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Abstract: Alkali-activated binders (AABs) are developed using a dry mixing method under am-
bient curing incorporating powder-form reagents/activators and industrial waste-based supple-
mentary cementitious materials (SCMs) as precursors. The effects of binary and ternary combi-
nations/proportions of SCMs, two types of powder-form reagents, fundamental chemical ratios
(SiO2/Al2O3, Na2O/SiO2, CaO/SiO2, and Na2O/Al2O3), and incorporation of polyvinyl alcohol
(PVA) fibers on fresh state and hardened characteristics of 16 AABs were investigated to assess their
performance for finding suitable mix compositions. The mix composed of ternary SCM combination
(25% fly-ash class C, 35% fly-ash class F, and 40% ground granulated blast furnace slag) with multi-
component reagent combination (calcium hydroxide and sodium metasilicate = 1:2.5) was found
to be the most optimum binder considering all properties with a 56 day compressive strength of
54 MPa. The addition of 2% v/v PVA fibers to binder compositions did not significantly impact the
compressive strengths. However, it facilitated mitigating shrinkage/expansion strains through micro-
confinement in both binary and ternary binders. This research bolsters the feasibility of producing
ambient cured powder-based cement-free binders and fiber-reinforced, strain-hardening composites
incorporating binary/ternary combinations of SCMs with desired fresh and hardened properties.

Keywords: alkali-activated binders; supplementary cementitious materials (SCMs); powder form
reagents; precursors; fibers; shrinkage; microstructure

Highlights

• Development of high calcium industrial wastes-based alkali-activated binders
• Use of dry mixing technique, powdered reagents, and ambient curing
• Evaluation of fresh state, strength, durability, and microstructural characteristics
• Influence of combinations/proportions of high calcium wastes and reagents evaluated
• Effect of micro-confinement created by fibers on compressive strength and shrinkage

1. Introduction

Geopolymers are classified as alkali-activated materials (AAMs) produced from the
activation of aluminosilicate-rich precursors by alkaline reagents [1]. The precursors were
also found to be activated with phosphoric acid-based reagents in recent studies [2]. Pre-
cursors can be natural materials and industrial by-products such as fly ash (FA), ground
granulated blast furnace slag (GGBFS), red mud, mine waste, and metakaolin [3]. The
reactivity of these aluminosilicate sources depends on their chemical-mineralogical compo-
sition, morphology, fineness, and glassy phase content [4]. The main criteria for developing
a stable geopolymer are that the source materials should be highly amorphous, possess
sufficient reactive glassy content, have low water demand, and release aluminum easily.
The alkaline activators such as sodium hydroxide (NaOH), potassium hydroxide (KOH),
sodium silicate (Na2SiO3), and potassium silicate (K2SiO3) are used to activate the source
materials by conventional two-part mixing technique. In a two-part technique, alkaline
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reagent solutions and precursors/source materials are prepared separately and wet mixed
to produce geopolymers. Geopolymerisation or alkali activation occurs when silicon and
aluminum oxides react with alkaline reagents [5–8]. It is a mechanism that consists of
the dissolution of various types of silica and aluminum from the surface of source materi-
als, such as surface hydration of undissolved particles [5]. Polymerization occurs under
highly alkaline conditions when reactive aluminosilicates are rapidly dissolved, and free
[SiO4]- and [AlO4]-tetrahedral units are released in solution. The tetrahedral units are
alternatively linked to polymeric precursors by sharing oxygen atoms, forming polymeric
Si–O–Al–O bonds [1,9]. The development process of geopolymers uses 60% less energy
and produces 80 to 90% fewer greenhouse gases than the synthesis of ordinary Portland
cement (OPC)-based binders [7–11].

However, the factors involved in producing AAMs using the two-part mixing tech-
nique hinder its in situ applications. The geopolymers or alkali-activated binders (AABs)
produced using conventional two-part technique require heat curing in most cases where
low calcium precursors are incorporated to obtain satisfactory mechanical characteris-
tics [7,8]. Therefore, the use of one part mixing technique incorporating a preblended dry
mix of precursors (GGBFS and FA) and solid form reagents (sodium metasilicate and differ-
ent grades of sodium silicates) was emphasized in recent studies [7,8,12–14]. The two-part
mixing technique is an energy-intensive production process that reduces the commercial
viability of geopolymers [13,14]. In addition, handling large quantities of solution-based
alkaline reagents creates an undesirable environment for workers during construction
applications [15–17]. Using a one-part mixing technique to produce AABs by just adding
water (like cement-based binders) to the blended mix of precursors and solid/powder-
based reagents can resolve issues associated with the two-part production technique. The
powder form reagents can also be used in lesser quantities than their solution-based coun-
terparts, thereby reducing the production cost of geopolymers [18,19]. The use of powdered
reagents was found to facilitate the dissolution of silicate and aluminum ions from the
precursors by increasing the pH of the fly ash/slag-based alkali-activated systems [20].
One-part geopolymer binders were produced by using precursors consisting of fly ash class
F (FA-F), GGBFS, and hydrated lime with solid form reagents such as anhydrous sodium
silicate and sodium hydroxide in previous research studies [21–24]. It was found that FA
activation hydration products are zeolite type: sodium aluminosilicate hydrate or low
calcium sodium aluminosilicate hydrate (N-A-S-H/N-C-A-S-H) gels with different Si/Al
ratios. The primary binding phase produced in GGBFS activation is calcium silicate hydrate
(C-S-H) or calcium aluminosilicate hydrate gel (C-A-S-H) with a low Ca/Si ratio, which is
denser than the N-A-S-H gel and thus results in the refinement of the microstructure of
combined GGBFS and FA incorporated mix compositions [21–24]. Although the physical
properties of geopolymers prepared from various source materials/precursors may appear
similar, their microstructures and chemical properties vary significantly [25,26]. In FA
activation with sodium hydroxide (SH), the reaction starts with the dissolution of ions
(Si and Al) from the precursors into the alkaline solution. Then, polymerization in the
aluminum-rich first gel phase will transform into silica-rich final geopolymer gel [25,26].
When FA and metakaolin are compared, the reaction mechanisms seem similar in both ma-
terials [5]. However, under prevailing conditions, FA dissolution during geopolymerization
is much slower than metakaolin [5]. The reaction mechanisms and products formed in the
alkali activation of FA differ dramatically from those of the cement hydration. Therefore,
the workability characteristics of alkali-activated FA binders should not be expected to be
similar to cement-based binders [27]. In fly ash/slag-based geopolymer concrete mixes,
higher drying shrinkage was associated with higher workability and lower compressive
strength [25]. In addition, drying shrinkage strains were observed to proliferate at early
ages and slowly diminish with time [25]. The alkali cations present in the binding gels
(C-S-H/C-A-S-H) of alkali-activated slag cements have been found to create instability
in their stacks and thus have facilitated the collapsing of these gels, leading to additional
autogenous shrinkage in drying conditions [28]. Jeon et al. [29] reported that the formation
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of ettringite in GGBFS-based geopolymer binders counteracts shrinkage in GGBFS-based
geopolymer binders effectively [29]. Research on low-calcium FA and bottom ash-based
geopolymer concrete, a part of the mixing water, was found to remain associated with
the binding gels (N-A-S-H/N-C-A-S-H) [30]. The specimens made of such concrete lost
free water and exhibited high drying shrinkage strains, especially during the initial two
weeks when exposed to drying conditions (50% RH and 23 ± 2 ◦C) [30]. FA acting as a low
reactive filler produced a dilution effect on GGBFS and resulted in lower drying shrinkage
than the GGBFS alone or OPC mixes [31].

