(PP’s Tm = 145 °C ) and annealed for 5 h, then it was cooled below the crystallization temperature at 
0.2 K/min. The authors claim that the initial low conductivity may be caused by a CNT network that 
was partially destroyed by the pressure of compression molding. During melting and annealing, the 
secondary agglomerates were formed, and the cooling trapped the CNT network. The decrease in 
conductivity is due to immobilization of charge carriers that were partially prevented from 
interacting due to the crystalline portions [8,67]. 

 

Figure 14. Electrical conductivity of (a) an amorphous and (b) a semi-crystalline polymer-MWCNT 
composite during heating-annealing-cooling cycles [8,67]. 

Klonos, et al. did a comparative study on the effects of CNTs on thermal transitions, thermal 
diffusivity, and electrical conductivity in PE (semi-crystalline) and styrene-butadiene rubber (SBR) 
(amorphous) composites [68]. Due to the differences in polymer type, the two series of composites 
were fabricated using different methods. In the semi-crystalline series, linear low density 
polyethylene (LLD-PE) and MWCNT (average length 3–6 mm, external diameter 10 nm) were melt 
mixed at 140 °C and 40 rpm for the rotation speed of the rotating blades, then compression molded 
at 130 °C . In the amorphous series, SBR was combined with MWCNTs from a different source that 
has an average length 1.2 μm and external diameter ~9.5 nm. Despite the differences between the two 

Figure 14. Electrical conductivity of (a) an amorphous and (b) a semi-crystalline polymer-MWCNT
composite during heating-annealing-cooling cycles [8,67].

Klonos, et al. did a comparative study on the effects of CNTs on thermal transitions, thermal
diffusivity, and electrical conductivity in PE (semi-crystalline) and styrene-butadiene rubber (SBR)
(amorphous) composites [68]. Due to the differences in polymer type, the two series of composites
were fabricated using different methods. In the semi-crystalline series, linear low density polyethylene
(LLD-PE) and MWCNT (average length 3–6 mm, external diameter 10 nm) were melt mixed at 140 ◦C
and 40 rpm for the rotation speed of the rotating blades, then compression molded at 130 ◦C. In the
amorphous series, SBR was combined with MWCNTs from a different source that has an average
length 1.2 µm and external diameter ~9.5 nm. Despite the differences between the two series, both
had a percolation threshold between 2 and 4 CNT wt% as seen in Figure 15. Overall, the electrical
conductivity and trends are very similar suggesting almost no effect of crystallinity on conductivity [68].
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On the other hand, Sullivan et al. [64] observed that crystallization induced by the presence of graphite
nanoplatelets in polylactic acid led to increases in the electrical conductivity.
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Figure 15. Real conductivity versus (a) frequency and (b) CNT wt fraction for PE/MWCNT and
SBR/MWCNT composites [68].

Schlea et al. studied network formation of MWCNTs/PETI-330 composites before and after curing
to determine how the network is affected by the process [69]. The MWNTs had diameters of 10–12 nm
and micron lengths. Overall, there is little change in the conductivity of the composites before and
after being cured, except for before the percolation threshold, as seen in Figure 16a. The percolation
threshold also does not show a large change between uncured (0.77 wt%) and cured (0.80 wt%)
composites, which is displayed in Figure 16b,c. This shows that the curing does not play a large role in
rheological transport and did not cause aggregation [69].
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As previously mentioned, viscosity and therefore mixing temperature and shear rate may also
affect the properties of the composites. Figure 17 illustrates how the melt viscosity affects the structure of
1 wt% MWCNT/PC composites using three different PCs of different molecular weight. The composites
were prepared by melt mixing at 280 ◦C and 50 rpm for 5 min. Higher melt viscosity results in smaller
initial agglomerates, which results in faster agglomerate infiltration [70].
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Figure 17. Optical micrographs of polycarbonate with 1 wt% MWCNT (Baytubes C150HP) where the
polycarbonate differs in melt viscosity: (a) low (Makrolon2205), (b) medium (Makrolon 2600), and
(c) high (Makrolon 3108) melt viscosity [70].

Figure 18 is an example that demonstrates that the compression molding temperature is very
important to the resulting AC conductivity and microstructure of 0.6 vol% MWCNT/PC composites.
The micrograph for the lower temperature molding shows homogeneous distribution of nanotubes.
The initial agglomerates were destroyed during melt mixing at 250 ◦C for 15 min with 50 rpm.
The micrograph of the higher temperature (lower viscosity) molding shows inhomogeneous nanotube
distribution with secondary agglomerates. The conductivity measurement matches the microstructures
formed: the higher temperature molding is conductive, while the lower temperature is insulating [37].
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Figure 18. Variation of conductivity with frequency for compression molded polycarbonate/MWCNT
plates (0.6 vol% MWCNT) and related TEM micrographs. (a) real (ε’) and imaginary (ε”) permittivity
and AC conductivity (σ’) plotted vs frequency; (b) TEM micrographs of samples pressed at 300 ◦C;
(c) and 250 ◦C [37].
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2.4. Modification of the MWCNT

MWCNTs are often functionalized in order to increase the dispersion of the CNTs in the polymer.
In Figure 19, it can be seen that while there is little change to the CNT, there are fewer defects after it
is oxidized [7]. This section will explore how the electrical properties change with functionalization
of CNT.
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and oxidized (2) [7].

