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Abstract: Heavy metals represent one of the most important kinds of pollutants, causing serious
threats to the ecological balance. Thus, their removal from aqueous solution is a major environmental
concern worldwide. The process of adsorption—being very simple, economical, and effective—is
widely applied for the decontamination of wastewaters from heavy metals. In this process, the
adsorbent is the key factor affecting the performance; for this reason, significant efforts have been
made to develop highly efficient and selective adsorbents with outstanding properties. This paper
presents a detailed overview of the research on different methods of synthesis of nanocomposite
materials based on the polymer polyaniline combined with nanomaterials, along with the influence
of the synthesis method on their size, morphology, and properties. In addition, the study evaluates
the adsorption efficiency of various developed nanocomposites for the adsorption of heavy metals
from aqueous solution. From an economical and environmental point of view, the regeneration
studies of the nanocomposites are also reported.

Keywords: nanocomposites; conductive polymer; heavy metals removal; remediation

1. Introduction

Accelerated urbanization and industrialization have led to a steady deterioration in
the quality of available water, which has caused an imbalance in our ecosystem. Surface
water and groundwater are contaminated by various organic and inorganic pollutants
—among them, heavy metals. Despite the fact that some metals are essential, at very
low concentrations, to maintain various biochemical and physiological functions in living
organisms, they become noxious when they exceed certain threshold concentrations. Others
are considered to be highly toxic even at trace concentrations. The sources of heavy metals
in water are either natural or anthropogenic. Natural sources include soil erosion, volcanic
activity, and weathering of rocks and minerals. On the other hand, anthropogenic sources
are related to a variety of industries, i.e., mining, metal corrosion inhibition, electroplating,
batteries, tanneries, plastics, fertilizers, microelectronics, petrochemicals, and metallurgy.
Exposure to heavy metals has proven to be a serious threat. There are several related
health risks, including neurodegenerative diseases (Alzheimer’s and Parkinson’s diseases),
oxidative stress and subsequent tissue damage [1,2], cardiovascular diseases, liver cancer,
kidney damage, and renal cancer. Autism may also be associated with Hg toxicity [3],
along with malfunctioning of the immune system, birth defects, and behavioral changes in
children [4].

It has been estimated that one-third of world’s population may be affected by the
lack of safe drinking water [5]. In view of this increasing demand for water and its
decreasing availability, a major environmental issue facing every country today is the reuse
of polluted water and the removal of heavy metals before its disposal for safe discharge
in the environment. Intensive research on the effective treatment of heavy metals has
resulted in several technologies, including ion exchange, precipitation, electrocoagulation,
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and membrane separation. In spite of being efficient, these methods suffer from some
drawbacks, such as high capital demands, high energy requirements and operational costs,
being time-consuming, low removal efficiency, and the disposal problem of residual metal
sludge [6]. Consequently, it remains challenging to develop an efficient, economical, and
sustainable technology.

According to the Scopus database, 25,277 articles have been published from 2010 to
2020 using different techniques for the removal of heavy metals. Among the used tech-
niques, the adsorption process represents 65% of the total published studies, as illustrated
in Figure 1. To date, various materials including raw and modified bioadsorbents [7,8], poly-
mers [9], nanocomposites [10], hybrids [11], silica-based materials [12], and inorganic [13]
and carbon-based materials [14] have been studied for the recovery of heavy metals.
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Figure 1. Publications on the removal of heavy metals via different techniques from 2010 to 2020,
based on the Scopus database.

In the past decade, the development of nanotechnology has shown remarkable po-
tential for the remediation of environmental problems. Nanomaterials have been used as
efficient adsorbents for the removal of heavy metals, owing to their distinctive physico-
chemical properties—in particular, their high specific-surface-area-to-volume ratio, high
capacity, high selectivity, and the availability of a large number of active groups for binding
heavy metals [15]. However, these nanomaterials have encountered various difficulties,
such as high costs, nanotoxicity, and poor efficiency of separation and recycling after use,
and may also lead to novel types of pollutant that have negative effects on living organisms
and ecosystems [16].

An effective approach to overcoming some of these limitations is the incorporation
of nanomaterials into another matrix, leading to nanocomposite materials that are mul-
tiphase solids where one of the phases has one, two, or three dimensions of less than
100 nm [17]. They are classified into three major types based on the matrix material: ce-
ramic matrix nanocomposites, metal matrix nanocomposites, and polymer matrix nanocom-
posites [18]. Polymer nanocomposites—the most preferred—are synthesized by the in-
troduction of nanostructured materials into a polymer matrix in order to integrate their
properties into a single material, resulting in a promising material with potential properties
such as easy preparation, cost-effectiveness, environmental stability, effective binding sites
along the walls of the polymers with large surface area, and pore volume [19]. Among
all polymers, polyaniline is the most studied, as demonstrated in Figure 2, due to the
monomer’s low cost, chemical and environmental stability, ease of synthesis, high electrical
conductivity, and biocompatibility; furthermore, it possesses a large number of amine and
imine functional groups that interact with some metal ions due to the strong affinity of
nitrogen atoms [20,21]. For this reason, polyaniline has been chosen as a platform to build
innovative nanocomposite adsorbents by mixing it with other nanomaterials that exhibit
better adsorption capacities, chemical and thermal stability, good regeneration ability, and
selectivity toward heavy metals using simple synthesis methods.
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Figure 2. Evolution of the number of published papers between 2010 and 2020 with the keywords: “polyaniline”, “polypyr-
role”, “polythiophene” “polyphenylene”, and “polyacetylene”, based on the Scopus database.