The geopolymer binders incorporating GGBFS as a precursor with solution-based
reagents exhibited lower setting times than those made with powder form reagents [32].
The activation of GGBFS using sodium silicate (SS) solution resulted in fast-setting, owing
to the development of C-S-H binding phases [33]. Increasing the mixing process time
facilitated breaking of the initially formed C-S-H gels, enhanced workability, and improved
mechanical characteristics of GGBFS-based binders [34]. The evolution of heat in alkali-
activated GGBFS concrete was lower than OPC-based one [35]. The hydration heat in
GGBFS concrete was still lower than OPC despite the increase in heat evolution with
an increase in dosage and silica modulus of water glass (sodium silicate) [35]. The heat
release pattern of alkali-activated GGBFS binder had also correlated with increased yield
stress [36]. Incorporating calcium alumina cement (CAC) in pumice-type natural pozzolan-
based geopolymer binders led to increased hydration heat. However, apparent activation
energy was lower than the compositions without efflorescence control CAC [37]. The use
of composite reagents (SS and sodium carbonate) facilitated in lowering the environmental
impact and the associated costs with the use of single-component reagents (SS) [38]. The en-
vironmental sustainability of the one-part geopolymers using lower quantities of reagents
and eliminating the need for heat curing was assessed to be more significant than their tradi-
tional two-part counterparts. The rate of dissolution of ions (Si and Al) from the precursors
was different in the reaction processes of one-part and two-part geopolymers [39–41].

The literature review suggests a few studies on developing one-part AABs using high
calcium precursors and calcium-based powder form reagents at ambient temperature using
a dry mixing technique with adequate fresh state and hardened properties. Moreover, there
is a scarcity of studies on shrinkage/expansion, mass change, and heat evolution character-
istics of these binder systems. The effect of micro-confinement created by polyvinyl alcohol
(PVA) fibers to inhibit shrinkage in AABs has not been studied extensively.

This paper presents the results of a research study to address the above-mentioned
research gaps. The novel aspects of this paper include the use of binary/ternary propor-
tions/combinations of high/low calcium industrial waste-based precursors, two combina-
tions/dosages of the powder form calcium/sodium-based reagents, and PVA fibers for the
development of AABs using one-part dry mixing technique established in authors previous
studies [24,42]. The performance of developed one-part ambient cured binders is evaluated
compared to conventional two-part heat-cured counterparts incorporating low calcium
precursors and sodium-based reagents from previous research studies. The influence of
the fundamental chemical ratios (SiO2/Al2O3, Na2O/SiO2, CaO/SiO2, and Na2O/Al2O3)
present in combinations of precursors and reagents on fresh state and hardened character-
istics was investigated to characterize the performance of these binders. The effect of PVA
fiber addition (2% v/v) on compressive strength, shrinkage/expansion, and mass change
characteristics in two curing regimes (water and ambient/air) was also explored as novel
aspect of the study. This research also contributes to the potential development of ready-
mix AABs by incorporating dry powder-based mixing technology, eliminating the handling
of a large quantity of corrosive solution-based reagents and heat curing. The findings of
this paper can be used to facilitate the development and production of alkali-activated
mortars, concretes, and fiber-incorporated composites for sustainable construction.
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2. Experimental Program, Methods, and Materials

The experimental program consisted of a comprehensive performance evaluation of
the developed 16 AAB compositions in terms of fresh state (workability, setting times, and
time-dependent heat evolution), compressive strength (binders with and without fibers),
durability (shrinkage/expansion and mass change of binders with and without fibers in
water and ambient curing regimes), and microstructural (based on SEM/EDS and XRD
analyses) characteristics.

2.1. Precursors of Alkali-Activated Binders

High calcium fly-ash class C (FA-C) with SiO2+Al2O3+ Fe2O3 ≥ 50%; low calcium fly-
ash class F (FA-F) with SiO2+Al2O3+ Fe2O3 ≥ 70%; and ground granulated blast furnace
slag (GGBFS) conforming to ASTM C618-2019 [43], ASTM C618-2019 [43], and ASTM
C989-2018a [44] were used as source materials/precursors (aluminosilicate rich materials)
for synthesizing AABs. The control binder mixes were developed using general use (type
GU) cement and FA-F. The chemical compounds obtained through X-ray fluorescence
spectrometer analysis, specific gravity (provided by the CRH, Mississauga, ON, Canada),
and the Blaine fineness of the source materials are tabulated in Table 1. The particle size
distribution of the supplementary cementitious materials (SCMs) and cement obtained
through Malvern Mastersizer 2000 (Actlabs, Ancaster, ON, Canada) are presented in
Figure 1.

Table 1. Chemical composition and physical properties of source materials and cement.

Chemical Compounds
(%)

Fly Ash Class-C
(FA-C)

Fly Ash Class-F
(FA-F)

Ground Granulated Blast
Furnace Slag (GGBFS) Cement

SiO2 36.53 55.66 35.97 19.35
Al2O3 18.26 22.09 9.18 5.31
Fe2O3 5.66 4.26 0.50 3.10
CaO 20.97 7.97 38.61 62
MgO 5.08 1.16 10.99 3
K2O 0.68 1.49 0.36 -

Na2O 4.04 4.10 0.28 0.23
MnO 0.03 0.03 0.25 -
TiO2 1.26 0.61 0.39 -
P2O5 0.96 0.43 0.01 -
LOI. 2.18 1.05 0.74 2.40

Physical properties FA-C FA-F GGBFS Cement
Density (g/cm3) 2.61 2.02 2.87 3.15

Retained on 45 µ, % 18 3
Blaine fineness (m2/kg) 315 306 489.30 410

2.2. Reagents or Alkali Activators

This research study used two optimized types/combinations of powder-based reagents
according to the authors’ previous research [24]. The components of reagent 1 consisted of
a combination of calcium hydroxide (Ca(OH)2) and sodium meta-silicate (Na2SiO3·5H2O
with a modulus ratio of SiO2/Na2O = 1) in the ratio (Ca(OH)2/Na2SiO3·5H2O) of 1:2.5. The
components of the reagent 2 consisting of calcium hydroxide (Ca(OH)2) and sodium sulfate
(Na2SO4) were blended in the ratio (Ca(OH)2/Na2SO4) of 2.5:1. The specific gravities of
calcium hydroxide (pH = 12.4–12.6), sodium metasilicate (pH = 14), and sodium sulfate
(pH = 7) were 2.24, 1.81, and 2.70, respectively. These reagents of lab-grade standard with
a 95–100% purity were procured from National Silicates (Etobicoke, ON, Canada) and
Westlab (Surrey, BC, Canada).
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2.3. Fibers and Superplasticizer

The specifications of the PVA fibers (PVA RECS 15) used to reinforce the binders
provided by the supplier Nycon corporation (Fairless Hills, PA, USA) were as follows:
length (8 mm), diameter (38 µm), Young’s modulus (41 GPa), elongation (6.7%), density
(1.3 g/cm3), and tensile strength (1610 MPa).

A polycarboxylate ether-based superplasticizer (Adva Cast 575 from GCP applied
technologies, Ajax, ON, Canada) with a pH of 6 was used to enhance the flowability of the
mixes. This superplasticizer (SP) had a specific gravity of 1.06 g/cm3 and approximately
40% solid content.

