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Abstract: This research work investigates the low-velocity impact induced damage behavior and its
influence on the residual flexural response of glass/epoxy composites improved with milled glass
fillers. The low-velocity impact damage employing varying impact velocities (3 m/s, 3.5 m/s, and 4 m/s)
was induced on baseline and filler loaded samples with different fiber orientations. The residual
performance and their damage modes were characterized using post impact flexural (FAI) test and
acoustic emission (AE) monitoring. In all fiber orientations, the filler modified glass/epoxy samples
showed improved impact strength and stiffness properties. A substantial improvement in impact
damage tolerance, especially for samples impacted at 3.5 m/s and 4 m/s was observed. The presence
of filler at the interlaminar zone contributed to improved energy dissipation through filler debonding
and pull-out. This further contributed in arresting the crack growth, showing reduced damaged area.
The inclusion of milled fibers on glass/epoxy laminates enhanced the impact toughness and residual
flexural behavior.

Keywords: composite; impact behavior; delamination; nondestructive testing

1. Introduction

The lightweight structures in the field of aerospace and defense sectors, automotive, wind turbine,
and construction industries widely use fiber reinforced composites, due to their high specific
stiffness/strength, property tailoring capability, improved fatigue, and corrosion resistance [1,2].
However, laminated composites possess numerous weaknesses like low impact resistance, delamination
problems, low transverse mechanical properties, and weak fiber–matrix interface. During their
maintenance, service life, these composites structures can be subjected to different impact loading
conditions such as high, medium, and low velocity and are susceptible to such impact loadings.
Amongst these impact scenarios, the low velocity impact occurs for example during maintenance
by tool drop (or) by runway debris which is difficult to detect as impact damage is not so visible as
opposed to high velocity impact damage. However, this type of damage can progress during service
loading conditions and significantly reduces the structural integrity (strength and stiffness) of the
structures [3,4].
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In this approach, synergic effects of two or more types of materials are adapted. Initially, the matrix
cracking occurs within the plies during an impact events (out of plane loading). Subsequently,
coalescence of these crack leads to delamination between the plies which drastically reduces the
strength and stiffness of the laminates. Typically, the mode II interlaminar shear stress controls the
delamination induced during impact loading [5]. Also, it was highlighted that the delaminated
area and buckling of plies affect the residual strength of the composites [6,7]. This critical failure
delamination causes the loss of stability during post impact tests, resulting in lower residual strength.
Hence, it is essential to evaluate the impact resistance of these structures and its damage tolerance to
ensure the safety and integrity. Moreover, these damage occur internally and difficult to detect from
normal visual means. In such situations, the application of structural health monitoring (SHM) to
evaluate the barely visible impact damages (BVID) becomes of paramount importance.

Numerous studies have been carried out on the post-impact tensile and compressive performance
of composite laminates [8–11]. However, only a few works have been performed in residual flexural
properties [12–15]. It was reported that the impact energy controls the delaminated area and residual
strength of the laminates [10]. The repeated low velocity impact response of carbon/epoxy laminates
was experimentally investigated. The bending stiffness decreased and delamination area increased
with the increasing number of impacts [11]. Santiuste et al. [15] studied the impact response and
flexural after impact behavior of glass/polyester laminates. It was reported that the impactor nose and
width of the beam affected the damage evolution, absorbed energy, and residual strength. However,
no substantial influence on the relationship between impact energy absorption and residual strength
was reported.

Furthermore, researchers [16–22] have improved the impact and/or delamination resistance
through inclusion of micro/nano-sized fillers into the epoxy matrix. Crack pinning, crack bridging,
and crack deflection mechanisms were reported to improve the interlaminar fracture toughness [17,18].
Moreover, in recent years, a hybrid approach has been extensively used in composite materials for
property enhancement as well as material valorization. For example, work carried out by Lee et al.
investigated the performance of concrete by incorporating waste glass powder and waste glass sludge
(silica based waste industrial byproducts) with a view to develop a sustainable alternative cementing
material for the construction industry. It was reported that significant improvements in mechanical
property and durability were achieved with the incorporation of glass sludge [23]. Similarly, Mu et al.
investigated the effects of short glass and PVA fibers on the mechanical properties of composite plates
fabricated by extrusion process. Their results indicated that by hybridizing stronger glass and ductile
PVA fibers exhibited an enhanced tensile and impact toughness of studied composite plates [24].

