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Abstract: Over the past few decades, carbon nanomaterials, including carbon nanofibers, nanocrys-
talline diamonds, fullerenes, carbon nanotubes, carbon nanodots, and graphene and its derivatives,
have gained the attention of bioengineers and medical researchers as they possess extraordinary
physicochemical, mechanical, thermal, and electrical properties. Recently, surface functionalization
with carbon nanomaterials in dental and orthopedic implants has emerged as a novel strategy for
reinforcement and as a bioactive cue due to their potential for osseointegration. Numerous de-
velopments in fabrication and biological studies of carbon nanostructures have provided various
novel opportunities to expand their application to hard tissue regeneration and restoration. In this
minireview, the recent research trends in surface functionalization of orthopedic and dental implants
with coating carbon nanomaterials are summarized. In addition, some seminal methodologies for
physicomechanical and electrochemical coatings are discussed. In conclusion, it is shown that further
development of surface functionalization with carbon nanomaterials may provide innovative results
with clinical potential for improved osseointegration after implantation.

Keywords: carbon nanomaterials; coating; surface functionalization; osseointegration; implants

1. Introduction

To date, metal-based dental and orthopedic implant materials, including titanium
(Ti), stainless steel, and cobalt–chromium (CoCr), have been widely used because of their
suitable properties, such as high mechanical strength, light-weight chemical stability, and
nonimmunogenic property. For successful implantation of orthopedic and dental implants,
biometric stability immediately after implant insertion is one of the most important steps.
Despite the wide clinical utilization of Ti implants, there are still potential risks because
of the inherent bioinert and easily oxidizable characteristics. For example, the oxide layer
of the surface of Ti often leads to thrombosis between the surface and surrounding tissue,
which creates an oral cavity that promotes microbial reproduction [1,2]. Moreover, during
the operation, inflammation around the surgical sites may occur due to external heat or
pressure. This hinders the normal growth of new bone around the surgical sites and results
in weak bonding between the bone and implant [3–5]. The risk of implantation failure
rises particularly rapidly in the elderly, who have decreased bone mass and a degraded
microstructure of bone tissue caused by senile disorders, such as diabetes and osteoporosis,
resulting in fragile bone tissue. Recent studies have focused on surface functionalization
by endowing implants’ biofunctionalities for the reduction of surgery failure. The above
problems can be solved by improving the surface properties of implant materials. Therefore,
various surface functionalization methods have been extensively employed to enhance the
biofunctionality of implants (Figure 1).
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Figure 1. Surface functionalization with carbon nanomaterials (CNMs) containing carbon nanofibers (CNFs), graphene, 
carbon nanotubes (CNTs), nanocrystalline diamond (ND), carbon nanodots (CNDs), and fullerene. 

2. Physicomechanical Coating 
The main idea of physicomechanical modification is to induce the physical adsorp-

tion of CNMs on implant surfaces by plasma spraying, gas or vapor radiation, solution 
treatment, or desorption, or by using mechanical methods such as roughening and mi-
cromanipulation. Most of the physical modification methods feature advantages such as 
a short processing time, simple equipment, and no preference for the intrinsic properties 
of the implant material. However, several disadvantages exist, including inhomogeneity, 
weak bonding and wear resistance, and difficulty to coat the inner surface of small holes. 