2.4. Mix Design and Specimen Preparation

Sixteen AAB mixes (eight with fiber and eight without fiber) were developed on the
basis of the optimized mix compositions of reagent proportion/dosage (calcium hydroxide,
sodium metasilicate, and sodium sulfate) and the proportion/combination of the precursors
(FA-C, FA-F, and GGBFS) from the authors’ previous study [24]. A paste based on a
standard engineered cementitious composite (ECC) developed at Ryerson University was
used as the control mix for this study [45,46]. The primary objective was to achieve fresh
state and hardened characteristics of the AABs such as the paste component of ECC to
assess their feasibility for producing cement-free PVA, fiber-reinforced, strain-hardening,
alkali-activated composites in future studies. Table 2 presents the mix compositions of
eight AABs without fiber. The other eight AABs had similar mix compositions but with
the inclusion of 2% (v/v) of PVA fibers and designated by letter ‘F’ at the end of their
mix designation separated by a hyphen. The mix compositions with and without fibers
are separated by a comma in the mix designations presented in Table 2. The influence of
incorporating PVA fibers (2% v/v) to the binder compositions on the shrinkage/expansion
and mass change in two curing regimes was studied to see the effect of micro-confinement
created by the fibers. The water to binder ratio varied from 0.35 to 0.375, while SP was kept
fixed to 2% and 1% of the binder content for all the mix compositions with and without
fibers. The two control (with and without fibers) binders (FPC and FPC-F) had a water
to binder ratio of 0.27 and SP content of 0.06% and 1%. The mix designations and the
chemical ratios present in the reagents and the precursors of 16 AABs and 2 control mixes
(FPC and FPC-F) are presented in Table 2. The binary mixes designated as ‘CS’ are made
of high-calcium FA-C and GGBFS, while ternary mixes designated as ‘CFS’ are made of
high-calcium FA-C, low-calcium FA-F, and GGBFS combinations. The numeric value in
mix designations denotes reagent types (type 1 and type 2), as explained earlier.
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Table 2. Mix proportions for one-part binary and ternary binders with and without fiber.

Mix. Designation
of Binders *

SCMs +
PC

PC

SCMS

R./B

Chemical Ratios
(SCMs + Reagents) 28-Day

Compressive
Strength (MPa)FA-C FA-F GGBFS SiO2/

Al2O3

Na2O/
SiO2

CaO/
SiO2

Na2O/
Al2O3

CS1, CS1-F 1 0 0.55 0 0.45 0.09 2.62 0.09 0.84 0.23 47.8, 45.2
CS1N, CS1N-F 1 0 0.50 0 0.50 0.09 2.71 0.08 0.87 0.23 41.5, 38.2
CFS1, CFS1-F 1 0 0.25 0.35 0.40 0.09 2.75 0.08 0.59 0.22 41.3, 38.6

CFS1N, CFS1N-F 1 0 0.25 0.25 0.50 0.09 2.86 0.07 0.69 0.21 38, 35.3
CS2, CS2-F 1 0 0.55 0 0.45 0.12 2.56 0.14 1.02 0.35 56.3, 53.1

CS2N, CS2N-F 1 0 0.50 0 0.50 0.12 2.64 0.13 1.02 0.35 43.4, 41.2
CFS2, CFS2-F 1 0 0.25 0.35 0.40 0.12 2.69 0.12 0.73 0.32 52.2, 49.8

CFS2N, CFS2N-F 1 0 0.25 0.25 0.50 0.12 2.80 0.12 0.84 0.33 39.1, 37.5
FPC, FPC-F 1 0.45 0 0.55 0 - 2.70 0.06 0.82 0.16 40.3, 38.1

All numbers are mass ratios of the binder. * Sixteen AABs + two control mixes without and with 2% (v/v) PVA fiber; binder denotes
supplementary cementitious materials (SCMs) and Portland cement (PC); C: FA-C, F: FA-F, S: GGBFS, N denotes mixes with an equal
mass proportion of total FA and GGBFS; letter F in the mix designation after hyphen indicates fiber; the numeric value in mix designation
denotes reagent types (type 1 and type 2).

The precursors and the reagents required for each mix composition (Table 2) were
weighed and dry mixed for about 3 min in a shear mixer. After 3 min of dry mixing,
two-thirds of the required water was gradually added to the mix. Then superplasticizer
mixed with the remaining amount of water, which was gradually added for 2–3 min. PVA
fibers were then added gradually (for mixes with PVA fiber) for 1–2 min, and mixing
continued for another 2–3 min to avoid coagulation and facilitate uniform dispersion of the
fibers. The total mixing time for mixes with and without fibers lasted for about 15–18 min
and 10–13 min, respectively.

At least 12 cube specimens (50 mm × 50 mm × 50 mm) and eight prism specimens
(25 mm × 25 mm × 285 mm) were prepared for each mix with and without fiber. The
cube molds were placed in the curing room maintained at a temperature of 23 ± 3 ◦C and
95 ± 5% relative humidity (RH). The cubes were demolded after 24 h of casting and were
kept in the curing chamber until the days of testing. The prism molds were stored and
demolded according to the ASTM recommendations for drying shrinkage investigations.

2.5. Test Methods

All the tests were performed on mix compositions without fibers. Only shrink-
age/expansion, mass change, and compressive strength investigations were conducted on
both types of mixes (with and without fibers) to observe the effect of micro-confinement cre-
ated by fibers in shrinkage mitigation and strength development. The compressive strength
test at 7/14/28/56 days was conducted on three cube specimens (50 mm × 50 mm × 50 mm)
per testing age for each mix composition according to ASTM C109/C109M [47]. The worka-
bility parameters of the mix compositions were assessed through a mini-slump cone test in
compliance with ASTM C1437 [48]. The slump flow spread was measured, and the relative
slump was evaluated on the basis of the following Equation (1) [49]:

T =

[(
d
d0

)2
]
− 1 (1)

where d = average of two measured diameters of the matrix spread and d0 = bottom
diameter of the conical cone (100 mm). The mixes without fibers were then tested for
heat evolution for 72 h in compliance with ASTM C1753/C1753M [50]. The temperature
increase/change was recorded with respect to time using a thermocouple wire inserted in
the fresh binder mixes placed in Styrofoam containers. The containers were covered from
the top to minimize the heat losses, as shown in Figure 2. The binders’ initial and final
setting time was determined as per ASTM C 191-a [51].
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The shrinkage/expansion test was conducted in compliance with ASTM standards [52–54]
on both types of mixes (with and without fibers). Eight prismatic specimens with dimen-
sions of 25 mm × 25 mm × 285 mm were prepared for each mix composition (with and
without fibers) and de-molded after 24 h. The specimens were stored in airtight plastic
bags until being de-molded. After demolding, initial mass and length readings were
taken with a digital comparator with an accuracy of up to 0.001 mm and considered a
reference. The length and mass change readings were taken at 1/7/28/56/90 days for
the specimens in two curing regimes, water storage and air storage, in compliance with
ASTM C157/157M [54]. In the water curing regime, specimens were kept immersed in
water through the days of testing. For the air curing regime, after an initial curing period of
28 days in water immersion, four samples per mix composition were shifted to the drying
room maintained at a relative humidity of 50 ± 4% and a temperature of 23 ± 2 ◦C, as
shown in Figure 3a–c.

The SEM micrographs and EDS analysis were done on the best-performing alkali-
activated binders and the control paste using JEOL 6380LV scanning electron microscope
(SEM) equipped with energy dispersive X-ray spectroscopy (EDS). The specimens taken
from the core of the failed compression test cubes at 28 days for SEM/EDS analysis were
grounded and softly polished with sandpaper down to 30 µm. A gold coating was placed
on the specimens to make the surface conductive. The fracture surface was studied using
the secondary electrons (SE) and the backscattered electron (BES).