Current research work of incorporating nano-particles into different matrix materials has shown
greater potential to improve the interlaminar properties. Nicholas et al. [21] reported that the samples
with higher GnP concentration showed greater energy dissipation during impact loading. Also,
the pristine samples exhibited noticeable surface damage resulting from matrix cracking, delamination,
and fiber breakage while the samples modified with GnPs indicated reduced extent of damage
area. However, inclusion of nanoparticles/nanofillers requires costly functionalization process
which facilitates uniform dispersion and better interfacial bonding with epoxy matrix [16,19,20].
Cholake et al. [22] investigated the effect of milled carbon fibers on the mode I fracture toughness.
Addition of fillers by 5 wt % and 10 wt % were reported to improve the fracture toughness of the matrix
by 261% and 692%, respectively. Also, inclusion of milled glass fibers showed substantial improvement
in impact and delamination resistance of glass/epoxy laminates [23–26]. All the research mentioned
above indicate that addition of fillers into the laminates promote delamination resistance.

This study aims to investigate the influence of milled fibers hybridization on the low velocity
impact resistance and post-impact flexural properties of the glass/epoxy laminates. The epoxy matrix
was modified with milled fibers by 5% weight fraction. The filler modified glass/epoxy laminates
with uni-directional (UD), cross-ply (CP), and quasi-Iso (QIS) orientation were impacted at 3 m/s,
3.5 m/s, and 4 m/s respectively. The impact response was investigated and the results were correlated
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with the baseline laminates. Also, the residual load-bearing capacity was estimated by conducting a
three-point bending test with online acoustic emission monitoring. The novel aspects of this work
lie in implementing milled glass fibers as a replacement to expensive fillers with enhanced impact
and post impact residual properties. The incorporation of these low-cost fillers has contributed a
significant improvement on the impact toughness behavior. Additionally, the post impact flexural
behavior improvement and how the damages have evolved by linking to failure modes are reported.

2. Experimental Procedure

2.1. Materials and Fabrication of Composite Laminates

Unidirectional glass fiber mats (220 GSM), were procured from Mark Tech Composites (Bangalore,
India) and LY556 epoxy resin with HY951 hardener was employed as a reinforcement and matrix
material. The density of epoxy and hardener was 1.12—1.15 g/cm3 and 0.98 g/cm3, 3 respectively.
Unidirectional [0◦]8S, Cross-ply [0◦/90◦]4S and Quasi-iso [0◦/45◦/90◦/−45◦]2S laminates were fabricated
by hand lay-up technique and further cured under 50 kN compression molding machine. Initially,
the epoxy resin was added with milled glass fibers (by 5% weight of epoxy) and mechanically stirred.
The mixture was sonicated well to achieve uniform distribution. Then, hardener was added to the
mixture at a ratio of 1:10 by weight and stirred well to initiate the curing process and ease proper
mixing [27,28]. Later, a brush and a roller were used to evenly distribute the epoxy mixture and
impregnate the fibers. All the laminates were allowed to cure under a compaction pressure of 5 MPa at
room temperature for 24 h. The fiber content in the laminates was calculated according to the ASTM
D3171-99. The fiber content in the baseline laminates (neat glass/epoxy) was 48%. Similarly, the fiber
content in filler loaded laminates was 51%. The size of the fabricated laminates was 500 mm × 500 mm
and its nominal thickness was 4.5 (±0.25) mm and was measured with a digital Vernier caliper.
Abrasive water-jet cutting technique was used to prepare the samples of 150 mm × 30 mm (according
to ASTM D790-03 standard) [28,29].

