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Abstract: This paper presents a generalized framework for the digital generation of composite
microstructures using filter-based approaches that can devise and utilize a wide variety of cost
functions reflecting the desired targets on geometrical and statistical measures. The use of filter-based
approaches leads to remarkable computational advantages compared to the conventional approaches
used currently for microstructure generation. The framework provides a highly modular and flexible
approach to generate stochastic ensembles of microstructures meeting user-defined microstructural
characteristics. The proposed framework is illustrated in this paper through selected case studies.

Keywords: composite microstructures; microstructure generators; microstructure statistics; image
filters

1. Introduction

Composite materials represent an important class of advanced materials due to their
superior properties for many application domains [1–3]. Digital generation of a composite
material’s internal structure (often simply referred as microstructure) plays an important
role in advancing our understanding of the quantitative connections between the mi-
crostructure and its associated properties, as well as those between the processing history
and the final microstructure attained in a manufactured part. Indeed, a digital microstruc-
ture is often the input into most commonly employed multiscale material simulation
toolsets (e.g., micromechanical finite element models [4–6] and phase-field models [7,8]).
Recent efforts in the generation of digital microstructures have focused on problems such as
the generation of a statistically similar ensemble of microstructures given a limited amount
of available (reference) experimental observations [9–12], the generation of representative
three-dimensional (3D) volume elements of material microstructures based on statistics
gathered from two-dimensional (2D) microscopy scans or images from a sample [13–21],
and the visualization of microstructures corresponding to a prescribed set of measured or
predicted spatial correlations [19,22–28].

Broadly speaking, the generation of digital microstructures involves two main steps:
(i) selection and prioritization of the metrics, statistics, and/or geometric constraints
targeted in the microstructures to be generated, and (ii) development and deployment of
computational algorithms for efficiently arriving at digital instantiations of microstructures
meeting these criteria. Generation targets are most commonly formulated as shape and
size distributions of the required salient features in the microstructure. These could be
specified in the form of idealized geometries (e.g., spheres, cylinders, ellipses) that could be
placed in a given representative volume element of the microstructure [14] with constraints
on separation or overlap [29]. Alternately, the target statistics can also be specified as
a suitable set of spatial correlations (e.g., n-point spatial correlations [30,31]). The most
commonly used approaches for digital generation of microstructures can be classified as
“packing” algorithms. In these approaches, one aims to pack selected geometric shapes
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(e.g., spheres and cylinders) in a given representative volume (or area), usually in a non-
overlapping arrangement, while reaching the prescribed statistics or metrics (generally
expressed as volume fractions or size and shape distributions of the selected geometric
shapes). Exemplary among these efforts is the work of Tschopp et al. [29], where one picks a
point in the microstructure randomly and checks if the placement of the selected feature at
the selected point produces an overlap with the pre-existing features in the microstructure
being generated. If an overlap exists, the point is discarded. If there is no overlap, the
selected feature is placed at the selected point in the microstructure. This process is then
repeated until one arrives as close as possible to the target statistics. While this strategy can
be employed effectively for a broad range of multiphase composite microstructures that
conform to the idealizations and assumptions made regarding structural geometry, various
deficiencies can immediately be noticed with respect to scalability. As the volume fractions
and sizes of the microstructural features to be placed increase, the algorithm will result in a
quickly exploding number of placement failures (i.e., it becomes increasingly hard to find
a location with no overlap); the problem becomes even more challenging for generations
of large 3D microstructures. The dependence on random trials makes it difficult to target
specific statistics (i.e., distributions) on the separation distances (negative distances can be
treated as overlap) between the features or their orientations (for non-equiaxed features).

Polycrystalline microstructures can be considered a special class of composite mi-
crostructures, where the microscale constituents are grains of different crystal lattice orien-
tations. For such microstructures, one typically employs a strategy that results in space-
filling arrangements of the grains. The strategies explored in the literature have included
Voronoi tessellations (e.g., [32]) and dilations of elliptical seeds [13,33]. Once a tessellated
volume is generated (usually targeting prescribed distributions on grain size, grain shape,
and/or the number of neighbors), the problem of generating a digital polycrystalline
microstructure reduces to the assignment of local states or characteristics (i.e., orientation
and phase identifier) to each seed (i.e., voronoi cells or grains), while achieving desired
statistics of the phase volume fractions, crystal orientations, and/or misorientations. In
general, the two steps described above are pursued in a completely uncoupled manner, i.e.,
there is usually no attempt to further improve the shape and size distributions of specific
grain orientations in the second step.