X-ray diffraction (XRD) analysis was conducted to determine the mineral phases
in the binder mixes and validate the SEM/EDS results. The specimen preparation for
performing XRD consisted of grounding the specimen taken from the core of the failed
compression cubes. The grounded specimen was passed through a 200-mesh sieve. A
Bruker D8 Endeavor diffractometer equipped with a Cu X-ray source and operating at
40 kV was used to identify the mineral phases using the PDF4/Minerals ICDD database.
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3. Results and Discussions

The performance of the developed binders (with and without fibers) is discussed in
terms of fresh state (workability, setting time and heat evolution), compressive strength,
durability (shrinkage/expansion and mass change in water and ambient curing regimes),
and microstructural characteristics using SEM/EDS and XRD analysis.

3.1. Compressive Strength of Binders without and with Fibers Having Different Reagents

The binders without fibers (CS1, CS2, CFS1, and CFS2 with 55–60% FA + 40–45%
GGBFS) incorporated with both reagents obtained 28 day compressive strengths ranging
from 41 to 57 MPa (Table 2 and Figure 4a,b), while mixes (CS1N, CS2N, CFS1N, and CFS2N
with 50% FA and 50% GGBFS) obtained 8% to 25% lower strength (38 to 43 MPa). Such
lowering of compressive strength can be attributed to the presence of 5% to 10% higher
GGBFS content that led to excessive calcium, which might have caused incompatibility
or instability in the system. The compressive strength development was associated with
the formation of both binding phases (C-A-S-H and N-A-S-H) in FA/GGBFS binders,
as observed from the matrix microstructure through SEM/EDS and XRD analyses. The
formation of such binding phases was also observed in previous research studies on
FA/GGBFS-based alkali-activated mortars and composites [9,55–58]. The binders (without
fibers) incorporating reagent 2 exhibited 2% to 18% higher 28 day compressive strength
(between 39 and 57 MPa) than their reagent 1 counterparts (Figure 4a,b and Table 2) due
to the formation of additional C-S-H gel formation associated with high calcium content
in the system. This effect was more pronounced in binary binders due to their 5% higher
GGBFS content, which led to more availability of Ca2+ ions for the formation of C-S-H
and C-A-S-H binding phases, as revealed from the SEM/EDS and XRD investigations.
Reagent 1 also produced binder mixes with compressive strength comparable to the control
cement-based mix. These results are also consistent with the findings of previous research
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works. The formation of the C-A-S-H binding phase produces high early and ultimate
strength in high calcium binder and mortar systems [57–59].
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The binary binders without fibers obtained compressive strengths ranging from 41 to
57 MPa at 28 days, as shown in Figure 4a,b. The formation of the C-A-S-H/C-S-H binding
phase/gel in binary mixes was responsible for high early strength and faster strength gain,
as verified from the SEM/EDS and XRD analysis and consistent with previous studies on
fly-ash/GGBFS binders and mortars [57,58,60]. Ternary mixes obtained 7% to 14% lower
strengths compared to binary binders at 28 days. This can be attributed to the relatively
slow alkali activation process and the lower reactivity potential of FA-F. Both the binary
and ternary mixes performed well compared to the control mix (FPC) at 28 days, obtaining
similar strength results at 56 days and exhibiting gradual strength gain with age.

The fiber-incorporated binders exhibited compressive strengths ranging from 35.3 to
53.1 MPa at 28 days, as noted in Table 2 and Figure 5. The fiber incorporation to the mixes
can have two possible effects: firstly, an increase in porosity, and secondly, the control
of crack opening [7,15,61,62]. The dominance of the first effect reduces the compressive
strength, while the prevalence of the second effect can increase the compressive strengths
by controlling the crack propagation or opening [7,15,61,62]. The fiber-reinforced binders
obtained 1% to 8% lower or comparable compressive strengths compared to those without
fibers (between 38 and 56.3 MPa) at 28 days (Table 2). This indicates that the phenomenon
of porosity (air voids) addition to the mixes by the fibers was compensated by the fiber’s
intrinsic property of controlling the crack opening and propagation. This is consistent with
previous research [14,15], where no significant improvements in compressive strengths
were noted with the incorporation of fibers to the FA/GGBFS geopolymer mortar mixes.
The slightly reduced strength of fiber-incorporated binders compared to their non-fiber
counterparts can also be attributed to the possible balling of PVA fibers during mixing
in small cube specimens used for determining compressive strength. The binders with
(Figure 5) and without fibers (Figure 4) exhibited almost similar improvement in compres-
sive strengths of 11% to 34% and 7% to 31%, respectively, from 28 to 56 days. The binders
with and without fibers exhibited a standard deviation/error of up to ±5% in compressive
strength, indicating their reliable consistency and repeatability characteristics.
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3.2. Workability of Binders

Figure 6a,b presents the slump flow spread and the relative slump of different binder
mixes. The binder compositions (CS1, CS2, CFS1, and CFS2) exhibited a slump flow
spread and relative slump varying from 165 to 230 mm and 1.7 to 4.3, respectively. Mix
compositions (CS1N, CS2N, CFS1N, and CFS2N) obtained 2% to 6% lower slump flow
spread and 6% to 16% lower relative slump than the former binder compositions. The mix
compositions (CS1N, CS2N, CFS1N, and CFS2N) obtained a 2% to 29% lower slump flow
spread and 5% to 61% lower relative slump than the control binder mix (FPC), as depicted
in Figure 6a,b. This can be attributed to 5–10% higher GGBFS content in these mixes.
Higher calcium/GGBFS in the system resulted in a cement-like hydration process leading
to the formation of C-A-S-H/C-S-H gel, as evident from SEM/EDS and XRD analysis. The
dominant binding gel in a high calcium system was observed to be crystalline C-A-S-H
under X-ray diffraction (XRD), which validates the workability parameters’ results. Sim-
ilar observations were made in a previous study on GGBFS-based binders and mortars
incorporating CaO as a reagent [57,58,63]. The workability of the binders was not signifi-
cantly affected by the incorporation of PVA fibers as normally observed in cement-based
materials. This can be attributed to the release of water during geopolymerisation or alkali
activation [20,39,40], whereas water is consumed during the hydration of cement-based
materials. A low standard deviation of up to ±4.5% was seen in the companion mixes for
the same mix composition indicating consistency in test results.
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Reagent 1 effectively produced better flowable mixes, as shown in Figure 6a,b, leading
to a slump flow spread of 210 to 230 mm for the binders (CS1, CS1N, CFS1, CFS1N).
Hence, these binder mixes performed better, obtaining a 53% to 115% higher relative
slump than other AABs. The high intrinsic alkalinity of sodium metasilicate (pH = 14)
in these binder mixes resulted in a high degree of alkali activation, releasing water re-
sponsible for enhanced workability. Higher calcium content (calcium hydroxide/sodium
sulfate = 2.5:1) in reagent 2 resulted in the formation of mainly C-A-S-H/C-S-H gels and
comparatively less dissolution of silicate and aluminum ions responsible for geopolymeri-
sation/alkali activation.

Ternary binders had better flowability (12% to 63% higher relative slump) than the
binary mixes, as noted in Figure 6a,b. This was due to additional fly ash (class F) in the
mix and 5% to 10% lower GGBFS content. Fly ash particles produce a ball-bearing-like
effect due to their inherent round particles facilitating improved workability. Moreover, the
presence of higher silicate and aluminate content in fly ash (class F), as indicated in Table 1,
facilitates the release rate of ‘Si’ and ‘Al’ ions in the solution during geopolymerisation. This
leads to more release of water in the system, which is responsible for improved workability.
CFS1 also exhibited 6% superior performance than FPC in terms of a relative slump due to
the aforementioned reasons. A similar trend was reported in a previous study confirming
the binary binders to be less workable than the ternary binders [57,64].