Hydroxyapatite (HAp) is used as a coating material for Ti implants due to its oste-
oinduction and biocompatible pCSroperty [42,43]. However, neat HAp is mechanically 
disadvantageous as it exhibits poor wear resistance and fracture toughness [44]. There-
fore, it is not possible to solve post-transplant side effects such as arthroplasty prostheses 
loosening with HAp-coated implants [45–47]. However, CNMs’ great potential for me-
chanical reinforcement of brittle HAp presents a way to overcome this issue. CNT has 
been extensively applied as reinforcement to enhance weak mechanical characteristics of 
ceramics such as HAp and Al2O3 as well as to facilitate osteoinduction [48]. Plasma spray-
ing is a physical vapor deposition technique that uses high-velocity spraying of molten 
powder onto an implant surface [49]. Plasma spraying is the only US Food and Drug Ad-
ministration (FDA)-approved implant coating method and forms a dense and adherent 
coating on implant surfaces [50]. Balani et al. and Lahini et al. proved that plasma spraying 
of CNT-HAp on the surface of Ti improves fracture toughness and wear resistance [51,52]. 
Facca et al. plasma sprayed CNT-reinforced HAp on the surface of titanium and con-
firmed enhanced mechanical and osteoinduction properties (Figure 2) [21]. Because there 
is a limited number of reports exploring in vivo responses of HAp-CNT-coated implants, 
this study focused on the in vivo response of implants embedded in rats and mice. The 
results indicated that incorporated CNT did not induce adverse or cytotoxic events, and 
normal bone growth was observed around the HAp-CNT-coated implant. Interestingly, 
the addition of CNT significantly increased new bone formation when compared to bare 
HAp-coated implants. The elastic modulus of the newly formed bone was similar to that 
of the distant bone, suggesting excellent integrity of the implant and bone. Similarly, Xie 
et al. plasma coated graphene-reinforced calcium silicate (CS) on a Ti implant and evalu-
ated coating quality and in vivo osseointegration [22]. The graphene and CS were evenly 
coated on the surface of Ti, and the incorporated graphene enhanced the wetting behavior 

Figure 1. Surface functionalization with carbon nanomaterials (CNMs) containing carbon nanofibers
(CNFs), graphene, carbon nanotubes (CNTs), nanocrystalline diamond (ND), carbon nanodots
(CNDs), and fullerene.

Surface functionalization is a powerful tool for the alteration of physicochemical prop-
erties of implant surface that allows preferred bioactivity and reduced adverse effects to be
achieved. Growth factors and inducers have been administered to promote osteogenesis;
however, they are complicated, expensive to produce, and easily degraded in vivo [6].
Significant advances have been made in surface functionalization by adopting a vast area
of materials that endow substrates with specific characteristics (e.g., polymers and inor-
ganics) [7,8]. Nanomaterial (NM)-based coatings in particular offer several advantages:
(a) tunable micron/nanometer-sized multiporous topography, (b) high specific surface
area, (c) unique cell–matrix interaction, and (d) mechanical reinforcement. These regulate
bone cell behaviors and improve mechanical properties. Furthermore, it is important to
pursue stable and long-lasting coating layers to confer bioactive (i.e., osteoconductive and
osteogenic) properties in vivo. Therefore, many novel strategies have been introduced to
achieve robust and stable coatings as described herein.

Carbon nanomaterials (CNMs) are some of the most important members of the NM
family. The discovery and emergence of CNMs have impacted many aspects of nanotech-
nology and have contributed to significant developments in physics, electronics, optics,
mechanics, biology, and medicine. Many CNMs have gained increasing attention in the
biomedical field due to their extraordinary characteristics. For example, fullerenes and
carbon nanotubes (CNTs) have been widely studied for numerous therapeutic and phar-
maceutical purposes [9–11]. Moreover, other CNMs like graphene and nanocrystalline
diamond (ND) have become popular in the past decade due to the maturation of various
fabrication and modification techniques [12–14]. CNMs in particular have been shown to
be capable of facilitating cellular behaviors such as adhesion; migration; proliferation; and
differentiation into several lineages, including myogenesis, neuritogenesis, and osteogen-
esis [15–20]. Therefore, various CNMs, such as graphene, CNTs, ND, carbon nanofibers
(CNFs), fullerene, and carbon nanodots (CNDs), have been considered to possess excellent
potential for surface functionalization materials of implants due to their osteogenesis-
inducing property and mechanical reinforcement property.

Herein, we focus on CNM-based surface modification on orthopedic and dental im-
plants. Surface modification is conducted by various types of physicochemical coating
techniques, such as plasma spray, physical adsorption, dip coating, spin coating, elec-
trophoretic deposition, electrochemical deposition, chemical vapor deposition, and various
other novel techniques. Certain techniques combine multiple physical and chemical pro-
cesses; therefore, this review determines the coating techniques based on the main idea of
each study due to the difficulty of strict separation. Furthermore, this review concentrates
on osteogenesis/osseointegration-inducing properties and antibacterial effects achieved
from CNM-based coatings on orthopedic and dental implants. A comprehensive evalua-
tion of surface coating methods and improved biofunctionalities is provided along with
their pros and cons (Table 1).
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Table 1. Recent studies on CNM-based coatings for orthopedic and dental implants are classified by the coating method, kind of CNM, conjugation, coating quality, biological evaluation, and
osteogenic and antibacterial activities.