A major deficiency of the techniques described above is that they are not easily
extended to situations in which one desires to simultaneously target a large number of
different microstructure statistics. Furthermore, these methods cannot handle multiple
geometrical or statistical constraints simultaneously in a computationally efficient manner,
especially since they were not designed with generalization in mind. As such, most
approaches used in the current literature will yield good results only for the specific types
of microstructures and geometries they were designed to address. Furthermore, many of
the approaches described above are generally not able to reproduce the complex features
observed in experimentally documented microstructures.

In recent years, there have been various attempts to address the limitations described
above using new approaches to microstructure generation based on algorithms from the
field of texture synthesis [34]. The word texture, in this context, generally refers to a
digital image with a distinct and visually identifiable pattern/order, usually consisting of
repetitive elements. The objective is, then, to generate a larger image or volume showing
a similar visual pattern or order in a seamless and aesthetically appealing way. This can
be achieved, for instance, by considering the histogram of the color/grayscale values on a
reference texture as a descriptive metric, and generating larger images (or, equivalently,
textures) that match the target histogram. These methods can be extended to include the
volume fraction of constituents or orientation distributions. Alternatively, methods of
neighborhood matching can be utilized, where the immediate vicinity of each pixel in the
generated texture is guided by trends sampled from the reference texture. Among these
efforts, Markov fandom fields (MRF)-based synthesis has found, by far, the most common
usage in the materials domain [35]. In the most exemplary formulation of this approach
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presented by Kopf et al. [35], concepts of volume fraction matching and MRF-based neigh-
borhood matching were combined in an optimization loop, which resulted in the utilization
of both local (neighbors) and global (volume fractions) information during the generation
process. While this method shows tremendous promise, it inherently assumes that the
state assigned to each pixel in a microstructure is only determined by the pixels in its close
neighborhood. Although it is clear from these implementations that the simultaneous con-
sideration of both the global statistical measures and neighborhood features is important
for the accuracy and the visual quality of the generated microstructures [15], this approach
is not practical when targeting medium or long range structural order, as the computational
cost increases dramatically with the consideration of larger neighborhood sizes.

The inadequacy of texture synthesis approaches for microstructure generation can be
understood by recognizing that texture synthesis is mainly concerned with the generation of
a smooth and visually appealing image from a given reference. Texture synthesis methods
utilize exclusively the information from a sample or multiple samples and create variations.
On the other hand, the goal of microstructure generation is to create instances that could
have come from the population sampled. Texture synthesis methods focus heavily on visual
similarity, which results in the over-utilization of absolute information from the reference,
and minimal or weak utilization of the rigorous spatial statistics that could be extracted
from the reference. In other words, in microstructure generation, we want to emphasize
the matching of a large number of robust statistical measures, even if the structure looks
less similar visually, as our interest is in mimicking the overall properties exhibited by the
composite material. In this context, it is important to understand and acknowledge the
important role of spatial correlations in controlling the properties associated with material
microstructures [36,37].

A completely different approach to the generation of digital microstructures comes
from formulating the problem as a minimization of the difference between the targeted
statistics and the corresponding statistics for the generated microstructures, and solving
this problem using optimization toolsets. For a meaningful application of this approach,
one needs to select a suitably large set of target statistics. This is because, with a small
set of statistics, the number of potential solutions is quite large. The complete set of
two-point spatial correlations has been targeted in some recent microstructure generation
efforts [27,38]. Since these approaches employ optimization strategies, they implicitly
assume that there is an underlying absolute target to be matched. In other words, similar to
the case of texture synthesis, these methods target the reference strongly, and only weakly
target the population from which the reference was sampled. Furthermore, most phase
recovery approaches [27,38] can be applied only when the complete set of two-point spatial
correlations are available.