3.3. Heat Evolution of Binders

The binder mixes (CS1, CS2, CFS1, and CFS2) exhibited similar temperature–time
curve profiles to their other corresponding binders (having total FA content equal to
GGBFS content), as presented in Figure 7a,b, obtaining peak temperatures varying from 25
to 31 ◦C. The control mix (FPC) obtained the highest peak temperature of 40 ◦C at 14 h. The
binders (CS1, CS2, CFS1, and CFS2) obtained up to 7% lower peak temperatures than their
corresponding AABs. Moreover, the time required to reach the peak temperatures was up
to 15% higher in these mixes (CS1, CS2, CFS1, and CFS2), indicating a more gradual heat
evolution process of such binders. This behavior can be attributed to lower GGBFS content
(5 to 10%) in these mix compositions, which reduced the binder constituents’ overall Blaine
fineness. The temperatures for all the mixes became about the room/ambient temperature
after 24 h of testing.
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The peak temperatures for binders incorporating reagent 1 varied around the room/
ambient temperature, as depicted in Figure 7a,b. The highest peak temperature of 27.7 ◦C
was observed for CFS1N. The peak temperatures for binders with reagent 1 were 7% to 17%
lower than those with reagent 2. The time required to reach the peak temperatures were
30% to 300% higher than the mix compositions with reagent 2. Thus, the temperature–time
curves for these binders were more gradual, indicating a steadier heat evolution. The
peak temperatures for binders with reagent 2 varied around 30 ◦C, with a maximum peak
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temperature of 31 ◦C for CS2N. The higher peak temperatures for binders with reagent 2
can be attributed to the high calcium content (Ca(OH)2:Na2SO4 = 2.5:1) of the reagent. This
high calcium content is responsible for dominant cement hydration-like reaction, leading
to higher peak temperatures, as observed for the control (FPC) binder.

The binary and ternary binders with reagent 1 had similar temperature–time curve
profiles, as noted in Figure 7a,b. However, the ternary binders with reagent 2 had 3% to 9%
lower temperature peaks than their binary counterparts. Moreover, the time required to
reach those temperature peaks was 140% to 185% higher than the binary mixes, indicating
gradual heat evolution for such ternary mixes. This behavior can be attributed to 5% to
10% higher GGBFS content in the binary binders. The higher GGBFS/calcium content in
the system leads to the formation of dominant C-A-S-H and C-S-H phases/gels responsible
for higher heat evolution.

In general, the peak temperature was higher in binders with higher Ca content (maxi-
mum 31 ◦C) and control FPc with the highest Ca content developed the highest temperature
of 40 ◦C. Previous research studies also confirmed such findings [35,36]. Fiber incorporation
was also found to have little influence on the heat evolution of AABs.

3.4. Setting Time of Binders

The initial setting time of all binders ranged from 68 to 533 min, while the final setting
ranged between 117 and 617 min. The binder CFS1N had the lowest initial and final setting
times of 68 min and 117 min. Binders (CS1N, CS2N, CFS1N, and CFS2N) had 14% to 23%
lower initial setting time and 21 to 40% lower final setting time than their counterpart AABs,
as illustrated in Figure 8. The mix compositions (CS1N, CS2N, and CFS1N) had a 40% to
80% faster initial setting and 31 to 68% quicker final setting than the FPC. This was because
of 5% to 10% higher GGBFS content in these binders. Higher GGBFS/calcium content led
to dominant calcium silicate hydrate binding phase/gel (C-S-H) in these binders, which
utilized the water released in the geopolymeric/alkali activation process, leading to faster
hardening. However, the ternary binder ‘CFS2N’ exhibited 25% and 31% higher initial and
final setting times, respectively, than the control mix. This behavior can be attributed to
a lower degree/rate of geopolymerisation in this mix due to the low alkalinity (pH: 7) of
sodium sulphate. Standard deviations of up to ±7% and ±5% were seen in the initial and
final setting times, indicating superior consistency in final setting times.
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Mix compositions (CS1, CS1N, CFS1, and CFS1N) had initial setting times varying
from 68 to 120 min and final setting times ranging from 117 to 259 min. These binders
exhibited 46% to 84% lower initial setting times and 37% to 76% lower final setting times
than their counterparts (CS2, CS2N, CFS2, and CFS2N). Reagent 1 resulted in a higher
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degree of geopolymeric/alkali activation reaction due to the enhanced ion dissolution
potential of sodium metasilicate (SM) due to its characteristic higher alkalinity (pH 14).
This led to the quicker setting of mixes incorporating reagent 1, as shown in Figure 8.
Higher calcium content in reagent 2 led to the formation of C-S-H gel in addition to C-A-S-
H. This might have resulted in incompatibility with the N-A-S-H gel formed because of
geopolymerisation, which caused longer setting times.

Ternary binders with reagent 1 had 26% to 33% lower initial setting time and 25 to
41% lower final setting time than their binary counterparts. This trend can be attributed to
higher silica and alumina content in fly ash (class F), which facilitated the ion dissolution
process, leading to a higher degree of geopolymerisation. Ternary binders with reagent 2
had 110% to 138% longer initial setting time and 47% to 90% longer final setting time than
their corresponding binary binders. The incompatibility between N-A-S-H gel and C-A-S-
H/C-S-H gel formed because of higher calcium content in the system might have resulted
in higher setting times. However, predominant C-A-S-H gel/binding phase formation
in binary binders led to water consumption released in the geopolymeric process and a
comparatively faster setting.

3.5. Shrinkage, Expansion, and Mass Change of Binders with and without Fibers

The shrinkage/expansion in any cementitious material is a vital durability property
concerning its structural applications. The adverse shrinkage effects comprise micro-
cracks and macro cracks or even breaking of structural elements due to the percolation
of deleterious materials through the cracks. The length and mass change of unreinforced
binders and binders reinforced with 2% v/v polyvinyl alcohol (PVA) fibers in water and air
curing regimes are described in the following subsections:

3.5.1. Length Change of Unreinforced Binders in Water Curing Regime

The influence of binary and ternary combinations of SCMs on length change with age
(1 to 90 days) in the water curing regime (solid line plots) is shown in Figure 9a,b. The
control paste (FPC) exhibited expansion until 28 days in water curing, followed by grad-
ual shrinkage until the test completion (90 days). However, the length change remained
positive, indicating it did not shrink more than its initial volume. This implies that the
formation of reaction products, mainly CSH/C-A-S-H gels, resulted in expansion/swelling
because of water consumption for the hydration process. The AAB mixes, however, exhib-
ited shrinkage as they released water during the geopolymer/alkali activation reaction,
as evident from Figure 9a,b and confirmed from earlier studies indicating the removal of
unbound water from the hardened paste [56,65]. A higher shrinkage rate was observed
during the first seven days, indicating the active formation of reaction products as seen
in previous studies [66]. The length change in shrinkage became almost constant after
56 days for AAB mixes, indicating the completion of the alkali activation process. The
mix compositions incorporating reagent 2 demonstrated relatively less shrinkage than the
mixes with reagent 1, as depicted in Figure 9a,b. This can be attributed to fewer varia-
tions in reaction products/gels/binding phases, mainly of C-A-S-H/N(C)-A-S-H phases
with traces of N-A-S-H in case of ternary mixes. Moreover, the high calcium content in
the system due to the composition of reagent 2 resulted in the improved dissolution of
fly ash. It enhanced the formation of reaction products, leading to the densification of
the binder mixes and higher strength binders with reagent 2 compared to binders with
reagent 1. The higher compressive strengths were seen to be associated with lower shrink-
age strains in binders with reagent 2, and similar observations were made in previous
investigations [25]. In the case of reagent 1, N-A-S-H binding phases were also observed
in the SEM micrographs due to the system’s high silica modulus responsible for releasing
water during geopolymerisation.
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The ternary mixes showed lower shrinkage strains than their binary counterparts, as
shown in Figure 9a,b. This can be due to FA-F’s less reactive nature and the densification
of resulting geopolymer gels (N-A-S-H/N(C)-A-S-H) by the cementitious binding phases.
A similar trend was observed in earlier investigations where the incorporation of FA to
GGBFS-based binders reduced shrinkage strains [67]. The C-A-S-H gels’ dominant reaction
product in binary binders exhibited viscous characteristics and a higher creep coefficient,
resulting in higher deformation under the same load [68].