2.2. Low Velocity Impact Test

Low velocity impact test was performed on a CEAST Fractovis Plus 7526 drop weight impact tester
(Instron, Chennai, India) at room temperature. The baseline and filler loaded glass/epoxy laminates
were subjected to impact velocities of 3, 3.5, and 4 m/s respectively. The hemispherical steel impactor
with a mass of 1.926 kg and 12.7 mm diameter was used. The samples were centrally supported in a
circular base fixture with 75 mm diameter. In order to prevent multiple impacts, a catcher mechanism
with a clamping force of 1000 N was employed. Four repetitions were performed in each type of
sample and their average values with standard deviations were recorded. A drop weight impact
testing system and AE monitoring schematic is shown in Figure 1.
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mechanism for arresting multiple impact; and (c) Clamping fixture and post-impact test with AE
monitoring (right). (d) Impacted glass/epoxy samples being subjected to three-point bending test.
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2.3. Post-Impact Flexural Test with AE Monitoring

The post-impacted glass/epoxy samples were subjected to three-point bending test with a
cross-head speed of 1 mm/min in 100 kN Tinius Olsen universal testing machine. The span length was
kept as 100 mm, and four repetitions were performed in each category of samples and average values
were taken. The residual load-bearing capacity was evaluated and the results were correlated with
the non-impacted (virgin) baseline and filler modified samples. In this work, an eight-channel AE
system with a sampling rate of 3 MHz and a 40 dB pre-amplification was used. The ambient noises
were filtered with a threshold of 45 dB. Two wideband (WD) sensors were fixed in the samples at a
nominal distance of 100 mm along length. High vacuum silicon grease was used as a couplant between
the surface of the sample and AE sensor. The peak definition time (PDT), hit definition time (HDT),
and hit lockout time (HLT) were set to be 31 µs, 150 µs, and 300 µs respectively. The average wave
velocity for both baseline and filler modified glass/epoxy samples was found to be 3120 m/s. Pencil
lead break test was carried out to assess the wave velocity and calibration of sensors.

3. Results and Discussion

3.1. Low-Velocity Impact Damage Behavior

Figure 2 shows the load, deformation, and energy response of glass/epoxy samples subjected
to different impact velocities. The low velocity impact test results of glass/epoxy samples with
uni-directional (UD), cross-ply (CP), and quasi-iso (QIS) configurations are depicted in the plots.
The filler modified samples showed higher peak load than the baseline samples, in all the cases of
orientation and velocities. The measured peak force was observed to reach a load plateau region at higher
velocities, which indicates that impact force does not increase beyond an energy threshold. Figure 2a
shows the force vs. deformation response of glass/epoxy samples impacted at 3 m/s. The incidence of
minor oscillation after the incipient point corresponds to matrix cracking and interlaminar delamination.
Typically, the load–deformation response is characterized by a progressively increasing load which
attains a maximum peak (peak load) and subsequent load drops. In all the cases of impact, the impactor
has deformed the samples and returns through rebound without causing severe penetration.

The load–deformation plot depicts the impact damage evolution and the change in stiffness of
the glass/epoxy samples. The curve profile was initially smooth with minor oscillation, indicating
no dominant failure has occurred in all the glass/epoxy samples. However, as the impact velocity
increases, sudden load drops were observed beyond peak load indicating the expansion of impact
damage (delamination) as shown in Figure 2b,c. In contrast, this behavior was absent in the filler
loaded samples of all fiber orientations. The above results indicate that the filler modified samples
show enhanced impact performance than the baseline glass/epoxy samples [30–33].