This paper aims to bring together all the seemingly disparate approaches described
above in a single consistent and modular framework. This new overarching framework
allows seamless interplay of all the different microstructure generation strategies described
above from the current literature. Assembled specifically with microstructure instantiation
in mind, the framework can accommodate both geometrical (i.e., overlap constraint and
distance constraint) and statistical constraints (two-point auto correlations) within user-
defined tolerances. The framework allows the specification of arbitrary shaped features
(could come directly from experimental microstructures) and is designed to be fully com-
patible with any of the existing microstructure generators. This new framework is first
described in the next section, and subsequently demonstrated with multiple case studies.

2. Microstructure Generation Framework

As previously mentioned, the goal of microstructure generation is to meet a specified
set of target statistics within user-defined tolerances. This targeted set of statistics is
considered to be rank-deficient, in the sense that multiple microstructure instantiations are
expected to meet them within the set tolerances. Therefore, the problem, here, is formulated
as microstructure generation that aims to minimize a suitably defined error between the
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statistics of the generated microstructure and the targeted set. This approach allows one
to think of the generated microstructures as statistical volume elements (SVEs) [39,40]. In
contrast, one might be interested in generating representative volume elements (RVEs)
corresponding to a clearly specified set of targeted microstructure statistics. In order to
arrive at RVEs, one can try to select specific SVEs (from a large set of generated SVEs)
whose average statistics match the target statistics to arbitrary (user specified) precision.
However, this approach is likely to be inefficient and may need a very large set of generated
SVEs. Alternately, it would be much more efficient to select a set of weighted SVEs (i.e.,
WSVEs [41–43]) whose selection and weights are optimized to match the weight-averaged
statistics of the SVEs to the target statistics to arbitrary precision.

The generalized microstructure generation framework presented in this paper em-
ploys the iterative approach presented schematically in Figure 1. The generation starts
with a trial (guess) of the microstructure to be instantiated. This could be taken from a
compiled library of potential microstructures or generated using random (Gaussian) noise
and a suitable segmentation [44]. The framework comprises the following main steps:
(1) the creation and/or updating of a library of features of interest using available reference
structures/images, (2) selection of a specific feature for placement, (3) efficient computation
of the cost functions describing the improvements in all the prescribed geometric and
statistical distributions for all possible placement locations of the selected feature in the
microstructure being generated, (4) determination of the placement location of the selected
feature employing suitable heuristics, and (5) an evaluation of how the updated microstruc-
ture meets all the prescribed criteria. If the prescribed criteria are not met, one might
proceed to the next iteration by starting with either step 1 (i.e., updating the feature library)
or with step 2 (i.e., selection of a different feature from the library). If all the prescribed
criteria are met, the iterations stop, producing a potential microstructure instantiation of
interest. Additional instantiations can be produced using different initial guesses (i.e.,
different initial microstructures). Note that the geometrical constraints (target overlap and
distance constraints) and statistical constraints (target two-point spatial correlations) are
treated as user-defined parameters in the presented framework. Therefore, the framework
allows for the generation of a wide variety of microstructures at low computational costs.
Details of each step identified above are further elaborated in the next sections.
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Figure 1. The main workflow of the microstructure generation framework comprising the following
steps: (1) creation of an initial guess of the microstructure, (2) selection of the object to be placed from
a library of candidate objects, (3) computation of the geometric and statistical cost functions, (4) place-
ment of the object at an optimum location based on heuristics, and (5) assessment of convergence.

2.1. Feature Library

The overall strategy employed here relies on the identification and placement of
features in the microstructure volume meeting the prescribed statistics. As such, the
generation of a suitable library of potential features is an important component of this
process. Generally, there are two strategies to accomplish this task. The first approach
relies on employing standard simple geometries that may be combined or merged suitably
to produce more complex features. For example, in generating 2D microstructures, one
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might consider a broad selection of rectangles, circles, and triangles of different shapes
and sizes as the initial simple features. Similarly, in generating 3D microstructures, one
might consider a broad selection of rectangular parallelepipeds, spheres, cylinders, and
pyramids for the simple initial features. One can then employ the algorithms described in
this work to allow for the generation of compounded features by overlaying individual
features (through the iterative process depicted in Figure 1). Consequently, the overall set
of distinct features that can be found in the final generated microstructure is significantly
richer than those in the feature library.