3.5.2. Length Change of Unreinforced Binders in Air Curing Regime

All the binder specimens suffered shrinkage after 28 days when shifted to the drying
room, as indicated by dotted line plots in Figure 9a,b. However, the change in length
(shrinkage) reduced after 56 days, meaning the near completion of the reaction process
was observed for the specimens in ambient curing conditions. The binders incorporating
reagent 1 demonstrated higher shrinkage strains (ranging from 3.24% to 4.56%) than their
counterparts with reagent 2 (varying from 0.08% to 2.17%) at 56 days, as apparent from
Figure 9a,b. Similar observations were made in previous studies on SCMs or natural
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pozzolan (MK, FA, bottom ash, and pumice-type natural pozzolan)-based geopolymer
binders [30,69,70], where shrinkage strains ranged from 2.5% to 3.25%, 1.25% to 2.35%, and
0.5% to 3% at 56, 70, and 90 days, respectively. This can be attributed to the formation of
geopolymeric gels (N-A-S-H/N(C)-A-S-H) in these binders, including the binders with
reagent 1 in the present study. These binding gels’ formation resulted in the release of
water during geopolymerisation, evaporating in ambient conditions. Moreover, possibly a
part of mixing water present as interstitial water in these binding gels became evaporated
in drying/ambient conditions, leading to high shrinkage strains. The shrinkage strains
were relatively higher at 56 days in this present study compared to the previous studies
because of the change in curing conditions (water curing to drying/ambient conditions)
after 28 days to observe its implications on shrinkage and to account for realistic in situ
curing periods. The binary binders exhibited up to 7% lower shrinkage strains than the
ternary binders at 90 days, as depicted in Figure 9a,b, owing to the dominant formation of
C-A-S-H gel, which is comparatively denser than the amorphous reaction products being
formed in ternary binders. The exceptionally low shrinkage strain (1.67%) was reported
for CS2N at 90 days because of the highest GGBFS content among all AABs, resulting in
the additional formation of C-S-H gel with significant C-A-S-H binding phases.

3.5.3. Mass Change of Unreinforced Binders in Water Curing Regime

The effect of the binary and ternary combination of SCMs on mass change of speci-
mens with age in water (solid line plots) and ambient (dotted line plots) curing regime is
presented in Figure 10a,b. All mix compositions observed gradual mass gain with age. The
mass change graph slope was steeper during the first seven days in water immersion, and
it became almost constant after 28 days. The maximum positive mass change was observed
for the control paste (FPC) mixes of about 4.2%, as indicated in Figure 10a,b. There was a
slight decrease in mass for CS1 and CFS1 during the initial seven days, marking the release
of water during the formation of geopolymer products (N-A-S-H/N(C)-A-S-H).

The binder mixes with reagent 1 observed a slight decrease in mass at seven days
due to the comparatively active formation of geopolymer products accompanied by water
release. The binder CS2N reported the most significant mass change of about 2% at 28 days
among all AAB mixes. This can be attributed to the formation of C-S-H gel in addition to
the significant C-A-S-H binding phases. The binary and ternary binder mixes demonstrated
similar mass change trends with age in water immersion, as shown in Figure 10a,b.

3.5.4. Mass Change of Unreinforced Binders in Air Curing Regime

The mass change followed the same trend as the binders exhibited for the change in
length with age, as apparent from Figures 9a,b and 10a,b. There was a steep decline in
mass for all binder specimens when the specimens were transferred to the drying room
at 28 days. This was because the water released during geopolymerisation evaporated
due to the drying conditions, resulting in mass reduction. The change in mass reduced
after 56 days, indicating the near completion of the reaction process and the formation of
reaction products resulting in the pore structure’s refinement. A significant mass decline of
up to 17.29% was observed for binder specimens with reagent 1 at 56 days, as indicated
in Figure 10a,b. This can be attributed to sodium metasilicate’s enhanced ion dissolution
capability, which led to a higher degree of geopolymerisation, releasing water that became
evaporated in drying conditions. The lowest mass change of 1.89% among AABs was noted
for CS2N at 56 days due to the densification of the microstructure because of the formation
of C-S-H gel in addition to the dominant C-A-S-H gel for binders with reagent 2.
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The ternary binders exhibited a lower change/decline in mass with age after 28 days
compared to their binary counterparts, as presented in Figure 10a,b. This can be attributed
to the densification of pore structure consisting of majorly N-A-S-H/N(C)-A-S-H gels in
ternary binders with additional C-A-S-H binding phases resulting in a relatively lesser
decline in mass.

3.5.5. Length Change of Binders with Fibers in Water Curing Regime

The influence of binary and ternary combinations of SCMs on the length change of
binders reinforced with fibers with age (1 to 90 days) in the water (solid line plots) and
ambient (dotted line plots) curing regime is demonstrated in Figure 11a,b. The comparison
of length change at 56/90 days for binders with and without fibers in the water curing
regime is tabulated in Table 3. The expansion was observed in all the reinforced binder
(with fibers) specimens at all test intervals, contrary to the unreinforced binder (without
fibers) specimens with an outlier mix CFS2N-F showing shrinkage at 90 days. A steep
decrease in expansion was observed for all reinforced binders (with fibers) after 28 days, as
shown in Figure 11a,b. The alkalis present in the pore solution acted as nucleation sites
for the development of reaction products. The bonding of the reaction products with the
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uniformly dispersed fibers, as shown in Figure 12a,b, facilitated in counteracting shrinkage
in reinforced binders through micro-confinement. This active formation of reaction prod-
ucts until 28 days and the subsequent release of water during geopolymerisation can be
considered as probable reasons for expansion.
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The length change in terms of expansion was more significant in reinforced binders
incorporating reagent 1 than their counterparts with reagent 2, as depicted in Figure 11a,b.
This could have been due to the predominant formation of N-A-S-H/N(C)-A-S-H binding
phases in reinforced binders with reagent 1, resulting in the release of water subsequently
absorbed by fibers. On the other hand, the development of mainly calcium-based crystalline
reaction products in reinforced binders with reagent 2 led to water consumption for
hydration and resulted in less expansion/swelling than amorphous products.
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Table 3. Length and mass change of binders without and with fibers in water curing regime.

