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Abstract: Poly(vinyl alcohol) (PVA) is a thermoplastic synthetic polymer, which, unlike many
synthetic polymers, is not obtained by polymerization, but by hydrolysis of poly(vinyl acetate) (PVAc).
Due to the presence of hydroxylic groups, hydrophilic polymers such as PVA and its composites made
mainly with biopolymers are used for producing hydrogels that possess interesting morphological
and physico-mechanical features. PVA hydrogels and other PVA composites are studied in light
of their numerous application for electrical film membranes for chemical separation, element and
dye removal, adsorption of metal ions, fuel cells, and packaging. Aside from applications in the
engineering field, PVA, like other synthetic polymers, has applications in medicine and biological
areas and has become one of the principal objectives of the researchers in the polymer domain.
The review presents a few recent applications of PVA composites and contributions related to tissue
engineering (repair and regeneration), drug carriers, and wound healing.
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1. Introduction

Poly(vinyl alcohol) (PVA) is a thermoplastic polymer that is obtained by the hydrolysis of
poly(vinyl acetate) (PVAc) and not by polymerization processes like some other synthetic polymers.
After hydrolysis, PVA still contains 1–2 mol% of acetyl groups. Its degree of polymerization (DP)
depends primarily on the size of the PVAc macromolecular chain. The transformation of PVAc into
PVA is obtained by the base catalyzed alcoholysis or by the acid initiated hydrolysis. PVA is the most
polar synthetic polymer, it is odorless, nontoxic, biocompatible, and soluble in water, acids, and high
polar solvents. Its molecular weight (MW) depends on PVAc MW and the degree of hydrolysis.

PVA is well known in its application in the production of fibers including its use in
surgeries, artificial leather, tubing, gaskets with good stability to oil derivatives, rubber-like items,
transportation belts, emulsifiers, adhesives for paper and paperboard, and in general purpose adhesives
for bonding paper, textiles, leather, and porous ceramic surfaces. When processed for textile fibers and
other applications, it should be made water insoluble. For PVA fiber, this is done with an aqueous
solution of sodium sulfate containing sulfuric acid and formaldehyde. This treatment transforms the
hydroxyl groups into cyclic formal groups.

Being a water soluble synthetic polymer, if no measures are taken against high temperature,
light exposure, microorganisms, etc., PVA may degrade in the environment by photodegradation,
bio degradation, and chemical degradation; the latter includes hydrolytic and oxidative processes.

A group of researchers studied the rheological behavior of the aqueous solution of PVA with
different MW and concentration subjected to freeze–thaw. The experience results suggest that the
number of PVA segments participating in the crystalline junction points increase exponentially during
the freezing, while decreases exponentially during thawing in the vicinity of the critical point [1].
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This review presents the recent studies conducted for the synthesis and application of different
PVA products and PVA/bio-polymer composites in various engineering and medicine fields.

1.1. Poly(Vinyl Alcohol) (PVA) Hydrogels

The Table 1 contains a few PVA composites and their applications that will be discussed in
the review.

Table 1. Examples of composites and their applications.

PVA Hydrogel Bio-or Synthetic Polymer as
Second Component Application Reference

PVA/Agar Agar As Biocompatible, and Bioactive [2]

PVA/CS/PDA-GO Chitosan Adsorption
Ion elements [3]

PVA/alginate Alginate Fertilizer [4]

PVA/PDMAEMA-PAA PDMAEMA Sensors, tissue eng [5]

PU/PVA PU Drug carrier [6]

PVA/Pu/L/Gl Lysine, Gelatin Wound dressing [7]

PVA/chondroitin sulfate Chondroitin Bone tissue [8]

PAA/Fe3/Gl/PVA Gelatin Biomedical [9]

Hydrogels made of synthetic polymers such as PVA have gained much attention in the last few
decades due to their physico-mechanical features. Hydrogels are three-dimensional (3D) networks
of cross-linked hydrophilic macromolecules with high water content (up to 90%) and are highly
elastic and soft. Hydrogels are characterized by tunable physical, chemical and biological properties,
biocompatibility, low toxicity, and good swelling behavior, which make them promising materials with
applications in different fields [10]. A great advantage in using hydrogels is the possibility of adapting
their characteristics to match a specific application.