Clarification Coating Method CNM Conjugation Coating Quality (Features
and Process Rate) Biological Evaluation Osteogenic and Antibacterial

Activities Ref.

Physicomechanical
Method

Plasma spraying
CNT HAp

FDA-approved method and
commonly used

In vivo (rat and
mouse)

Newly grown bone, no periosteal
reactions, and restoration of healthy

osteoblast and osteocyte
[21]

Graphene CS In vivo (rabbit) Newly grown bone cover pores in
interface [22]

Ultrasonic
atomization spraying GO -

Retains original particle
structure; thin and

uniform layer

In vitro (BM-MSC) and
in vivo (rat)

Increased cell adhesion, proliferation,
and osteogenic markers; in vivo

osseointegration
[23]

Dip coating ND - Simple, fast, and cost-effective

In vitro (NHDF and
calvariae primary

osteoblast)

Enhanced cell growth; inhibition of
Staphylococcus aureus colonization [24]

MWCNT Collagen In vitro (MSC) Increased proliferation and ALP activity [25]

Spin coating

GO Chitosan
Fast process rate and simple

process

In vitro (MC3T3-E1)
and in vivo (rat)

Antibacterial effect on Streptococcus
mutans; enhanced cell proliferation [26]

rGO Dex, AA In vitro (MC3T3-E1)
and in vivo (rat)

Enhanced cell viability and adhesion;
formation of collagen type I and

new bone
[27]

MDD GO - Transparent coating by precise
control in nanometer scale

In vitro (MC3T3-E1)
and in vivo (rat)

Enhanced proliferation and ALP
activity; new bone formation [28]
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Table 1. Cont.

Clarification Coating Method CNM Conjugation Coating Quality (Features
and Process Rate) Biological Evaluation Osteogenic and Antibacterial

Activities Ref.

Electrochemical
Method

EPD

GOMA
PBA

functionalization
GelMA-PBA

High versatility and
cost-effectiveness;

uniform coating on a porous
and complex-shaped substrate
with easy accessibility and low

cost of equipment

In vitro (osteoblast
from rat calvaria)

Enhanced cell viability, proliferation,
mineralization, collagen secretion, ALP

activity, and osteogenic-relative gene
expression; antibacterial effect on

Pseudomonas aeruginosa and S. aureus

[29]

rGO CS In vitro (hFOB) Increased cell viability [30]

CNF HAp, PCL In vitro (MG63) and
in vivo (rat)

Antibacterial effect on S. aureus and
Escherichia coli; enhanced proliferation

and ALP activity
[31]

GO Chitosan, HAp In vitro (MG63) Antibacterial effect on S. aureus;
enhanced proliferation and ALP activity [32]

GO Chitosan, HAp In vitro (BM-MSC) and
in vivo (rat)

Improved proliferation and
differentiation; improved in vivo

osseointegration
[33]

ECD

GO HAp Low process temperature;
coating on geometrically

complex surface; controllable
coating properties; low cost of

equipment

In vitro (MG63) Enhanced proliferation and ALP
activity [34]

SWCNT HAp In vitro (human
osteoblast)

Enhanced proliferation and ALP
activity

[35]

MW-PACVD

ND HAp
Dense and homogeneous

coating; varying crystalline
structure;

In vitro (hMSC) Enhanced proliferation and ALP
activity [36]

ND -

ultrahardness with a very low
friction coefficient, chemical
inertness, impermeability of

the carbon coating, and highly
resistant corrosion and erosion

processes

In vivo (pig) Enhanced bone-to-implant contact (BIC) [37]



J. Compos. Sci. 2021, 5, 23 5 of 14

Table 1. Cont.

Clarification Coating Method CNM Conjugation Coating Quality (Features
and Process Rate) Biological Evaluation Osteogenic and Antibacterial

Activities Ref.