Typically, the stiffness of the unidirectional (UD) samples was observed to be better than the
cross-ply (CP) and quasi-iso (QIS) laminates under impact events. Also, irrespective of fiber orientation,
the filler-loaded samples showed better impact stiffness than the reference specimen. The addition
of milled glass fibers into the epoxy matrix has improved the interlaminar properties through crack
deflection/arresting and filler debonding/pullout toughening mechanisms, resulting in enhanced
impact strength/stiffness. The presence of filler in the interlaminar region prevents/delays the onset of
damage initiation and propagation and consequently improves the impact resistance than the baseline
samples. As expected, the deformation of the samples increases with impact velocity. Irrespective of
fiber orientation, the deformation was minor in filler loaded samples in comparison with baseline
samples as shown in Figure 2c. At 3 m/s the quasi-iso (QIS) laminates showed large deformation,
while at 3.5 m/s and 4 m/s impact velocity the cross-ply samples exhibited greater deformation than
the other fiber orientations.
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As discussed in the literature [23], greater energy absorption through large deformation and
substantial damage occurred owing to extended contact of striker with the sample. In general,
unidirectional (UD) samples showed less contact duration than the cross-ply (CP) and quasi-iso (QIS).
However, the contact duration increased with increasing impact velocity. It can be observed from
Figure 2b,c, that the cross-ply samples had longer contact duration, exhibiting large deformation
compared to quasi-iso and unidirectional samples. On the other hand, the filler-loaded samples
exhibited less contact duration and maximum deformation in comparison with baseline samples.
This result signifies that irrespective of fiber orientation, inclusion of milled fibers has enhanced the
stiffness/rigidity [24].

Figure 3a shows the peak force offered by the laminates, denoting the impact load resistance of
the samples. The change in peak force related to impact velocity was prevalent only in quasi-iso (QIS)
baseline samples compared to cross-ply (CP) and unidirectional (UD) baseline samples. However,
filler loaded samples showed significant improvement in peak force in all cases. The percentage increase
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in peak load due to the inclusion of filler is shown in Figure 3b. Unidirectional (UD) samples showed
substantial improvement compared to cross-ply (CP) and quasi-iso (QIS) samples. These results
confirm that the fiber orientations and the presence of fillers (milled fibers) have influenced the
resistance to the impact force. Typically, the deformation increases with impact velocity as shown in
Figure 3c. In all fiber orientation, the baseline samples exhibit larger deformation than the filler-loaded
samples. The change in maximum deformation with respect to impact velocity (between 3 m/s to 4 m/s)
was 76% in unidirectional (UD), 66% in cross-ply (CP) and 35% in quasi-iso (QIS) baseline samples
respectively. However, this variation was only 65% in unidirectional (UD), 60% in cross-ply (CP),
and 27% in quasi-iso (QIS) filler loaded samples respectively. Figure 3d shows the percentage reduction
of maximum deformation in filler loaded samples. At all impact velocities, unidirectional (UD) samples
showed prevalent reduction in deformation than cross-ply (CP) and quasi-iso (QIS) samples.
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During an impact event, the energy absorbed by the laminates is dissipated through the damage
formation. The integral area bounded by the loading and unloading profile of load–deformation curve
indicates the absorbed energy. Figure 2d,f shows the energy-time response of glass/epoxy samples
impacted at different impact velocities. In all the cases, the baseline samples showed greater absorbed
energy, signifying the presence of severe damage in the laminates. As suggested in literatures [34–37],
highest value of the absorbed energy shows the laminate has severe damage and consequently lower
elastic energy. The samples absorb more energy with increasing impact velocity as shown in Figure 4a.
Correspondingly, the baseline samples showed substantial variation in absorbed energy with increasing
impact velocity (3 m/s to 4 m/s). This variation was 1.86, 2.42, and 2.8 times in unidirectional (UD),
cross-ply (CP), and quasi-iso (QIS) baseline laminates. Conversely, the filler-loaded samples showed
less absorbed energy as shown in Figure 4b.
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The percentage reduction in absorbed energy was significant in unidirectional (UD) samples
than cross-ply (CP) and quasi-iso (QIS) samples. Moreover, this percentage variation decreases
with increasing impact velocity. This observation was prominent in cross-ply (CP) samples which
corroborates the criticality of damage with increasing impact velocities. These observations were
reflected well in the results of the residual load.