Poly(acrylic acid)-Fe3+/gelatin/PVA (PAA-Fe3+/Gl/PVA) triple network supramolecular hydrogels
were synthesized and exposed to cooling and freezing/thawing. Healed PAA-Fe3+(0.20)/Gl 3%/PVA
15% triple network hydrogels sustain a tensile strength of 96.6% of the tensile strength of the
original sample [11].

After soaking in ammonium sulfate solution, the PVA/agar hydrogel bio-composite becomes
dense and uniform with stronger H bonds between the polymers; the tensile strength and toughness
increased to 18.0 MPa and 42.3 MJ/m3, respectively. The polymers and the easy-operating technique
provide promising applications as biocompatible and bio-active materials [2].

Due to PVA biocompatibility, composites made of PVA and bio-polymers such as cellulose, chitosan,
gelatin, casein, and others with different characteristics have found new interesting applications.
PVA bio-composites with regenerated cellulose softwood pulp (RC-SP) as a green reinforcement
were prepared via co-precipitation. Simultaneous co-precipitation promotes uniform dispersion of
the RC-SP and constructs strong molecular chain entanglements and H bonding network inside the
composites. The physical cross linking network reduces the water absorption and improves the
water resistance. Due to the strong filler–matrix interaction, the composite has a higher thermal
decomposition characteristic and better mechanical and dynamic mechanical properties [12].

Polyblends PVA/casein (CA) were prepared using the solution-casting technique. The tests done
on this composite showed interaction between the two polymers and that the tensile strength of
CA increased with the amount of PVA. Such films have the potential to be used in biodegradable
packaging applications [3].

Polydopamine-functionalized graphene oxide (PDA-GO) was used to form PVA/chitosan/PDA-GO
(PVA/CS/PDA-GO) hydrogels. The adsorption of metal ions like Cu(II), Pb(II), and Cd(II) onto the new
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PVA/CS/PDA-GO hydrogel beads with pH variation has been studied. These hydrogel beads could be
a potential recyclable adsorbent for the removal of some hazardous metal ions in waste water [13].
Another study evaluated the performance of PVA/bentonite hydrogel and its freezing/thawing as an
efficient dye remover [14].

By incorporating urea in a PVA-alginate hydrogel core followed by HCO3
−/CO3

2− rich alkaline
cell-free ureolytic culture broth, a slow release fertilizer was obtained [15].

The properties of the hydrogels already mentioned make them very useful in many applications
in engineering fields such as packaging, the removal of hazardous metal ions from wastewater,
gas separation membranes, and in the electrical and electronic domain. As will be presented later
on, hydrogels are also used in medicine for wound dressing, antibacterials, tissue engineering,
as drug carriers, and implants, etc. The hydrogels made of composite PVA/bio-polymers and their
nanocomposites that have already begun to be studied and, at a small scale, will increase their
possibilities for use in various domains.

1.2. Other PVA Composites

In the case of PVA/sodium alginate (SA), the total dipole moment (TDM), HOMO/LUMO energy
gap, and electrostatic potential were calculated. The results indicated that the TDM increased,
the HOMO/LUMO energy gap decreased, and electro-negativity increased.

As the result of the interaction between PVA and sodium alginate (SA), the total dipole moment
increased. Thermal parameters showed a variation of changing the site of interaction, which indicated
that the coordination of PVA/SA is an important factor for describing this kind of composite [4].

The incorporation of pomegranate peel powder (PPP) significantly affected the surface,
morphology, physical, mechanical, and barrier properties of the PVA based films. A higher PPP
amount leads to the production of a flexible and stretchy film and better light barrier properties.

PVA/PPP films have great potential as a green packaging product for cosmetics [16].
Supercapacitors have attracted much interest due to their high power density and long cycling

life. However polypropylene membranes that are widely used as separators in supercapacitors are
unfavorable for transporting electrolyte and electrodes due to their hydrophobic characteristics. As a
consequence, a cross-linked solid polymer electrolyte membrane and a semi-interpenetrating polymer
network were fabricated from sulfonated poly(ether ether ketone) and PVA which can be used as
hydrophilic separators [17].