Figure 20 shows the change in conductivity with frequency for MWCNT/methylvinyl silicone
rubber (VMQ) composites where the nanotubes were modified with cetrimonium bromide (CTAB),
3-Aminopropyltriethoxysilane (KH550), and both CTAB and KH550. The CNTs were originally
20–40 nm in diameter and 5–15 µm in length. The composites were made via solution mixing and hot
pressing. With KH550, the MWCNTs are tightly bound with the rubber and there are thick rubber
layers among the CNTs, which make it more difficult to conduct electrons. CTAB, on the other hand,
results in higher conductivity due to more physical interfacial action between MWCNTs. The NH3

+

is also helpful for decreasing the energy barrier for charge transport. The combination of the two
modifiers causes stronger interfacial interaction and better dispersion, and therefore the conductivity
falls in between the individual modifier data [10].
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Ryu et al. studied the conductivity versus MWCNT loading for MWCNT/PMMA composites
blended with dimethylformamide (DMF), methanol (MeOH), or nothing made using the method
shown in Figure 21. The MWCNTs have a 5–10 nm inner diameter, a 60–100 nm outer diameter, and an
aspect ratio of 1000–1600. Both DMF and MeOH increased the conductivity of the composite with
DMF increasing it the most. The percolation thresholds are low due to formation of grain-like structure
with CNT on the outside of PMMA particles. Therefore, these mixing mediums clearly enhanced the
MWCNT/PMMA composite [20].
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Zhu, et al. compared aligned and unaligned MWCNT within an epoxy matrix along using
pristine (p-) and amine- functionalized (a-) MWCNT (Figure 22) [71]. The MWCNT had a mean
diameter of 20 nm and average length of about 10 m. The pristine MWCNT was then purified using
hydrofluoric acid. A-MWCNT was created by further chemical modification of the pristine MWCNT.
An electric field was used to align the MWCNT, then UV light was used to rapidly polymerize the
epoxy and hold the alignment. The composites were measured both perpendicular and parallel
to the electric field. The pristine MWCNT composites had higher conductivity overall than the
amine-functionalized MWCNT composites. Aligned MWCNT also had higher conductivity than
unaligned MWCNT. At higher frequencies, perpendicular measurements of the aligned MWCNT were
close to the non-aligned MWCNT. However, at low frequencies, the aligned perpendicular MWCNT
had higher conductivity than the non-aligned one. Parallel measurements of aligned MWCNTs
composites had the highest conductivity [71].
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The effect of functionalizing CNT composites varies widely depending on the modifiers, additives,
and solvents used. In the previous case (Figure 21), the conductivity increased with functionalization,
as shown in Figure 22. The effect of the modifiers’ conductivity cannot be determined from Figure 20
since plain MWCNT composites in the same processing conditions was not compared to. However,
functionalization may be a solution to obtain even distribution of MWCNT in the polymer matrices.

2.5. Effect of Aspect Ratio of MWCNT

The ratio between the size of the MWCNTs and size of the matrix particles is important to consider
in the fabrication of composites. It is difficult to compare composites of different research papers
because even if the same type of material is used, the sizes used may be different.

Martin et al. studied the effect of CNT lengths on epoxy composites [47]. Figure 23 displays the
change in conductivity versus CNT content for three different CNT lengths: 10, 17, and 43 µm [52].
The polymer matrix is based on a bisphenol-A resin (Araldite LY 556 from Vantico, Basel, Switzerland)
and an amine hardener (Araldite HY 932 from Vantico). In this case, the composites made from CNTs
with 10 µm in length percolated first, followed by 17 µm CNTs. Therefore, for composites using the
same matrix and CNT diameter (~50 nm), it is shown that shorter CNTs would be preferred, most
likely due to increase in the difference in size between the CNT and epoxy matrix [52].
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Figure 24 compares the resistivity of composites made with nanotubes of different lengths in
PMMA [9,72]. The matrix material for this study was PMMA from Buehler’s Transoptic Powder.
The PMMA used was polydisperse with a particle size in the range of 10−100 µm. Carbon nanotubes
were used as the filler. The shorter CNTs were nominally 8 nm in diameter but were found to be 20 nm
in some cases and 0.5–2 µm in length. The longer CNTs were nominally 8–15 nm in diameter and
10–50 µm in length. They were bought from Cheaptubes.com. Four of the series were made through
mechanical mixing with either 150 ◦C or 170 ◦C as compression molding temperature [9,72]. The last
two were made through solution and melt mixing with 170 ◦C as compression temperature [9].
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temperatures [9,72].

In Figure 24, the short-MWCNT mechanically mixed composites at both 150 ◦C and 170 ◦C
have lower percolation points than composites made with long-MWCNT composites. In the case of
mechanically mixed composites, the increased difference in size ratio between the PMMA and MWCNT
length allows the CNTs to form a segregated network easier. Melt mixed composites dispersed the
CNTs so well that they showed the highest percolation point out of the different series shown, while
solution made samples sit in between [9,72].