Energy profile diagram (EPD) depicts the relationship between the absorbed energy and
corresponding impact energy. The impact damage criticality at various impact energies can be
inferred from Figure 4c. As expected, the absorbed energy and impact damage (delamination) increased
with the impact energy. The cross-ply (CP) samples exhibited higher absorbed energy compared to
unidirectional (UD) and quasi-iso (QIS) laminates in all the cases. This result confirms that the cross-ply
samples suffered predominant impact damage. Subsequently, this also reflected well in the damage
degree and elastic energy results. Damage degree measures the deterioration of impact performance
and shows the expansion of impact damage [30]. It is significant to note that no penetration has
occurred in all the cases considered. Figure 4d shows an increase in damage degree with impact
velocity, which reveals the expansion of impact damage. However, the filler-loaded samples showed
lower damage degree than the baseline samples.

During impact events, initially the impactor velocity is higher. Correspondingly, the samples
attain a maximum deformation when the velocity of the impactor reaches zero. Figure 5a,b shows
the incidence of bounce point in the velocity–time plot. Here for clarity, only the results of samples
impacted at 3 m/s and 4 m/s were shown. At 3 m/s, both the baseline and filler loaded quasi-iso (QIS)
samples had delayed bounce point while earlier bounce point occurred for the unidirectional (UD)
and cross-ply (CP) filler loaded samples. However, at 3.5 m/s and 4 m/s, the cross-ply (CP) baseline
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samples had delayed bounce time. In all the cases, the unidirectional (UD) filler loaded samples had
shorter bounce time as shown in Figure 5c. Irrespective of fiber orientation, the filler-loaded samples
showed earlier bounce points compared to baseline samples. These results confirm that addition of
milled fibers improved the impact strength/stiffness, resulting in lesser deformation and earlier bounce
points (impact response).
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Figure 5d shows the velocity ratio of different glass/epoxy samples at various impact velocities.
The ratio of rebound velocity to impact velocity is known as velocity ratio (VR/VI). A decrease in
velocity ratio was observed with increasing impact energy, which denotes the progression of impact
damage. In all the cases, filler modified samples show greater velocity ratio and elastic energy.
This result further indicates that the inclusion of milled fibers has enhanced the impact resistance of the
glass/epoxy samples. Overall, the filler-loaded samples exhibited shorter bounce time than the baseline
samples. The filler loaded samples exhibited a higher velocity ratio than the baseline samples, which is
attributed to the instant elastic energy offered by the filler-loaded samples during an impact event.