Polymer based composites are extensively used in the electronic industry for energy storage
applications like conventional capacitors, supercapacitors, batteries, and fuel cells due to their superior
mechanical and electrical properties. In the case of conventional capacitors, the polymer composites
are generally employed as a dielectric layer. Oxide semiconductors incorporated polymer composites
are widely used as dielectrics for flexible capacitors [18] PVA is an dielectric; its compatibility with
other polymers like poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) allows for its use in the
electrical field. Being a polar polymer makes it useful for semiconductors.

Using solution casting, composite PVA films with various amounts of Cu(NO3)2.3H2O were
prepared. It was found that the alternating current (AC) conductivity increased by increasing the
dopant concentration up to 10 wt% [19].

The direct current (DC) conductivity of PVA hydrogels and ferrogels crosslinked with borax has
also been studied. The increase in the amount of borax led to the rise in the DC conductivity value,
but the increase in the carbonyl iron dopant with an unchanged borax amount led to a decrease in
the conductivity [20].

Using PVA, poly(vinyl pyrrolidone) (PVP) and lithium acetate, lithium ion conducting polymer
blend electrolytes were prepared. A higher electrical conductivity was determined for the polymer
blend with 50 PVA; 50 PVP; 25% lithium acetate at 303 and 363◦ K. The dielectric and loss tangent
analysis were also carried out for the prepared polymer electrolyte and the higher conductivity sample
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at different temperatures. The transference numbers of polymer electrolytes was calculated by Wagner’s
polarizing technique and confirmed by the Bruce–Vincent technique [21].

Surface modification of fillers is used to reduce interfacial thermal resistance in thermal conductive
products. Graphite (G) was modified in a research with acrylic acid (AA) to decrease its inertness
(AA@G). The thermal conductivity of AA@G exhibited extremely high enhanced efficiency. A series
of PVA composites, some loaded with AA@G and others with G were produced in order to study
the interfacial interaction of the matrix–filler. With the synergistic increment in thermal conductive
performance, AA@G exhibited a high enhanced efficiency of 358% compared with the literature data [22].

Incorporation of fillers into gel electrolytes has been used to improve the electrochemical
performance of energy storage devices. Graphite oxide (GO) gel electrolytes were prepared with PVA
and H3PO4 as an ion producer. The GO containing gel has superior mechanical properties, which makes
it a potential candidate for use as a gel electrolyte in flexible and wearable electronic gadgets [23].

A PVA solution subjected to freezing–thawing was added to magnesium acrylate, leading to
the formation of a Mg acrylate/PVA interpenetrating network, which contains, besides the acrylate,
the PVA network based on H bonds; its fracture stress was 1.44 MPa and self-healing efficiency was
80% after 3 h [24].

A study showed that the addition of a plasticizer could modify the structure of PVA and after
such addition, the crystallization energy increased. The study indicated that the plasticizers were able
to modify the original crystalline structure of PVA and interacted with PVA to form stronger H bonds
to replace the intermolecular phase of PVA intramolecular interactions [25].

Poly(vinyl butyral) (PVB) with different content of acetal groups is obtained in water by the
condensation reaction between two OH groups of PVA and butyraldehyde in the presence of an
acid catalyst.

PVA/water systems used in PVB production are prone to structuring with consecutive interaction
with consecutive formation of strong interchain interactions. PVB is characterized by a unique
set of adhesive and binding properties as well as the high strength of the fiber and film materials.
Plasticized PVB is used as a laminating film in the production of safety glasses (triplex), and as an
adhesive in the production of varnishes, primers, enamels, and mastics [26].

The effect of the addition of pentaerythritol to PVA on the swelling, mechanical, and optical
properties were investigated. Elongation at break increased, tensile strength decreased, and the optical
performance of the PVA films was improved [27].

A one pot two-step process in the case of microwave irradiation has been used to fabricate PVA
sponges and PVA/phytic acid (PVA/PA) polymer sponges. Their characteristics such as thermal stability,
surface resistivity, and self-extinguishing time led to the following data: 235.5 and 354.8 ◦C, 540 × 109

and 1.63 × 105 Ω/sq, and 18.00 and 9.00 s, respectively [28]. The sponges can be used for insulators,
electrodes, scaffolds for medical applications, and replacements for infected bone tissue.