Binders—
Unreinforced

Strain (%) Mass Change (%) Binders—
Reinforced

Strain (%) Mass Change (%)

56d 90d 56d 90d 56d 90d 56d 90d

FPC 0.42 0.20 4.13 4.20 FPC-F 0.77 0.69 3.09 3.25
CS1 −0.77 −0.63 0.26 −3.5 CS1-F 0.19 0.25 2.18 2.40

CS1N −0.54 −0.48 0.12 0.02 CS1N-F 0.12 0.23 1.98 2.10
CS2 −0.22 −0.20 0.59 0.64 CS2-F 0.12 0.12 1.59 2.15

CS2N 0 0.18 1.95 2.05 CS2N-F 0.17 0.17 1.89 2.40
CFS1 −0.44 −0.30 0.93 −3.66 CFS1-F 0.27 0.60 1.42 1.69

CFS1N −0.05 −0.06 1.66 1.53 CFS1N-F 0.20 0.52 0.96 1.36
CFS2 −0.06 −0.04 0.78 0.82 CFS2-F 0.03 0.08 2.62 2.66

CFS2N −0.18 0.06 0.43 0.56 CFS2N-F 0.30 −0.27 1.22 1.46

Negative (−) sign in length and mass change indicates shrinkage and mass loss, and positive length and mass change denotes expansion
and mass gain.
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3.5.6. Length Change of Binders Reinforced with PVA Fibers in Air Curing Regime

The comparison of length change at 56/90 days for reinforced and unreinforced
binders is tabulated in Table 4. The shrinkage strains for reinforced binders were within
0.48% for FPC-F to 2.53% for CFS2-F at 56 days. In comparison, the shrinkage varied from
0.18% for FPC to 4.56% for CS1 for unreinforced binders. This indicates that incorporating
fibers into the binder mixes facilitated mitigating shrinkage, as apparent from Table 4 and
validated by previous investigations on geopolymer binders reinforced with fibers [67].
The bridging action of the fibers and the formation of reaction products on the fibers made
the reinforced binder system compact and denser.

Table 4. Length and mass change of binders without and with fibers in ambient curing regime.

Binder—
Unreinforced

Strain (%) Mass Change (%) Binder—
Reinforced

Strain (%) Mass Change (%)

56d 90d 56d 90d 56d 90d 56d 90d

FPC −0.18 −0.69 −2.07 −2.94 FPC-F −0.48 −0.78 −0.71 −1.05
CS1 −4.56 −5.04 −17.29 −13.32 CS1-F −1.84 −3.25 −4.21 −7.33

CS1N −4.23 −4.56 −14.56 −9.36 CS1N-F −1.62 −2.86 −2.46 −5.16
CS2 −2.04 −3.56 −9.92 −13.23 CS2-F −1.92 −2.71 −4.66 −7.09

CS2N −0.08 −1.67 1.89 −5.46 CS2N-F −1.95 −2.80 −3.67 −6.24
CFS1 −3.64 −5.24 −10.12 −13.76 CFS1-F −1.38 −2.66 −6.07 −8.99

CFS1N −3.24 −4.91 −7.37 −9.38 CFS1N-F −1.29 −2.48 −5.56 −6.96
CFS2 −2.00 −3.59 −6.67 −10.85 CFS2-F −2.53 −3.94 −5.83 −9.74

CFS2N −2.17 −3.30 −5.50 −7.14 CFS2N-F −1.57 −1.70 −4.59 −5.93

Negative (−) sign in length and mass change indicates shrinkage and mass loss, and positive length and mass change denotes expansion
and mass gain.
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The reinforced binders with reagents 1 and 2 showed similar shrinkage behavior
with age in drying conditions. CFS2-F observed maximum shrinkage strains of 2.53% at
56 days. The rate of length change declined after 56 days, as observed for un-reinforced
binder specimens. There were slight variations in shrinkage strains with age for binary and
ternary reinforced binders with reagent 1, as evident from Figure 11a,b.

3.5.7. Mass Change of Binders Reinforced with PVA Fibers in Water Curing Regime

The effect of binary and ternary combination of SCMs on mass change of reinforced
binder specimens with age in water (solid line plots) and ambient (dotted line plots) curing
regime is presented in Figure 13a,b. All the specimens exhibited a gradual mass gain, with
the most significant gain during the initial seven days, suggesting the active formation
of reaction products. The mass gain became almost constant after 56 days, indicating
the completion of the alkali activation process and cementitious reactions as observed for
unreinforced binder specimens, as noted in Table 3. The higher mass change was observed
for all reinforced binders with few exceptions than their corresponding unreinforced
binders. The formation of more reaction products on the uniformly distributed fibers and
the water released during geopolymerisation might have been absorbed by the fibers. An
increase in mass was observed with respect to initial mass (at 1 day) for all reinforced
binders at all ages in water immersion, as indicated in Figure 13a,b.
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3.5.8. Mass Change of Binders Reinforced with PVA Fibers in Air Curing Regime

The mass decline with age of reinforced binder samples was contained within 0.71% for
FPC-F to 6.07% for CFS1-F at 56 days, as shown in Table 4. In comparison, the mass change
for unreinforced binder specimens varied between +1.89% for CS2N and −17.29% for CS1
at 56 days. Incorporating fibers in the binders made them denser and more intact; therefore,
less change in mass and volume with age was noted in drying conditions. Furthermore,
the rate of change in mass declined after 56 days, indicating the near completion of the
reaction process.

3.6. Microstructural Analysis

The morphology and microstructural characteristics of the binder/paste specimens
were studied under a scanning electron microscope (SEM), and the elemental compositions
of the reaction products were determined using energy-dispersive spectroscopy (EDS)
analysis (Figures 14 and 15). The X-ray diffraction (XRD) analysis, as shown in Figure 16,
was also performed to identify the mineral phases present in the binders and validate the
SEM/EDS results.
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Figure 14. Morphology of binders at 28 days: (a) CS1, (b) CS2, (c) CFS1, (d) CFS2, (e) FPC.

The morphology of the binary mix specimens (CS1 and CS2) illustrated in Figure 14a–d
appeared to be partially amorphous, with significant portions of crystallized hexagonal
plates, as identified from sharper peaks in the XRD analysis (Figure 16) compared to
ternary counterparts (CFS1 and CFS2). The amorphous portion is associated with the
geopolymerisation of fly ash (25%FA-C+35%FA-F), and crystalline plate-like structures are
the reaction products of GGBFS. The binary binder CS2 obtained the highest 28 day com-
pressive strength of 56.3 MPa and thus appeared to be the densest from the morphology
depicted in Figure 14b. The ternary binder CFS2 was denser and had higher compressive
strength than CFS1 due to a higher CaO/SiO2 ratio because of higher calcium content in
reagent 2. The high calcium in the system facilitated the dissolution of ions (silicate and
aluminum) from the precursors [25]. The control mix FPC showed a denser microstructure
between binary and ternary AABs, attributed to the significant formation of C-S-H binding
phases. Some partially/un-hydrated grains of fly ash (FA-F) and cement can be seen
embedded in the matrix in Figure 14e.