As discussed earlier, at higher impact velocities, more energy will be consumed in damage
formation rather than impactor rebound. In all the cases, elastic energy of filler loaded samples
was substantially improved than baseline samples as shown in Figure 6a. As shown in Figure 6b,
the variation in elastic energy was observed to decrease at higher impact velocity. At 4 m/s impact,
the samples absorbed more energy and experienced severe impact damage. Permanent dents induced
on the samples are known as residual deformation. Figure 6c shows the residual deformation increases
with impact velocity, indicating the development of impact damage. At 3 m/s, unidirectional baseline
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samples showed higher residual dent than the other categories of laminates, whereas at 3.5 m/s and
4 m/s, the cross-ply samples exhibited a higher residual dent.
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Conversely, the filler-loaded samples possess less permanent denting, evidencing the improvement
of impact damage resistance by the incorporation of milled glass fibers. The percentage variation
of residual denting was substantial in unidirectional (UD) and cross-ply (CP) samples as shown in
Figure 6d. The contribution of milled fibers to the reduction in permanent deformation was minimal
at 3 m/s. However, this was prevalent at higher impact velocities, especially in unidirectional (UD)
and cross-ply (CP) samples. The milled fibers in the polymer matrix induce filler debonding/pullout
mechanisms which contribute to energy dissipation (shown in Figure 7). The samples with higher
absorbed energy possess lower elastic energy with consequently more damage area (shown in Figure 8).
The contribution of milled glass fiber fillers on elastic energy was significant in unidirectional (UD) and
cross-ply (CP) than quasi-iso (QIS) samples. The milled fibers in the interlaminar region arrests/prevents
delamination crack growth, which results in lesser impact damage area (shown in Figure 9).
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Figure 10 depicts the load bearing capacity of various configurations of glass/epoxy samples.
The post impacted unidirectional (UD), cross-ply (CP), and quasi-iso (QIS) glass/epoxy samples were
subjected to three-point bending tests to determine the residual load-bearing capacity. As expected,
the residual load decreased with impact velocities. However, this reduction in residual load was
minimal in filler loaded samples as shown in Figure 11a. The percentage variation in flexural load
was predominant in unidirectional (UD) and quasi-iso (QIS) baseline samples. The cross-ply (CP) and
quasi-iso (QIS) samples impacted at 3.5 m/s and 4 m/s showed prevalent decrease in flexural load,
evidencing the impact damage criticality. During flexural loading, the impact damage (delamination)
progressed across the sample width and the ultimate failure occurs by either fiber micro-buckling or
in-plane fiber tensile failure.

Figure 11b depicts the percentage variation in residual load carrying capability of glass/epoxy
laminates. In all the cases (non-impacted, impacted at 3, 3.5, and 4 m/s), the improvement in load
bearing capacity was prevalent in unidirectional (UD) samples compared to the cross-ply (CP) and
quasi-iso (QIS) samples. For non-impacted and 3 m/s impacted samples, only nominal increase was
observed in cross-ply (CP) and quasi-iso (QIS) samples. Conversely, the cross-ply (CP) and quasi-iso
(QIS) samples impacted at 3.5 m/s and 4 m/s velocities showed significant improvement in residual
flexural strength. The contribution of milled fibers in damage dissipation and efficient load transfer
was considerable at 3.5 m/s and 4 m/s impact velocity. Figure 7 illustrates the impact energy dissipation
through filler debonding/pullout. Additionally, the milled fibers at the interlaminar zone hindered
the delamination crack progression. Therefore, in all cases, filler-modified laminates show improved
residual load bearing capacity.
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3.2. Post Impact Flexural Test with Online AE Monitoring