Electrochemical
Method

Spraying and in situ
crosslinking MWCNT - Facile, cheap, and scalable In vitro (ADSC) - [38]

Chemical spray
pyrolysis MWCNT Silver, HAp

Uniform deposition rate at low
temperature; pure and

reproducible; mass
productivity

In vivo (human
osteoblast)

Antibacterial property on E. coli, Shigella
flexeri, S. aureus, and Bacillus subtilis [39]

Alkali hydrothermal
reaction and silane
coupling; APTES

conjugation

GO Aspirin Stable bonding; the feasibility
of functionalization In vitro (MC3T3-E1) Enhanced proliferation and ALP

activity [40]

Chemical assembly GO Dopamine Uniform coating on any shape
or structure

In vitro (BM-MSC) and
in vivo (rabbit)

Improved cell viability, ALP activity,
and mineralization; improved in vivo

osseointegration
[41]

CNT, carbon nanotube; HAp, hydroxyapatite; CS, calcium silicate; GO, graphene oxide; MSC, mesenchymal stem cell; BM-MSC, bone marrow-derived MSC; ND, nanocrystalline diamond; MWCNT, multiwalled
CNT; NHDF, normal human dermal fibroblast; ALP, alkaline phosphatase; rGO, reduced GO; Dex, dexamethasone; AA, ascorbic acid; MDD, meniscus-dragging deposition; EPD, electrophoresis deposition;
GOMA, methacryloyl GO; CNF, carbon nanofiber; PBA, phenylboronic acid; GelMA, methacryloyl gelatin; PCL, polycaprolactone; ECD, electrochemical deposition; SWCNT, single-walled CNT; MW-PACVD,
microwave plasma-assisted chemical vapor deposition; hMSC, human MSC; ADSC, adipose-derived SC; APTES, (3-aminopropyl)triethoxysilane; FDA, US Food and Drug Administration.
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2. Physicomechanical Coating

The main idea of physicomechanical modification is to induce the physical adsorp-
tion of CNMs on implant surfaces by plasma spraying, gas or vapor radiation, solution
treatment, or desorption, or by using mechanical methods such as roughening and micro-
manipulation. Most of the physical modification methods feature advantages such as a
short processing time, simple equipment, and no preference for the intrinsic properties
of the implant material. However, several disadvantages exist, including inhomogeneity,
weak bonding and wear resistance, and difficulty to coat the inner surface of small holes.

Hydroxyapatite (HAp) is used as a coating material for Ti implants due to its os-
teoinduction and biocompatible pCSroperty [42,43]. However, neat HAp is mechanically
disadvantageous as it exhibits poor wear resistance and fracture toughness [44]. Therefore,
it is not possible to solve post-transplant side effects such as arthroplasty prostheses loos-
ening with HAp-coated implants [45–47]. However, CNMs’ great potential for mechanical
reinforcement of brittle HAp presents a way to overcome this issue. CNT has been exten-
sively applied as reinforcement to enhance weak mechanical characteristics of ceramics
such as HAp and Al2O3 as well as to facilitate osteoinduction [48]. Plasma spraying is a
physical vapor deposition technique that uses high-velocity spraying of molten powder
onto an implant surface [49]. Plasma spraying is the only US Food and Drug Administration
(FDA)-approved implant coating method and forms a dense and adherent coating on im-
plant surfaces [50]. Balani et al. and Lahini et al. proved that plasma spraying of CNT-HAp
on the surface of Ti improves fracture toughness and wear resistance [51,52]. Facca et al.
plasma sprayed CNT-reinforced HAp on the surface of titanium and confirmed enhanced
mechanical and osteoinduction properties (Figure 2) [21]. Because there is a limited number
of reports exploring in vivo responses of HAp-CNT-coated implants, this study focused
on the in vivo response of implants embedded in rats and mice. The results indicated that
incorporated CNT did not induce adverse or cytotoxic events, and normal bone growth
was observed around the HAp-CNT-coated implant. Interestingly, the addition of CNT
significantly increased new bone formation when compared to bare HAp-coated implants.
The elastic modulus of the newly formed bone was similar to that of the distant bone,
suggesting excellent integrity of the implant and bone. Similarly, Xie et al. plasma coated
graphene-reinforced calcium silicate (CS) on a Ti implant and evaluated coating quality and
in vivo osseointegration [22]. The graphene and CS were evenly coated on the surface of Ti,
and the incorporated graphene enhanced the wetting behavior and wear properties via the
formation of interfacial bonding between the CS particles. Moreover, in vivo experiments
indicated that graphene did not hinder the biocompatibility and significantly increased the
bone–implant contact ratio after three months of implantation when compared to the bare
CS coating. On the other hand, ultrasonic atomic spraying is a physical coating method
that enables thin coating of high performance and quality with accurate control of process
parameters [53]. Li et al. fabricated a graphene oxide (GO)-coated Ti implant and evaluated
the feasibility of coating quality and osteogenesis-inducing ability [23]. Ultrasonic atomic
spraying retained the original structure of GO and deposited a thin and uniform layer on Ti
substrate. Osteogenic differentiation of seeded bone marrow-derived mesenchymal stem
cells (BM-MSCs) was characterized by upregulated osteogenic markers containing alkaline
phosphatase (ALP), runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and
osteopontin (OPN). The paper analyzed the mechanism of osteogenesis of BM-MSCs by
Western blotting of cytoskeletal proteins. GO stimulated expression of the focal adhesion
kinase (FAK) and mitogen-activated protein kinase (MARK) signaling pathways related to
extracellular-signal-regulated kinase (ERK)1/2, P38, and c-Jun N-terminal kinase (JNK),
and several osteogenic markers were then upregulated in a cascade. This suggests that the
formation of focal adhesion between stem cells and GO induces spontaneous osteogenic
differentiation, which leads to increased osseointegration in vivo.