Three-dimensional porous PVA/CS sponges with good mechanical strength, high absorption
capacity, and recycling ability is of scientific and technological interest and can have industrial
applications such as dehydration of acetone/water, water purification, and as fuel cells and batteries [29].

An organic phosphonic acid (OPA) was selected as the protic media to produce phosphonated
proton exchange membranes based on PVA. Proton conductivities and methanol permeability through
the membrane were investigated in terms of various amounts of OPA [30].

4-Formyl dibenzo-18 crown-6 grafted PVA as anion exchange membranes were prepared.
After alkali treatment, a conductivity degradation rate less than 8.6% reflected high alkali resistance.
The test results showed that the membranes complied with the requirements in the anion exchange
membrane fuel cell [31].

Composite anion exchange membranes based on imidazolium and quaternary
ammonium-functionalized PVA were used for direct methanol alkaline fuel cell application. It showed
a superior performance compared to the quaternary ammonium functionalized membrane [32].
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A review covered recent studies on PVA-based proton exchange membrane in different fuel cell
applications including proton-exchange membrane fuel cells and direct methanol fuel cells [33].

New iota-carrageenan–g-PVA polyelectrolyte membranes developed for application in direct
methanol fuel cells have also been studied. The ion-exchange capacity, water, methanol sorption,
and the methanol crossover flux across the polyelectrolite membranes were adopted as monitors for
this research. The efficiency factor for the prepared membrane was one order higher than that of
Nafion 117 [34].

The polyblend PVA/sodium polyacrylate was used to form a membrane for CO2 separation [35].
Films have been made based on a PVA (with plasticizers and cross linkers) matrix and banana

pseudostem fiber. At 20% fiber amount, the flexibility of the films was high with the elongation at break
more than 100% and tensile strength of 30.8 Mpa, which is close to the commonly used Low-density
polyethylene (LDPE) package films. With alkali treated banana pseudostem fibers, the films had a
maximum tensile strength of 34.2 MPa and lower water uptake of only 60% [36].

One study focused on the effects of palm oil fuel ash (POFA) and PVA on the physico-mechanical,
thermal, and morphological properties of a kenaf-jute reinforced PVA/PE hybrid bio-composite.
TGA and DSC results confirmed that the jute/kenaf-PE/POFA composite had a higher thermal
decomposition and activation energy and more stability than the jute/kenaf-PE and jute-kenaf-PE/PVA
composites, which is recommended for reinforcing concrete [37].

Films based on PVA and keratoses were prepared in water. The analysis pointed out that the two
polymers had no covalent interaction with each other. Increasing the amount of PVA in the polyblend
film from 70 to100% improved its tensile strength and the elongation at break. It appears as a promising
candidate for the producing of a new biocompatible material appropriate for different applications
ranging from medical to filtration and adsorption equipment [38].

A research has been done on the synthesis and optimization of a green PVA-co-poly
(methacrylic acid) adsorbent. It was found that it possess the maximum adsorption capacity of
0.761 mg·g−1 at the equilibrium of methylene blue dye from an aqueous solution at 10 ppm concentration;
500 mg of sample done at pH = 7 and 30 ◦C. The adsorbent exhibits regeneration efficiency for four
successive adsorption-desorption cycles [39].

In a study, highly water selective PVA/polyacrylonitrile (PAN) pervaporation membranes were
prepared. The pervaporation performances were investigated by separation of 95 wt% ethanol aqueous.
After running for 120 h, the membranes still displayed a good stability for the ethanol dehydration in
the pervaporation process [40].

Experiments of arsenic removal (i.e., As(III) and As(V) anions) indicated that PVA/ZnO with a
maximum removal of 97% is a highly efficient sorbent for this element [41].

A new easy synthesis approach using PVA for producing highly uniform tough crosslinked
poly(methyl methacrylate) micro particles for more potential applications has been developed for
fabricating highly uniform crosslinked PMMA microparticles with the desired mechanical strength to
meet the requirements of electrical packaging, for instance, applied as anisotropic conductive films or
spacers for liquid crystal display assembly [42].