The residual load bearing capacity of glass/epoxy laminates were evaluated by performing
post-impact flexural testing. Online AE technique was employed during three-point bending test to
monitor the evolution of damage in the samples. The initiation and progression of damage, and its failure
mechanisms associated during post-impact flexural loading were discussed. The fiber orientation of
the samples was found to significantly influence the load-bearing capacity and its corresponding failure
modes. Figure 12 shows the schematic illustration of impacted samples under flexural loading with
online AE monitoring. Initially, the profile was almost flat (Zone I), attributed to insignificant damages
such as matrix cracking. However, further loading causes a rise in slope (Zone II) of the normalized
AE cumulative counts, indicating the substantial damage progression (debonding/delamination).
Furthermore, a steep rise in normalized AE cumulative counts (Zone III) indicates the occurrence
of ultimate failure. Figure 13a,f shows the normalized AE cumulative counts plots which illustrate
progression of damage in the sample during flexural test [38,39]. Samples impacted at higher velocities
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showed premature incidence of Zone II and Zone III of normalized AE cumulative counts compared to
non-impacted samples.
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Figure 13a,b illustrate the AE cumulative count results of baseline and filler loaded unidirectional
samples. The unidirectional samples exhibited longer Zone II with nominal Zone I and Zone III.
In contrast, the baseline and filler loaded quasi-iso samples showed extended Zone I with shorter
Zone II as shown in Figure 13e,f. Figure 13c,d shows that Zone I was observed to be very short while
Zone II and Zone III occurred earlier in cross-ply samples than the unidirectional and quasi-iso samples.
All these results reveal that, irrespective of fiber orientations, the filler loaded samples exhibited
delayed damage initiation and progression.
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The frequency analysis was performed to discriminate the various failure mechanisms in the
glass/epoxy samples. The failure modes observed from the tests were also reported in previous
works by Ramirez-Jimenez et al. [40]. Arumugam et al. [27,28] stated that the AE signals with low
duration and low amplitude correspond to the matrix cracking failure mode. Also, a high duration
and moderate amplitude signals indicate delamination. While a short duration and high amplitude
signals characterize fiber failure. Figure 14a,d shows the load–displacement response accompanied
with peak frequency—AE location plot of unidirectional samples. Initially, the curve profile was linear
followed by a non-linear zone. This transition load corresponds to the incidence of matrix cracking.
Consequently, with increasing load, the coalescence of these micro damages leads to expansion of
damage in the samples, which causes the formation of macro-damage, such as debonding/delamination,
which substantially reduces the load-bearing capacity of the laminates.
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From the peak frequency–AE location plot, the different failure mechanisms associated with flexural
loading were sequentially characterized as reported in the literature [36]. The damage initiates with
matrix cracking, relating to peak frequency ranges between (70 to 120 kHz). This matrix cracking triggers
the delamination between the adjacent plies through fiber/matrix debonding. The moderate-frequency
range between (130 to 180 kHz) attributes to delamination and (190 to 260 kHz) attributes to fiber/matrix
debonding. While the fiber breakage is associated with a range (270 to 320 kHz). In all the cases,
the filler loaded samples show lesser delamination failure modes. This observation indicates that the
addition of filler has suppressed the delamination crack growth during post impact flexural loading.

Similarly, Figure 14b,e shows the load–displacement behavior of cross-ply (CP) samples
accompanied by peak frequency–AE location plot. The intensity of accumulated AE signal was
observed to be greater in cross-ply samples than unidirectional (UD) samples. This observation
shows the expansion of substantial damage due to transverse cracking and debonding/delamination
between the adjacent 0◦ and 90◦ plies. In contrast, the intensity of matrix cracking, delamination
was predominantly reduced in cross-ply (CP) filler loaded samples. Likewise, the load–displacement
behavior of quasi-iso (QIS) samples was shown in Figure 14c,f. The intensity of accumulated AE
signals corresponding to appropriate damage mechanism was prevalent in quasi-iso (QIS) baseline
samples compared to the filler-loaded quasi-iso (QIS) samples. The accumulation of damage signals at
one region of the filler-loaded quasi-iso samples indicates the damage initiated in 45◦ and impulsively
propagated to the width wise direction of the samples causing ultimate failure as seen from Figure 15f.
Here for illustration, only the AE results of flexural after impact test of non-impacted and samples
impacted at 4 m/s were shown (i.e.,) load-displacement and peak frequency–AE location. However,
the samples impacted at 3 m/s and 3.5 m/s exhibited similar trends, and Figure 16 represents their
corresponding AE results.

Figure 16 shows the normalized AE events of failure mechanisms for baseline and filler loaded
samples. Typically, the non-impacted (virgin) samples subjected to flexural loading shows matrix
cracking, debonding, delamination, and fiber breakage failure modes sequentially from the beginning
of the test. Conversely, this will not be the case for impacted samples. In all the cases, the filler-loaded
samples showed dominant matrix cracking than baseline specimens. This observation was attributed
to the enhanced energy dissipation through filler debonding and pull-out, causing more intense
micro-cracking and progression during flexural loading. The intensity of delamination failure modes
related to peak frequency range (130 to 180 kHz) was considerably decreased in 3.5 m/s and 4 m/s.
The samples impacted by 3.5 m/s and 4 m/s caused substantial delamination damage which impulsively
propagated during flexural loading. This observation shows that the ultimate failure of samples
impacted by 3.5 m/s and 4 m/s occurred through debonding and fiber breakage with minor delamination
(as shown in Figure 15). The above result confirms that the impact velocities influence the evolution of
damage and its corresponding damage mechanisms.