The second approach to creating a feature library relies on extracting the features
directly from the reference images. Here again, one has two choices. As a first option, one
can custom-select features from the reference images by cutting out specific portions of
arbitrary sizes and shapes. In other words, the features can be irregularly shaped and/or
disjointed cut-outs from the reference images that capture the salient features desired in
the microstructure to be generated. As a second option, instead of custom-selecting the
features, one can also randomly select small portions of the reference images. The selection
of the sizes and shapes of these smaller images can also be randomized.

While it is tempting to accumulate a large library of features, one should recognize
that the computational cost scales with the number of distinct features included in the
generation process. Therefore, one should exercise prudence in selecting the features of
interest. One can also tweak the feature library between the iterations, i.e., remove features
that do not seem to be of value in achieving the desired statistics and add new ones.

2.2. Cost Functions

In the context of the present work, cost functions quantify the benefits (or penalties)
for placing a selected feature at a selected location in the generated microstructure in efforts
to move the microstructure statistics closer to the targeted statistics (including geometric
constraints). The central impediment in evaluating these cost functions is their high com-
putational cost. If one considers the generation of a microstructure with S spatial bins (or
voxels), then one needs to evaluate the cost function S times to decide on the optimal place-
ment of the selected feature. One of the main contributions of this paper is to demonstrate
the computational advantages of using filters in evaluating these cost functions. More
specifically, it will be demonstrated that a broad variety of microstructures with very tight
and specific constraints can be generated entirely with O(SlogS) computational complexity
using filters [45]. Furthermore, the computational cost with this approach is independent
of the complexity of the image or the type and size of the feature.

Although a broad variety of cost functions are possible, they can be classified into
two major groups in the context of microstructure generation. The first group is aimed at
geometrical constraints, while the second targets user-specified spatial correlations. These
are described in detail next.

2.2.1. Overlap and Distance Cost Functions

The cost functions associated with meeting most geometrical constraints can be formu-
lated as an overlap cost function (OCF). As the name suggests, this function quantifies the
degree of overlap between a new object to be placed in a microstructure and the existing
objects already present in the microstructure. The most common practice in current litera-
ture for evaluating the OCF is often a brute force approach involving random placements
and repeated trials [29]. Such approaches typically result in a computational cost that is
bounded, roughly, at O(S2). Consequently, the brute force approach becomes impractical
for both large microstructure domains and large objects. Moreover, there is currently no
formal approach to allow partial overlaps with specified statistics (which may include
specification of desired locations of overlaps).

In this work, we propose addressing these cost functions using a filter-based approach
that takes advantage of the convolution properties of discrete Fourier transforms (DFTs)
computed with a cost of O(SlogS) using the fast Fourier transform (FFT) algorithm [46].
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In addition to the low computational cost, the other main advantages of this approach
include: (i) ability to place objects at multiple locations in a single iteration, especially in the
early stages of microstructure generation, and (ii) flexibility for allowing partial overlaps
or gaps between objects with specified statistics.

The proposed filter-based approach is illustrated in Figure 2 with a simple example
of an iteration in the generation of a 2D microstructure (can be trivially extended to 3D
microstructures). The initial microstructure (i.e., at the start of an iteration) is shown here
with differently oriented black rectangular objects placed on a white background. The
black border on the image is not a part of the microstructure and has only been added
to improve visualization (to denote the edges of the image). The object to be placed is
a specifically oriented rectangle, also shown as an image of the exact same size as the
microstructure. These images are mathematically represented as arrays, where the black
pixels are assigned a value of one and the white pixels are assigned a value of zero. A
simple convolution of the object image with the microstructure image normalized by the
object size (i.e., number of pixel/voxels in the object), produces the desired OCF (also
shown in Figure 2). Mathematically, this computation can be expressed as

OCF =
=−1(=(Microstructure)∗ �=(Object)

)
ObjectSize

(1)

where =( ) denotes a DFT operator (implemented using an FFT algorithm), � denotes a
simple element-wise multiplication of the corresponding frequency terms (i.e., a Hadamard
product), and the superscript * denotes the complex conjugate. One of the consequences
of employing DFTs is that they implicitly impose periodicity conditions across the image
boundaries. In many instances, this is an advantage. For example, in most numerical
simulations of microscale materials phenomena, one routinely imposes periodic boundary
conditions on the representative volume element of the material microstructure. However,
in cases where one desires to avoid this assumption, one can employ a variety of padding
strategies (cf. [47]) to get around this limitation. Each pixel (voxel) value in the OCF map
shown in Figure 2 describes the percent overlap of the new object with previously existing
objects, if the new object were to be placed centered on that pixel (voxel).