Compared with non-plasticized PVA fiber, the plasticized PVA with pseudo ionic liquids and
glycerol provided a lower melting temperature, wider thermal processing interval, and better melt
fluidity. The PVA plasticized fibers were successfully produced with the melt spinning techniques.
The melt-spun PVA fibers would have potential applications as a fiber reinforcing product in the
concrete field [43].

A new technique was used to obtain an isotactic polypropylene (PP)//PVA composite.
This consisted of introducing PVA aqueous solution into molten PP. The PVA fibers oriented in
the PP flow direction provided interesting properties like high modulus, high yield stress, and bending
deformation as well as elevated heat distortion temperature [44].
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The study of the PVA fiber–matrix interactions in composites showed that polar surface
functionalities led to a strong adhesion while nonpolar hydrophobic surface layers decreased
the adhesion [45].

In one study, the kinetic and structural characterization over time of PVA microgels obtained
through a salting-out process were presented. The micro particle preparation based on a salting-out
process constitutes a novelty if we compare it to the methods already existing and based on the use
of crosslinkers and is a cheap and easy protocol that allows tuning both particle size and density by
varying the salt concentration [46].

2. PVA Contributions to Medicine

The application of natural and synthetic polymers to medicine has become one of the principal
objectives facing polymer researchers. Hydrogels of natural or synthetic polymers have many medical
and biological applications; they have been used more in recent studies. Bioactive factor delivery from
biopolymer hydrogels provides a versatile approach to treat diseases. Additionally, a hydrogel with
good mechanical strength is desirable in applications such as sensors and tissue engineering, being one
of the most attractive biomaterials for regenerative engineering. As drug delivery hydrogels have
the advantage of being stimuli-responsive, they are considered as smart polymers. Many of them
respond to chemical and physical stimuli such as ionic strength, pH, temperature, light, and electrical,
and magnetic fields [47].

In another study, a PVA/poly(2-NN′-dimethylamino) ethyl methacrylate (PDMAEMA)–PAA
hydrogel was produced. The double-network PVA/PDMAEMA)-PAA hydrogel exhibited satisfactory
mechanical strength; a tensile strength of 0.45 MPa and compressive strength of 1.2 MPa was obtained
for the double network hydrogel and the compressive strength was 480% higher than that of the
single-network hydrogel. The study contributes to broadening the application of these kinds of
hydrogels as sensors and tissue engineering [5].

The optimal amounts of the hydrogel components established in a recent study were 12% PVA,
laccase concentration of 836 µg/mL, and ferulic acid concentration of 1.95 mM. The results of this
study confirmed the PVA reticulation with ferulic acid and the presence of crosslinks among the
PVA macromolecules [48].

The aid of hydrogels in biomedical application is limited by swelling and weak strength under
physiological conditions. By using methacrylated PVA and thiol terminated PVA, a non-swelling
hydrogel was obtained, which was non-toxic to L929 cells, which is favorable for promising biomedical
applications as implants and tissue engineering scaffolds [49].

An overview of the current gelling techniques discussing in detail the state-of-the-art of various
synthesis methods and biomedical applications of various hydrogels is presented. This shows that
the field of tissue engineering places complex demands on biomaterials including polymers that are
applied for organ/tissue development and repair. Future biocompatibility and cytotoxicity tests should
be carried out to establish the potential application of polymer hydrogels for biomedical purposes [50].

By freezing–thawing, polyurethane/PVA (PU/PVA) hydrogels have been obtained. Their tensile
strength was lower than that of the PVA hydrogel due to the extent of the occurrence of H bonding
during freezing–thawing cycles, which determines the variation of porosity. Through the application
of the in vitro technique, the hydrogel was used for release of the drug neomyein sulfate. The study
showed that PU/PVA hydrogels can be used as drug carriers [6].

A lyophilized hydrogel composite containing alginate, gelatin, and PVA was produced with
the aim of absorbing exudates, maintaining a moist environment, and enhancing interaction with
the tissues. In the scaffold, triiodothyronine was introduced due to its vital role in the repair and
regeneration of tissues. The researchers considered that the produced scaffold possessed a great
potential as a chronic wound therapeutic [51].
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With the aim of achieving enhanced wound healing, PVA/pullulan/poly L-lysine/gelatin
(PVA/Pu/L/Gl) hydrogels were produced. The overall results of this study showed the potential
of the PVA/Pu/L/Gl hydrogels for the application as a wound dressing [7].