NDs are reported to have feasibility for surface functionalization, excellent biocom-
patibility, osseointegration-promoting capability, and antibacterial effect; hence, they have
gained tremendous interest as implant coating materials [54–56]. However, ND coating
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on three-dimensional structures with high coverage and uniformity has been considered
to be difficult because the fabrication parameters have considerable effects on adherence,
morphology, and uniformity of NDs [57,58]. Dip coating is widely applied for the depo-
sition of NDs on the implant surface due to its simplicity and effectiveness. Rufai et al.
fabricated an ND-coated Ti implant with the dip coating method and evaluated osteogenic
and antibacterial properties [24]. Ti implant was dipped perpendicularly into an ND-
containing solution and immersed for ND deposition, and it thereafter formed a stable and
uniform NM coating layer on the surface of Ti. As the ND coverage area increased, the cell
population of normal human dermal fibroblasts and osteoblasts also increased. Moreover,
most ND-covered Ti implants showed significantly decreased growth and adhesion of S.
aureus. These results suggest that ND can be efficiently coated on the surface of Ti by the
dip coating method and that it a has dose-dependent osteogenesis-promoting effect and
antibacterial ability. On the other hand, CNT possesses superior electrical, thermal, and
mechanical properties and bioactivity [59,60]. Collagen is the most abundant extracellular
matrix protein, and it is known to promote cell adhesion and growth [61,62]. Another
study conducted by Park et al. introduced multiwalled CNT (MWCNT)–collagen coating
on the surface of Ti with the dip coating method [25]. The coated CNT–collagen formed
stable bonding with the surface of Ti and enhanced surface roughness to facilitate cell
adhesion. The CNT–collagen coating enhanced surface roughness, cell adhesion, and
proliferation. Moreover, the osteogenic property of CNT significantly enhanced the ALP
activity of preosteoblasts after five days of culture.
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Figure 2. HAp/CNT-coated implant showing (A) a spherical Ti bead, (B) a Ti road, and (C) the top surface of the
plasma-sprayed HAp-CNT coating with embedded CNTs in HAp. (D) X-ray images of rat femoral bones after one-month
implantation showing (1) an uncoated Ti implant, (2) an HAp-coated Ti implant, (3) an HA-CNT-coated implant, and (4) no
implant. (E–H) Histological results (40×) for mice bones that were implanted with an HA-CNT-coated implant fabricated
as (E,F) spherical beads and (G,H) a rod-shaped implant. (E,G) Mallory coloration images and (F,H) hematoxylin and eosin
coloration images. Copyright © 2011 American Chemical Society, Reference [21].