Figure 25 displays the same data as in Figures 4 and 11 with some points not included due to
size information not being provided [1,3,9,15,17–57]. In this case, the data is plotted as the change in
percolation threshold with the diameter/length of the MWCNTs. While longer nanotubes increase pc

in some cases, it is difficult to draw conclusions unless the size of the matrix and processing method is
also considered. This emphasizes the importance of taking into account the history of the sample and
its constituent sizes. All of them combined change the resulting properties, which is difficult to show
in a 2D graph.

2.6. Single-Walled Carbon Nanotube (SWCNT)

Single-walled carbon nanotubes (SWCNTs) need to be explored separately from MWCNTs. Purity
may also affect both types of nanotubes; Pötschke et al. studied the effect of purity on SWCNT/PC
composites [73]. As the purity of the SWCNT increased, the percolation threshold increased and
conductivity decreased (Figure 26). There are multiple possibilities for this result. One is that the CNT
lattice was weakened by defects caused during purification. The CNTs would then break under the
shear of melt mixing and decrease the aspect ratio of the CNTs. A second possibility is the removal
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of non-CNT particles causing an increase in CNT interparticle interaction, resulting in increased
agglomeration and higher conductivity [73].J. Compos. Sci. 2020, 4, x FOR PEER REVIEW 19 of 27 
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Figure 27 is a compilation of percolation thresholds and maximum conductivity values for
several polymer system matrices with SWCNT disregarding processing methods and size of
SWCNT [25,51,56,73–93]. In Figure 27a, it can be seen that percolation thresholds were below
4 wt% in all cases, with the majority being less than 1 wt%. In Figure 27b, most max conductivity
values are below 10 S/m at concentrations varying from about 0.01 to 15 wt%. As a result, maximum
conductivity values above 100 S/m are regarded as outliers [93]. For more details about the individual
points, please see Table S2 in the supplementary file.J. Compos. Sci. 2020, 4, x FOR PEER REVIEW 21 of 27 
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3. Conclusions

The addition of MWCNTs can increase the electrical, mechanical, and thermal properties of a
composite material. This paper focused on insulating polymer matrices with MWCNTs as fillers.
After explaining methods of functionalization of the CNTs and the importance of percolation, the general
steps for MWCNT and polymer mixing were discussed. It was emphasized that the type of polymer,
functionalization method of CNTs, and processing technique used have a strong influence on the
resulting microstructure and properties of the composite, along with the amount of CNT needed to
achieve percolation in the composite.
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There are several trends shown in this paper, which are summarized in Table 2. First, a percolation
threshold will be reached as MWCNT content is increased, causing the conductivity to jump orders of
magnitude and for the composite to transition from insulator to conductor. The composites also may
be represented as two parallel RC circuits with some inductance in some cases. Second, the polymer
matrix is also important to electrical properties. Segregated structures and amorphous systems are
able to achieve lower percolation thresholds and higher conductivity than semicrystalline materials.
Third, functionalization may increase or decrease conductivity by distributing the MWCNTs. Fourth,
thermal history and processing is very important to the resulting composite properties.

Table 2. Summary of Trends for MWCNT Polymer Composites.

Differences in Polymer
Systems Percolation threshold is higher for randomly distributed structures and lower for segregated

Effect of increasing the
amount of MWCNT

Even using the same polymer system, different percolation thresholds may be caused by
differences in MWCNT characteristics and processing conditions

Effect of Processing
Methods

Melt—evenly distributes
Solution—may cause any microstructure
Mechanical—segregated grain-like microstructure
Annealing—increase conductivity in both PC, PP and PE composites, decreased percolation
threshold in PE composites
Curing—uncured PETI composite had higher conductivity than cured before percolation.
Little difference above percolation
Melt viscosity—higher melt viscosity results in smaller initial agglomerates
Compression molding temperature: higher molding temperature resulted in more conductive
composites

Modification of CNT
The effect of functionalizing CNT composites varies widely depending on the modifiers,
additives, and solvents used. Functionalization may be a solution to obtain even distribution
of CNT

Effect of Aspect Ratio of
MWCNT

Shorter CNT results in lower percolation—due to increase in the difference in size between
CNT and matrix

SWCNT Purity—increased purity decreased conductivity and increased the percolation threshold

Theoretical and experimental values for percolation threshold show large discrepancies for
different polymer systems and processing methods due possibly to poor dispersion or differences in
the starting materials, thermal history, and/or sizes of the fillers. Annealing can be successfully used to
get rid of some of these discrepancies. Additionally, the ratio of the size of the filler to matrix is very
important. The smaller the ratio, the easier it is for percolation to be achieved. Comparison between
composites is unreliable, unless all factors are taken into account. Lastly, purification may cause a
decrease in conductivity and an increase in percolation threshold.

Supplementary Materials: The following are available online at http://www.mdpi.com/2504-477X/4/3/100/s1,
Table S1: MWCNT/Polymer Composite Electrical Data, Table S2: SWCNT/Polymer Composite Electrical Data.
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