Figure 16 shows the filler-loaded samples have less intense delamination signals than the baseline
samples. Similarly, the intensity of fiber/matrix debonding modes was considerably increased for all
the cases of filler loaded samples. This result demonstrates that the energy dissipation has occurred
through predominant filler debonding/pull-out between the filler/matrix interfaces which contribute to
the improved load resistance. Therefore, the filler modified samples showed a more intense debonding
signal. However, the fiber breakage failure mode was prevalent in unidirectional (UD) and cross-ply
(CP) samples.
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The fiber breakage failure mode occurred dominantly in the samples impacted at 3.5 m/s and
4 m/s velocity. This premature damage propagation resulted in lower load-bearing capacity. In all the
cases of fiber orientations, these observations were predominant in filler loaded samples as shown in
Figure 16.

The premature delamination damage in baseline samples will induce ultimate failure, either on
the compression side through micro-buckling (or) tensile rupture at the bottom. However,
delayed delamination crack propagation and better load resistance were offered by the filler-loaded
samples which can be attributed to excessive fiber breakage signals. Moreover, the dominant incidence
of AE damage signals from one side of sample (off-center) shows that the damage initiated/progressed
from the former impact damage induced at specific location (shown in Figure 15). This was observed
to be dominant in samples impacted at 4 m/s, especially in unidirectional and quasi-iso samples.

4. Conclusions

This research work experimentally investigates the influence of milled fibers on low velocity
impact behavior and post-impact flexural performance of glass/epoxy composites. The baseline and
filler modified samples with different fiber orientations were subjected to varying impact velocities
(3, 3.5, and 4 m/s). Furthermore, the residual load-bearing capacity was evaluated by conducting
three-point bending test with online AE technique and their results were compared with samples
without any impact. From the experimentally obtained results, the key points can be concluded as
follows:



J. Compos. Sci. 2020, 4, 99 18 of 20

1. The change in peak force variation with increment velocity change was prevalent in quasi-iso
samples compared to cross-ply and unidirectional baseline samples. In contrast, the improvement
in peak load due to the inclusion of filler was dominant in unidirectional samples. In all the
cases, the filler-modified samples showed higher peak force and less deformation than the
reference samples.

2. In all the cases of fiber orientations, the filler-modified samples showed reduced absorbed energy
and less residual deformation than the baseline samples. Moreover, the contribution of fillers on
percentage reduction in the energy absorption decreased when impact velocity was increased.

3. The bounce time occurred earlier for unidirectional and cross-ply filler loaded samples at 3 m/s
impact velocity, whereas the quasi-iso baseline and filler loaded samples exhibited delayed
bounce time. However, at 3.5 m/s and 4 m/s, the cross-ply baseline samples had delayed bounce
time while unidirectional filler loaded samples had shorter bounce time. This evidences that the
addition of milled fibers has improved the impact strength/stiffness, which contributes to the
lesser deformation and earlier bounce time.

4. The cross-ply and quasi-iso samples showed prevalent reduction in residual load bearing capacity
at 3.5 m/s and 4 m/s whereas this reduction was minimal in filler modified samples. In the
cases of non-impacted and impacted at 3 m/s, the cross-ply and quasi-iso samples showed
nominal influence on strength of the samples. However, at higher impact velocities, substantial
improvement in residual load was observed for all the cases of filler loaded samples.

5. The presence of fillers at the interlaminar zone contributes to improved energy dissipation process
by filler debonding/pull-out and also arrest/prevent the delamination crack growth, resulting
in reduced damage size. Therefore, the addition of milled fibers on glass/epoxy laminates has
enhanced the impact toughness and post-impact flexural strength.
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