Spin coating is a common technique for synthesizing thin film with a thickness ranging
from a few microns to nanometers by spinning a material-containing solution at high
speed so that centripetal force and surface tension of the liquid produce uniformly coated
materials [63–65]. The spin coating features a fast process rate and simple process, but
it also has several disadvantages for NM coating, namely, low coating performance in
general and waste of material [63]. Park et al. developed a GO–chitosan-coated Ti implant
with the spin coating method [26]. The coated GO and chitosan enhanced hydrophilicity
and surface roughness of Ti implant, which are beneficial for cell adhesion and migration.
As the GO concentration increased, the proliferation of preosteoblasts and antibacterial
effect on S. mutans significantly increased, suggesting that the GO coating can enhance the
osseointegration property of Ti implant. Meanwhile, Jung et al. enhanced the spin coating
quality by adopting (3-aminopropyl)triethoxysilane (APTES) as an intermediate coating
to induce electrostatic bonding of reduced GO (rGO) on the surface of Ti [27]. A uniform
and dense coating was built between the outer titanium oxide layer and the rGO layer. The
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outer rGO layer enhanced the loading capacity of osteogenic factors, dexamethasone, and
ascorbic acid by forming π–π stacking, which induced increased preosteoblast adhesion.
The in vivo analysis showed that the Dex/rGO-Ti implant induced new compact bone
regeneration in the entire region around the implant. Moreover, collagen type I, which
is the main component of the bone matrix, was formed around the implant, indicating
excellent feasibility of osseointegration.

The meniscus-dragging deposition (MDD) technique mechanically spreads the mate-
rial over the substrate with the linear back-and-forth motion of the deposition plate [66].
MDD has the advantages of easy and precise control of optoelectronic properties and
coating thickness by simply varying the particle concentration and deposition number [67].
Park et al. introduced an osteogenesis-inducing GO/Ti implant by coating GO nanoparti-
cles on a Ti membrane with the MDD technique. GO coating increased surface roughness
and hydrophilicity with their hydrophilic moieties. As a result, proliferation and ALP
activity of preosteoblasts were improved. Moreover, an in vivo assay showed an increase
in new bone formation due to GO coating of Ti implant in rat calvaria, suggesting that the
GO-coated layer was stable in the body and induced osseointegration of Ti implant.

3. Electrochemical Coating

Electrochemical modification changes the chemical properties of the carrier surface
to produce specific interactions between cell surface molecules, which not only affect the
cell surface properties but also cause closely related changes in the internal structure and
function of cells. Chemical modifiers are relatively complex in process and are expensive.
Current research focuses on composition control, multilayer structure design, multiscale
coatings, and coatings with novel surface morphologies.

Electrophoresis deposition (EPD) uses an electric field to move the stable charged
particle in the colloidal suspension to an oppositely charged conductive substrate. EPD
features several advantages, such as a wide range of material choices, compact coating with
thickness control from nanometers to microns, and a short process rate due to the simple
apparatus [68]. Therefore, many studies use EPD to coat CNMs on implant surfaces. CS is
one of the bioactive ceramics that have various excellent properties, such as osteoconduc-
tivity, osteoinductivity, and bioactivity, and previous studies have shown that CS coating
on Ti implants has potential for osseointegration by inducing a bone-like apatite layer on
the surface [69–71]. However, Liu et al. reported that the purity of CS can be altered after
applying a conventional coating method, such as plasma spraying [72]. Meanwhile, a con-
siderable amount of research has shown the feasibility of EPD to deposit CS on the surface
of Ti [73,74]. Meharali et al. introduced an EPD-based rGO/CS coating on Ti substrate to
enhance the biological and mechanical properties [30]. Compared to the pure CS coating,
the 1 wt % rGO-decorated CS coating improved the mechanical property of Ti implant,
which showed enhanced adhesion by 70%, hardness by 150%, and elastic modulus by
240%. Furthermore, the rGO/CS-coated Ti implant showed good apatite-forming ability in
simulated body fluid with suitable cytocompatibility to hFOB cells, suggesting that CS-rGO
might be a promising implant coating material. In another study conducted by Shi et al., a
GO/chitosan/HA composite was coated on Ti substrate via EPD [32]. The coated layer
increased corrosion resistance and was thermally stable. MG63 cells exhibited suitable via-
bility and increased ALP activity on the rGO–chitosan–HA-composite-coated Ti. Moreover,
GO–chitosan–HA showed effective antibacterial adhesion by endowing negative charges
and physical stress to the bacterial membrane in order to induce membrane damage. A
similar study conducted by Suo et al. adopted GO/chitosan/HAp composite coating on
Ti substrate [33]. The interaction between GO, chitosan, and HAp induced dense coating
on the surface of Ti by reducing the surface cracks with a bonding strength of 27.1 ± 1.2
MPa. Cell viability, ALP activity, and calcium deposition of BM-MSCs were significantly
improved on the GO/CS/HAp coating. Moreover, fluorescence staining and polymerase
chain reaction analysis (qPCR) showed upregulated expression of osteocalcin and osteopon-
tin, which are representative osteogenic regulation factors. The in vivo study demonstrated
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that the GO/chitosan/HAp-coated implant showed superior new bone formation and
maintained its mechanical property after 12 weeks of implantation. These results suggest
that EPD represents a powerful method for deposition of GO/chitosan/HAp composite
coatings on Ti implants, and this coating may be applied in the field of dental implants.