As mentioned earlier, we desire versatility in imposing additional geometric con-
straints and/or statistics in the placement of objects (e.g., controlling the gaps between
objects). It is proposed that we provide this versatility by adapting a common concept from
the image processing field called distance transform [48–50] and computing a distance cost
function (DCF) defined as

DCF+
s = min

s′
dist

(
s, s′

)
, s ∈ OCF = 0%, s′ ∈ OCF > 0% (2)

DCF−s = min
s′

dist
(
s, s′

)
, s ∈ OCF > 0%, s′ ∈ OCF = 0% (3)

DCF = DCF+
s −DCF−s (4)

where s and s′ index the voxels in the microstructure and the dist() function outputs the
Euclidean distance, i.e., dist(s, s′) = s− s′. It is also convenient to think of the indices s
and s′ as integer array indices. For example, for a 3D microstructure, one could express
s = {s1, s2, s3}, with Si taking integer values. Equation (2) defines a distance for the voxels
without any overlap (based on the computed OCF) to the nearest pre-existing object in the
microstructure; this function provides a measure of the gap between the object to be placed
and the existing object. Similarly, Equation (3) defines an overlap distance for the voxels
with overlap (based on the computed OCF). Equation (4) combines both these measures in
a single signed DCF. The computations described in Equations (2) and (3) can be performed
effectively using MATLAB’s bwdist [48,51] function with O(S) complexity.
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Figure 2. (a) Initial structure before object placement (left) along with the object to be placed
(right). (b) Illustration of the computation of the overlap cost function (OCF) and the distance cost
function (DCF).

The framework and concepts introduced above offer tremendous flexibility for many
potential extensions. For example, the microstructure in Figure 2 had two local states (these
refer to the distinct microscale constituents present in the microstructure) that were colored
white and black. Although the example above discussed the overlap cost function for
the placement of a selected object with respect to pre-existing black objects, it should be
easy to see that the cost functions can be defined separately for each local state present
in the microstructure. Therefore, for the general case of multiple local states, one can
define OCF[h] as the overlap cost function for the placement of a selected object with
respect to pre-existing objects belonging to local state h. Similarly, one can, then, extend the
definition of DCF to identify the distances (i.e., gaps and overlaps) separately with each
local state, expressed as DCF[h]. As further examples, it is also possible to use measures of
distances other than the Euclidean distance (such as the Chebyshev distance [52] or the
quasi-Euclidean distance [53]) in defining the DCF.

It is pointed out that a very wide variety of statistics on the overlaps and gaps be-
tween objects can be accommodated in the microstructure generation simply by using the
OCF and DCF in conjunction with each other. Figure 3 depicts examples of the different
compounded object configurations produced by imposing different combinations of OCF
and DCF. In these examples, the blue object represents a pre-existing object, while the
green object represents a new object to be added to the microstructure. In general, it is
our experience that one obtains better control on the placement of microstructural objects
by using both OCF and DCF. Using only one of the cost functions generally results in
unintended object morphologies.
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Figure 3. Examples illustrating various placement modes that can be achieved using an OCF and a
DCF in conjunction. For each example, the blue rectangle is already in the microstructure, and the
green rectangle is to be placed.

Figure 3 illustrates only the simplest of the compounded geometrical configurations
controlled with the direct application of the OCF and DCF presented earlier. One can be
much more creative in the application of these cost functions. For example, one can define
and employ meta-local states in the objects. As a simple example, in the rectangular object
we have been considering thus far, one might want to differentiate the end regions from
the middle portions. For this purpose, the portions of the object to be added can be labelled
distinctly. As an example, the object to be added is shown with yellow ends and a green
middle portion in Figure 4. In other words, the pixels in these regions have been assigned
different local states, referred here as meta-local states. In a similar way, the pre-existing
object in the microstructure can also be assigned different metal-local states (see the yellow
and blue colored regions in the pre-existing object in Figure 4). The creation of these
meta-local states offers tremendous control and specificity in adding desired geometrical
configurations to the generated microstructure. This capability is illustrated in Figure 4 by
chaining multiple overlap and distance-based constraints in a sequential manner. In other
words, as one applies additional constraints in a chained (sequential) manner, one can
ensure that only the desired geometrical configurations are successfully incorporated into
the generated microstructure. In the example shown, the objective was to make sure the
objects connect only on the ends at wide angles to each other (without significant overlap).
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is to be placed. Yellow areas are labelled with meta-local states to correspond to the ends of the rectangle. The final goal is to
achieve a placement where rectangles overlap exclusively in the yellow regions, while having a wide angle between them.