A malleated PVA (PVAM) grafted copolymer with anionic polyacrylamide (PAM) was synthesized
(PVAM-g-PAM) for use in drug encapsulation [52].

Amoxicillin-loaded films of PVA-g-PAM of varying composition were recently prepared.
Aside from antibiotic applications, the drug loaded grafted hydrogels were also examined for
effectiveness against Gram-negative bacteria [53].

PVA/chondroitin sulfate hydrogel scaffolds was prepared by using glutar aldehyde as a
crosslinking agent for the regeneration of articular cartilage. PVA increased the bio-adhesiveness and
mechanical properties. Chondroitin sulfate increased the content of glucosaminoglycan in the extra
cellular matrix [8].

The aim of one study was the design of a 3D scaffold composed of PVA. The scaffold was
produced using a combination of gas foaming and freeze–dry processes that did not need any
crosslinking agent. The developed scaffold shows potential for use as a biomaterial for cardiac tissue
engineering applications [54].

Osteoarthritis is a generative joint disease of the articular cartilage and extends to the subchondral
bone. The interface between these soft and hard tissues has a significant role on osteoarthritis.
In this research, PVA/Gl hydrogels were prepared by chemical and freeze–thaw structural formation
physical crosslinkage. The PVA/Gl ratio of 79:30 demonstrated suitable structural formation,
physical properties, and biological functions to induce tissue formation at the subchondral bone
interface for osteoarthritis surgery [9].

PVA/CS composite hydrogels were prepared by the synergistic effect of H bonding, crystallization,
chain entanglement, and ionic interactions without the addition of harmful chemicals. Due to a
relatively homogeneous network and high crosslinking density, the gel exhibited very good mechanical
properties, antiseptic, electrical conductivity, and swelling-resistant ability. The authors hope that these
results will enable the development of tissue engineering materials for commercial applications [55].

Another study considered for the first time the use of halogens as less aggressive agents
than potassium permanganate to perform PVA oxidation. Scaffolds were assessed for their
mechanical properties and cell/tissue biocompatibility through the cytotoxic extract test. The halogens
were successfully produced in the effort of adopting polymer characteristics to specific tissue
engineering applications [56].

3. Remarks

This article reviewed new recent research contributions based on PVA and its composites in
engineering and medicine. The results of the studies done recently (2019, 2020) in these domains and
presented in this review could lead to new composites of PVA with synthetic or natural polymers with
new interesting properties and applications. More comprehensive studies are required to increase
the basic knowledge on hydrogels, which with their excellent characteristics like biocompatibility,
swelling in different media, sensitivity to temperature, pH, ionic strength, light, electrical and magnetic
fields, other stimuli and cytotoxicity, are very promising mainly for biomedical purposes.

Funding: This research received no external funding

Conflicts of Interest: The author declares no conflict of interest.



J. Compos. Sci. 2020, 4, 175 8 of 11

Abbreviations

AA Acrylic acid
AC Alternating current
CA Casein
CS Chitosan
DC Direct current
DP Degree of polymerization
DSC Differential Scanning Calorimetry
G Graphite
Gl Gelatin
GO Graphene oxide
HOMO/LUMO Energy gap
L Lysine
LDPE Low density polyethylene
MW Molecular weight
OPA Organic phosphonic acid
PA Phytic acid
PAA Poly (acrylic acid)
PAANa Sodium polyacrylate
PAM Polyacrylamide
PAN Polyacrylonitrile
PDA-GO Polydopamine functionalized graphene oxide
PDMAEMA Poly(2-NN’-diethylamino) ethyl methacrylate
PE Polyethylene
POFA Palm oil fuel ash
PP polypropylene
PPP Pomegranate peel powder
PU Polyurethane
Pu Pullulan
PVA Poly (alcohol vinylic)
PVAc Poly (vinyl acetate)
PVAM Malleated PVA
PVB Poly(vinyl butyral)
PVP Poly(vinyl pyrrolidone)
RC-SP Regenerated cellulose softwood pulp
SA Sodium alginate
TDM Total dipole moment
TGA Thermogravimetric analysis
TDM Total dipole moment
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