Electrochemical deposition (ECD) is used to fabricate a tight adherent coating on
the conductor substrate by electrolysis of the solution containing the coating material,
including metal ion or a chemical complex. ECD has several advantages, such as uniform
coating on a porous and complex-shaped substrate with easy accessibility, low cost of
equipment, low process temperature, and controllable coating properties (Figure 3) [28,31].
Zeng et al. introduced GO/HAp composite coating on Ti substrate with the ECD tech-
nique [34]. The composite coating exhibited enhanced crystallinity and a bonding strength
of 25.4 ± 1.4 MPa after GO was incorporated. Moreover, GO and HAp facilitated pro-
liferation and the early stage of osteogenesis of MG63 cells, revealing that utilization
of the ECD-coated GO/HAp layer is a promising strategy for the production of Ti im-
plant coatings for clinical application. In another study conducted by Elangomannan
et al., CNF/PCL/HAp nanofibrous coating layer deposited by ECD on a Ti implant were
prepared. [31]. CNF is a stack of nanocones of graphitic nanosheets that is known for excep-
tional electrical, mechanical, thermal, and structural properties. Notably, the topography
of CNF can mimic the inorganic HAp crystal of bone when embedded for reinforcement of
the matrix [75,76]. The nanofibrous membrane has a multiporous structure, which would
be beneficial for adhesion and migration of surrounding cells due to the similar structure
of natural extracellular matrices. The results indicate that incorporation of CNF into the
PCL/HAp composite significantly improves the adhesion strength and elastic modulus of
the Ti substrate. The incorporation of CNF particularly enhanced corrosion resistance of
the implant, which was determined by a positive shift in polarization curves.
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Figure 3. (A) Formation of a nanofibrous layer composed of CNF/polycaprolactone (PCL)/mineralized HAp (M-HAp)
on Ti; (B) photographs of the zone of inhibition on 2 wt % CNF/PCL/M-HAp at different volume concentrations; (C,D)
antibacterial effects on S. aureus and E. coli according to CNF concentration, respectively; (E) live/dead assay of MG63
cells cultured on control and 2 wt % CNF/PCL/M-HAp-coated Ti substrates; (F) toluidine blue-stained sections from the
uncoated Ti group I (1,2), PCL/M-HAP-coated Ti group II (3,4), and 2 wt % CNF/PCL/M-HAP composite-coated Ti group
III (5,6), taken after two and four weeks of implantation. Copyrights © 2017 American Chemical Society, Reference [31].