2.2.2. Two-Point Statistics-Based Cost Functions

As mentioned earlier, a number of microstructure generation efforts are likely to target
specific sets of spatial correlations due to their important role in controlling the effective
properties exhibited by the material [47,54–57]. Although these statistics are very different
in how they are defined compared to the statistics on the geometrical constraints considered
thus far, we will explore if the same toolsets described above can also be employed in spite
of these differences.

One way to approach the task at hand is to define the object of interest as a single voxel
in the microstructure. We, therefore, would like to define the cost function, quantifying
the degree to which changing the local state in any selected voxel in the microstructure
helps drive the microstructure towards targeted spatial correlations. We will also limit
our attention, initially, to two-point spatial correlations in a two-phase composite, where
a single autocorrelation is adequate to capture the complete set of two-point spatial cor-
relations [26,27,47]. Furthermore, as discussed earlier, we will impose periodic boundary
conditions on the microstructure.

We start by considering the changes to the autocorrelation when one changes the
local state in one selected voxel in the microstructure. This is illustrated through the
example shown in Figure 5. The example microstructure and autocorrelation computed
using previously established algorithms [47] is shown as Figure 5a,b, respectively. In
this example, the voxels colored yellow are assigned values of one, and voxels colored
blue are assigned zero values. The autocorrelation in Figure 5b represents the yellow–
yellow autocorrelation. Next, we identify a specific blue voxel (shown in red) and wish to
quantify the changes in the autocorrelation when this voxel is flipped to a yellow voxel.
It is important to recognize that the autocorrelation is simply the number of successes
of finding yellow voxels at the head and tail of vectors placed into the microstructure
normalized by the number of trials. In Figure 5b, all vectors are visualized as emanating
from the center of the map. In other words, the center voxel in Figure 5b corresponds to
a zero vector. Given this interpretation, it is easy to see that the additional vector counts
created by flipping the voxel are easily visualized by moving the voxel to the center of
the microstructure, while taking advantage of the periodicity assumptions, as shown
in Figure 5c. Therefore, the corrections of the autocorrelation are simply, as defined by
Figure 5c, normalized by the number of spatial bins in the microstructure. It is important
to note that each correction made in Figure 5c needs to be made both for the vector itself as
well as its negative (autocorrelations are symmetric with respect to center).
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microstructure with the pixel to be changed shown in red. (b) Yellow–yellow autocorrelation. (c) The correction of the
autocorrelation as a result of the change made to the red pixel.

In order to make the generation process target a particular set of spatial statistics, it is
necessary to quantify how much closer the spatial statistics of the current microstructure
will be to the target statistics if a particular pixel is filled with a particular phase. Let us
assume that we have a microstructure that only needs a single pixel modification to reach
the target two-point statistics. In this case, by applying the concept from Figure 5, we can
test the effect of modifying each pixel until we find the right one (see Figure 6a). However,
another way of achieving the same effect is, instead, to find the difference between the target
and current statistics to establish an approximation of the desired neighborhood, and then
search the microstructure for this neighborhood (see Figure 6b). While direct application of
both concepts will yield a search of O

(
S2) complexity, the workflow described in Figure 6b

can be realized by convolving the desired neighborhood with the current microstructure,
resulting in an O(SlogS) complexity.