The micrograph (Figure 15a) of the binary binder (CS1) indicated C-A-S-H gel as the
main reaction product from EDS and XRD analysis. Moreover, small traces of amorphous
N-C-A-S-H were formed, owing to the composition of reagent 1. Similar binding phases or
gels (C-A-S-H) were predominantly characterized in earlier microstructural investigations
on FA and GGBFS-based alkali-activated binders [9]. The crystallized plate-like structure
formed in the SEM micrograph having compounds with high aluminum content (C4AlH13),
also confirmed from EDS analysis (Al: 7.2%), was due to the presence of GGBFS in the
binder composition. The binary binder CS2 showed the formation of mainly C-A-S-H and
C-S-H binding phases (with C4AlH13 compound having a lower aluminum content of 3.6%)
due to the higher calcium content in the system, owing to the composition of reagent 2
(Figure 15b). Similar binding phases/gels were characterized in recent studies on fly ash
and slag-based pastes/mortars [57,58,71]. This additional C-S-H gel formation further
densified the microstructure and improved compressive strength compared to binder CS1.
Figure 15a,b shows some un-hydrated/partially hydrated particles of both GGBFS, as well
as FA-C embedded in both the matrices (CS1 and CS2).
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Ternary binders (CFS1 and CFS2) obtained lower strengths than binary binders (CS1
and CS2), owing to the larger particle size of FA-F. Hence, the most significant amount of
un-hydrated/partially hydrated fly ash (FA-F) was seen in the CFS1 micrograph shown
in Figure 15c, owing to its low reactivity because of the presence of firm chains Si–Al that
needed to be broken first to initiate the reaction process. These un-hydrated particles of FA-
F acted as inert particles and resulted in comparatively lower strengths than their binary
counterparts. The primary reaction products for ternary binder CFS1 (with reagent 1)
consisted of low calcium N(C)-A-S-H and N-A-S-H gels with Si–Al linkages, while N(C)-A-
S-H, N-A-S-H, and C-A-S-H gels were formed for CFS2 (with reagent 2) as indicated in
SEM/EDS and XRD analyses (Figures 15c,d and 16a,b). The availability of higher Ca2+ ions
from reagent 2 (Ca(OH)2:Na2SO4 = 2.5:1) and FA-F with high intrinsic silica content led to
the additional formation of C-S-H and C-A-S-H gels in CFS2 binders. The formation of these
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extra binding phases resulted in the refinement of pore structure, leading to higher strength
of binder CFS2 compared to its CFS1 counterpart. The building of such gel products were
characterized by the elements Ca, Al, Si, and Na in EDS analyses (Figure 15c,d).

The reaction products in the control paste (FPC) mainly consisted of C-S-H gels
(Figure 15e) because of the cement hydration (high content of calcium and silica in cement)
and the pozzolanic reaction of FA-F (high content of silica and alumina in FA-F suitable
for pozzolanic reactions) without alkaline reagents. While for AABs, the process of alkali
activation or geopolymerisation facilitated by alkaline reagents led to the formation of
crystalline (C-A-S-H with traces of C-S-H) and amorphous (N-C-A-S-H and N-A-S-H)
products, as shown in Figure 15a,d.

The XRD diffractograms of the binary and ternary paste mix incorporating reagents 1
and 2 with their identified mineral phases are presented in Figure 16a,b. The principal
mineral phases were quartz, calcite, and dolomite for mixes with reagent 2, showing a
higher number of peaks than their counterparts with reagent 1. The binding phases of
C-A-S-H and N-C-A-S-H were identified as the primary reaction products because of
their higher intensities and presence in the diffractograms of binders CS2 and CFS2 than
the other binding phases and noted earlier in the SEM/EDS analysis. Moreover, some
phases of Portlandite were seen in binders with reagent 2, indicating excessive calcium
in the system. The highest peak representing quartz for CS1, CS2, CFS1, and CFS2 was
identified at 29.7◦ 2θ. A combination of binding gels consisting of N-A-S-H or N-C-A-S-H
and C-A-S-H, as determined earlier in SEM/EDS analysis, were observed to have higher
intensities and presence in the diffractograms of CFS1 and CS1. The dominant mineral
phases consisting of lalondeite, grossular, quartz, and calcite were observed from 26◦ 2θ
to 38◦ 2θ in the diffractograms of CFS1 and CS1 as presented in Figure 16a,b. Few traces
of periclase (MgO) and gypsum were present in all the binders. The presence of gypsum
counteracted the quick setting of mixes, and MgO content in the compositions is known
for inhibiting shrinkage by its characteristic expansive nature [45]. The diffractograms
of binary binders (CS1 and CS2) exhibited more and sharper peaks than their ternary
counterparts (CFS1 and CFS2), representing the formation of more crystalline products.

4. Conclusions

Sixteen binary and ternary alkali-activated binders (AABs) without and with 2%
polyvinyl alcohol (PVA) fibers were developed from the optimum combinations/proportions
of precursors such as fly ash class C (FA-C), fly ash class F (FA-F), and ground granulated
blast furnace slag (GGBFS) incorporating powder-based reagents (reagent 1: calcium hy-
droxide + sodium metasilicate and reagent 2: calcium hydroxide + sodium sulfate). The
performance of the developed binary (FA-C + GGBFS) and ternary (FA-C + FA-F + GGBFS)
binders was discussed in terms of their fresh state, mechanical, durability, and microstruc-
tural characteristics. The following conclusions are drawn from this study:

• Binary and ternary binders without fibers with 40% to 45% GGBFS content demon-
strated 8% to 34% higher compressive strengths than their counterparts (having 50%
FA and 50% GGBFS), irrespective of the type of reagent. The use of GGBFS more
than 45% had the adverse effect of reducing the compressive strength of the binders.
There seemed to be a threshold of calcium content in the system, as a 5% to 10%
increase in the proportion of GGBFS in binary and ternary binders resulted in an 8%
to 25% reduction of compressive strength. GGBFS content of 45% in the binder mix
compositions was found to be the optimum, according to strength characteristics.

• The fiber incorporation did not play a significant role in the compressive strength
development as the binders with and without fibers obtained comparable strength at
28 and 56 days. The effect of additional porosity created by the fibers was balanced by
the fiber bridging action controlling crack opening and propagation.

• The binary and ternary mixes without fibers having a GGBFS content of 50% exhibited
a 6% to 16% lower relative slump than their counterpart AABs. Ternary binder ‘CFS1’
composed of 25% FA-C, 35% FA-F, and 40% GGBFS with reagent 1 obtained the
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highest slump flow spread of 230 mm and the highest relative slump of 4.3, achieving
a 56-days compressive strength of 54 MPa.

• The primary binding phases/gels in binary binders are a combination of C-A-S-H
and C-S-H, as noted in SEM/EDS and XRD analyses. A combination of N-A-S-H or
low calcium N(C)-A-S-H and C-A-S-H gels were the reaction products for ternary
binders. The binders with reagent 2 generally produced higher compressive strength
compared to their reagent 1 counterparts due to the presence of Portlandite, leading
to the formation of additional C-S-H gel. The presence of sharper crystalline peaks in
XRD consisting mainly of quartz and calcite for binders incorporating reagent 2 also
supported the development of higher compressive strengths.

• A wide range of initial (68 to 533 min) and final (117 to 617 min) setting times were
obtained for binary and ternary binders without fibers. Binders, both binary and
ternary, having a GGBFS content of 50%, exhibited 14% to 23% lower initial and 21%
to 40% lower final setting times than other AABs.

• Ternary binders without fibers demonstrated lower shrinkage strains (varying from
0.036% to 0.296% at 90 days) compared to their binary counterparts (ranging from
0.20% to 0.628%) in water immersion because the un-hydrated FA-F particles acted as
inert material filling the voids as well as continuous supplying of released water during
alkali activation. The formation of reaction products on the fibers with subsequent
micro-confinement created by the fibers by bridging action and resisting crack opening
in binary/ternary binders facilitated shrinkage mitigation.

• The binary and ternary binders without fibers having 40% to 45% GGBFS content
incorporating reagents 1 and 2 were found to have better performance in terms of
higher workability and gradual time-dependent heat evolution (peak temperatures be-
tween 25 ◦C and 31 ◦C), with lower heat of hydration (minimizing early age shrinkage
cracks) and higher compressive strength.

• This study confirms the feasibility and commercial viability of producing sustainable
binary/ternary green alkali-activated binders and composites using industrial wastes
with satisfactory properties using a dry mixing method under ambient curing. PVA
fiber-incorporated binders can also be used to develop alkali-activated engineered
cementitious composites with strain-hardening and micro-cracking characteristics.
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