The basic principle of chemical vapor deposition (CVD) is to inject coating material to
be deposited on a substrate as a gaseous state through high-temperature decomposition or
high-temperature chemical reaction on the substrate in the reaction chamber. Microwave
plasma CVD (MPCVD) is one of the most commonly used CVD processes that initiate
a chemical reaction with microwave plasma. MPCVD enables nucleation and growth
of various types of CNMs, including graphene, CND, and CNT with the bulk carbon
source [77–79]. The carbon source for MPCVD is not limited to graphite; for example,
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Elliot et al. reported the use of CO2 with CH4 in MPCVD to synthesize diamond films, and
Krishnia et al. produced a diamond film from sugarcane bagasse, which is a secondary
product of the sugarcane industry, and they also produced carbon sources, including glu-
cose and CH4 [80,81]. Strakowska et al. developed conductive boron-doped ND coatings
on Ti5Al4V substrate with the MPCVD technique, which enabled efficient ECD of HAp
to form ND/HAp bilayer coatings [33]. ND/HAp formed a homogeneous and dense
layer with regular submicron topography on the Ti5Al4V implants. The in vitro cell assays
showed favorable cell viability and osteoconductivity of the ND/HAp coating layer to
seeded human MSCs. Metzler et al. also prepared an ND-coated TiAl6V4 implant by
MPCVD for a histomorphometric study of pigs [37]. The in vivo results indicated that
newly developed bone integration showed close contact within the implant grooves of the
mature bone with the ND-coated surface. Interestingly, ND-coated TiAl6V4 showed en-
hanced bone-to-implant contact when compared to bare TiAl6V4 after two and five months
of implantation. Moreover, the MPCVD-coated ND layer showed a tight interface between
the implant and newly formed bone without any delamination or particle dissociation,
indicating the advantages of this coating method.

Excluding the previously described coating methods, various other types of elec-
trochemical coatings have been applied. Sivaraj et al. fabricated Ag-HAp/MWCNT
nanosheets on a 316L stainless steel implant with chemical spray pyrolysis, which offers
many advantages, such as a uniform deposition rate, low processing temperature, high pu-
rity, and mass productivity with reproducibility [39]. SEM microscopy demonstrated that
Ag-HAp/MWCNT coatings showed desirable and crack-free morphology with a particle
size of less than 100 nm. Notably, incorporated Ag showed efficient antibacterial activity
against S. aureus, Providencia stuartii, E. coli, and Klebsiella pneumonia. Furthermore, the addi-
tion of MWCNT, a reinforcing material, enhanced the corrosion resistance. Another study
conducted by Ren et al. employed alkali hydrothermal reaction and a silane-coupling agent
to fabricate an aspirin-loaded GO coating on the surface of Ti [40]. GO was conjugated
with the APTES-modified Ti surface, and aspirin was loaded onto the Ti-GO surface via
π–π stacking. The incorporation of aspirin, which is a nonsteroidal anti-inflammatory drug,
and the cyclooxygenase-2 (COX-2) inhibitor can relieve initial aches from bone fractures
and orthopedic postoperative pain due to its thrombosis prevention and anti-inflammation
abilities as well its various chemotactic abilities [82–84]. The torsion test indicated that
the GO–Ti interface had stable bonding strength at a torque of 9.48 Nm. The in vitro cell
studies revealed that the aspirin/GO-Ti substrate promoted proliferation and osteogenic
differentiation of the preosteoblast, suggesting its potential for further clinical applications
in patients with postimplantation pains. On the other hand, chemical assembly features
uniformly distributed GO coating on the complex-shaped surface. Taking into account
the weak bonding strength of GO, Wang et al. introduced APTES and dopamine as an
intermediate layer for bioactive coating on the microgrooved Ti–6Al–4V implant [41]. The
GO-coated layer showed excellent adhesion on the implant surface and facilitated adhesion
and proliferation of BM-MSCs. Moreover, the osteoinduction ability of GO induced sponta-
neous osteogenesis of BM-MSCs and enhanced osseointegration and new bone formation
in vivo.

4. Conclusions and Future Perspectives

Vigorous research that interfaces these new carbon forms with orthopedics has laid
the foundation for utilizing carbon nanostructures as coatings for dental and orthopedic
implants and bone tissue engineering scaffolds [85,86]. The physicochemical property,
mechanical enhancement, biocompatibility osteogenesis, and osseointegration in relation
to the material characteristics and fabrication methods have been discussed. Moreover,
from the results described herein, the surface functionalization methodology, mechanical
stability, biocompatibility, and osteoinduction properties were significantly improved by
introducing several novel strategies, including material composition and combination of
several types of coating methods.
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In this minireview, various methodologies and recent research trends in surface func-
tionalization of orthopedic and dental implants using carbon nanomaterial are summarized.
Although the exploration of carbon nanoscience in the field is affirmative, the intrinsic toxi-
city and safety, large-scale manufacturing, and in vivo applications are still controversial.
However, it is shown that further development of surface functionalization with carbon
nanomaterials may soon provide revolutionary changes to dental and orthopedic implants.
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