The concept described above can be generalized for microstructures that require major
modifications to reach the desired two-point statistics. For this purpose, the difference
between the target statistics and the statistics of the current microstructure would be treated
as a weighted filter. In this filter, larger weights would signify high priority neighborhoods.
As such, modifications to the structure should prioritize pixels that contain a large quantity
of high priority neighborhoods. Such a filter will be referred henceforth as the placement
gain filter (PGF).
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Next, we demonstrate the calculation and utilization of the PGF for the placement
of a selected object in an existing microstructure. Figure 7 shows an initial structure and
the object to be placed, as well as both of their two-point autocorrelation plots. Figure 8
pictorially outlines the necessary operations to obtain the PGF for this object in the initial
microstructure. Mathematically, this chained operation can be expressed as

PGF =
(

f −=−1(=(Image)∗ �=(Image)
)
−=−1(=(Object)∗ �=(Object)

))
�W (5)

where f is the target two-point statistics and W is the matrix of neighborhood weights. W
enables the generation process to prioritize a specific subset of the statistics, such as vectors
of a particular length or orientation, based on physics/manufacturing requirements (for
example, the statistics corresponding to long vectors have less impact on the properties
compared to those corresponding to short vectors). The subtraction of the object two-
point statistics from the target assumes that the object will be placed without overlap;
however, the error introduced is minimal in most overlapping cases. Calculation of PGF
only contains element-wise products, subtractions, and Fourier transforms for an O(SlogS)
complexity.
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Figure 8. Graphical depiction of the operations involved in the calculation of the PFG (see Equation (7)).

In order to utilize the obtained PGF to calculate the statistical cost function (cost
of placing an object towards satisfying the two-point statistics requirements), two more
convolutions and a n element-wise multiplication are necessary; thus, the Fourier transform
remains the operation with the highest complexity. SCF can be computed as

SCF = =−1
(
=
(
=−1(=(Image)∗ �=(PGF)

)
� Image

)∗
� =(Object)

)
(6)
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This operation is pictorially shown in Figure 9 for clarity. The resulting SCF can be
used similarly to OCF and DCF to guide the placement of a new object.
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2.3. Object Placement

The next step in any given generation iteration, after the computation of the cost
function, is the actual placement of the object. There are two key steps to this decision. The
first one involves the merging of information from the OCF, DCF, and SCF (see Figure 10).
This can be achieved in various ways, such as addition (soft constraints), multiplication
(hard constraints), or weighted independent voting. The examples presented in this work
are generated using multiplicative joining:

Joint Cost Function = OCF�DCF � SCF (7)

Note that the joint cost function can involve multiple OCFs, DCFs, and SCFs, corre-
sponding to different local states. The second stage involves the selection of one or more
points to place the object according to the joint cost function. To the very ill-posed nature
of most microstructure generation problems, it is usually desirable to allow for random
variation in the selection process so that the generation does not directly converge to the
nearest local minima. The examples here treat the normalized joint cost function as a
probability distribution and draw a sample for placement.
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2.4. Convergence

The final consideration in the microstructure generation framework is the stopping
criteria. Either one-point (equivalent to volume fraction or number of objects) or two-
point statistics convergence can be used to terminate the generation process. As with
placement heuristics, error metrics and convergence methods are abundant in optimization
literature [58]. For the examples presented in this paper, the following error metric is used
and minimized when statistical criteria are imposed:

error =
‖
(

f − f
)
�W ‖

‖ f �W‖
(8)

where f is the two-point statistics of the current iteration of the generated microstructure,
and W is the neighborhood weight matrix from the PGF calculation.

3. Case Studies

The framework described above is demonstrated using two case studies: generation
of example digital microstructure images using arbitrary shapes and constraints demon-
strating versatility, and generation of statistically similar alternatives to an experimentally
obtained microstructure using statistical constraints.

3.1. Digital Generation of Microstructure Library

Figure 11 shows six microstructures generated using the protocols described in this
paper. All the examples shown were generated at O(SlogS) computational cost. Figure 11a
was generated using non-overlapping circles. This is the only microstructure out of the six
that can be generated by the brute force method in O(S2), while the others are bounded
roughly at O(S3) with brute force generation. Figure 11b shows a microstructure generated
using non-overlapping circles with a prescribed minimum separation, while Figure 11c
shows an example using circles that overlap by 5% to 25% of their area. Figure 11d–f
are generated using shapes with meta-local states such as the ones shown in Figure 4.
Figure 11d is made by ensuring wider angled overlap between tips of placed rectangles,
while Figure 11e enforces overlap between the centers of already placed rectangles and tips
of rectangles to be placed. Figure 11f is, first, generated using random non-overlapping
circles; then, it is modified by placing rectangles with tip regions that overlap the existing
circles. The variety seen in these structures demonstrates the versatility of the novel
protocols presented in this work, even when only basic geometric shapes are used. With
the utilization of richer object libraries, it should be possible to efficiently generate a very
large variety of microstructures.
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Figure 11. Various examples of digitally generated microstructures using only overlap and distance constraints: (a) non-
overlapping circles, (b) non-overlapping circles with a prescribed minimum separation, (c) overlapping circles with 5% to
25% of their area, (d) wider angled overlap between tips of placed rectangles, (e) overlap between the centers of already
placed rectangles and tips of rectangles to be placed, and (f) random non-overlapping circles modified by placing rectangles
with tip regions that overlap the existing circles.

3.2. Generation of Statistically Similar Microstructures

As the final example, we demonstrate microstructure generation under two-point
statistical guidance. Figure 12a shows a segmented experimental image obtained by
scanning electron microscopy (SEM). The task is to generate additional microstructure
instances that could have come from the same population this sample was taken. The
information from the experimental image sample is used in two ways: (i) the two-point
statistics of the experimental image (see Figure 12b) are used as the target statistics, and
(ii) an object library consisting of 36 objects was manually mined from this image (see
Figure 13). Notice that, while there are objects of various size and shapes in the library, all
objects predominantly contain rounded features.
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autocorrelation (trimmed to show short range vectors) of the segmented microstructure.
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crostructures.

We approach the microstructure generation procedure in the following steps:

(1) Start with a blank canvas.
(2) While the volume fraction of the current image is less than the target image:

a Sample an object randomly from the object library
b Randomly rotate the object
c Compute overlap cost functions with 0% to 50% overlap range, as suggested

by a visual inspection of the SEM image.
d Compute statistical cost functions, set the statistics of the segmented SEM

image as the target statistics.
e Multiplicatively join the OCFs and SCFs.
f Sample a point to place the object assuming the resulting cost function repre-

sents a probability distribution (with proper normalization).

Figure 14 shows three example microstructures generated using the procedure de-
scribed earlier. Notice that, while looking significantly different overall, all three gener-
ated microstructures share many common features with the original microstructure (see
Figure 12a), including but not limited to: (i) the presence and frequency of small island-like
formations, (ii) the presence of major directional chains composed of many overlapping
objects, (iii) occasional large gaps between features, and (iv) a high degree of similarity
between their two-point statistics (see Figures 12 and 14).



J. Compos. Sci. 2021, 5, 211 17 of 20J. Compos. Sci. 2021, 5, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure 14. Three examples of microstructures generated using the mined object library using statis-

tical cost functions. 

4. Conclusions 

A framework enabling rapid and scalable generation of microstructures under geo-

metrical and statistical constraints has been developed and demonstrated with several 

examples. The new framework enables users to generate ensembles of digital microstruc-

tures in a computationally efficient manner by allowing users to define statistical con-

straints as well as geometric constraints in flexible but modular workflows. In addition, 

the new framework enables users to generate digital microstructures that are statistically 

similar to those documented in experiments by utilizing arbitrary shaped features mined 

directly from the experimental micrographs. The examples showcase the versatility of the 

proposed microstructure generation framework. The framework accomplishes the 

needed computations with only O(SlogS) computational complexity. The framework al-

lows the insertion of numerous user-defined hyper-parameters and the exploration of 

multiple optimization alternatives in order to generate a large and diverse library of 
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4. Conclusions

A framework enabling rapid and scalable generation of microstructures under ge-
ometrical and statistical constraints has been developed and demonstrated with several
examples. The new framework enables users to generate ensembles of digital microstruc-
tures in a computationally efficient manner by allowing users to define statistical constraints
as well as geometric constraints in flexible but modular workflows. In addition, the new
framework enables users to generate digital microstructures that are statistically similar to
those documented in experiments by utilizing arbitrary shaped features mined directly
from the experimental micrographs. The examples showcase the versatility of the proposed
microstructure generation framework. The framework accomplishes the needed computa-
tions with only O(SlogS) computational complexity. The framework allows the insertion
of numerous user-defined hyper-parameters and the exploration of multiple optimization
alternatives in order to generate a large and diverse library of composite microstructures.
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This framework is offered as a foundational step in the design and development of materials
with heterogeneous (i.e., statistically homogeneous) microstructures.
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