This review paper outlines approaches to the removal of heavy metals from aqueous
solution using polyaniline nanocomposites to date, reporting the synthesis methods and
structural properties of the prepared nanocomposites. We focus on the adsorption efficiency
and regeneration capacity of the developed materials to provide a background for future
research. This article is structured in such a way that information on polyaniline and
different methods used for its synthesis are described. Moreover, the commonly used
polyaniline nanocomposites for the adsorption of metal ions and regeneration studies are
also reported.

2. Polyaniline Polymer

Polyaniline, commonly abbreviated as PANI or Pani—also known as aniline black—
was discovered for the first time by Ferdinand Runge in 1834 from the initial oxidation of
aniline. Later, in 1862, Henry Letherby achieved its first electrochemical polymerization.
Since then, it has been applied in a variety of colored materials and dyes. Recently, PANI has
gained much attention of the scientific community due to the rediscovery of its conductive
properties in the 1980s. Its structure consists of a succession of aromatic rings of the benzene
diamine and/or quinone di-imine types, bridged by a nitrogen heteroatom. PANI has three
oxidation states that are represented in Figure 3: fully reduced leucoemeraldine base (LB),
fully oxidized pernigraniline base (PB), and half-oxidized emeraldine base (EB)—which is
converted to emeraldine salt via protonation with organic and inorganic acids [22].
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PANI can be synthesized using both chemical and electrochemical oxidative poly-
merization in acidic media. The most widely used initiators or oxidants for the chemical
polymerization of aniline are ammonium persulfate (APS) and potassium persulfate (KPS),
which give higher conversion and yield. The variation in experimental synthesis conditions
leads to a large variety of macromolecular structures of PANI, as illustrated in Figure 4.
The formation of these morphologies is related to many parameters, including the type
of acid and associated anionic dopant, the temperature of the synthesis, the molar ratio
of aniline/oxidant, and the presence of surfactant. Li et al. [23] prepared PANI in the
presence of three different inorganic acids—HCl, H2SO4, and HNO3—and a combination
of FeCl2/chloroform as an oxidant. PANI–HCl displayed a nanofibrous structure with
particle diameter of 30–50 nm, H2SO4 produced a nanogranular structure with a particle
diameter of 400 nm, and HNO3 yielded a hollow, ball-like structure with a particle diameter
of 1–1.4 um. On the other hand, Shen et al. [24] synthesized PANI in the presence of sulfonic
acids, and found that the prepared PANI exhibited a high degree of protonation, along
with high conjugation, length, crystallinity, and electrical properties as compared to PANI
prepared in common HCl medium. Recently, green synthesis of PANI was reported by
Rahman et al. [25], with a fibrous porous nanostructure network using sodium phytate
as a dopant; the polymer exhibited a specific surface area of 230 m2/g. In another study,
PANI with an elliptical morphology was prepared using iron chlorophyll-a as biomimic
catalyst [26].

Although PANI exhibits high efficiency in the removal of heavy metals, the particles
easily aggregate during the chemical synthesis, which limits its adsorption capacity and
practical application. Moreover, recycling the PANI powders after treatment remains a
challenge due to its small particle size [27]. Many studies have been carried out in order to
enhance the removal efficiency of PANI, and to reduce the toxicity and enhance the stability
of nanomaterials; as a result, different polyaniline/nanomaterial nanocomposites have
been reported for the removal of heavy metals. PANI in combination with nanomaterials
displays not only improved mechanical features, but also enhanced performance.
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3. Polyaniline Nanocomposites Synthesis

Synthetic strategies for the preparation of nanocomposites are of great importance,
as they influence the resulting product in terms of its morphology and properties. In the
available literature reviewed for this study, PANI/nanomaterial composites have generally
been synthesized based on three paths, as represented in Figure 5:

(a) In situ polymerization of aniline monomer on the surface of the nanomaterials;
(b) One-step redox reactions where the polymerization and the formation of the nanoma-

terial occur simultaneously;
(c) Physical mixing of the pre-synthesized PANI and nanomaterials.
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In this section, different synthesis approaches to PANI/NM nanocomposites are
reviewed, and relationships between the synthesis strategy, structural formation, physical
and mechanical properties, and characteristics are reported and discussed.

3.1. In Situ Polymerization

In situ polymerization is the most widely used method for the preparation of PANI
nanocomposites. The polymerization of aniline occurs on the surface of pre-synthesized
NMs in acidic media in the presence of an oxidant. Several factors affect the reaction
rate, the nanocomposite size, and its properties, including the molar ratio of aniline to
oxidant, the weight ratio of aniline to nanomaterial, the nature of the dopant, and temper-
ature. This process includes microemulsion polymerization and inverse microemulsion
polymerization.

3.1.1. Microemulsion Polymerization

One of the suitable techniques for the preparation of PANI nanocomposites is the
microemulsion method. Usually, a typical microemulsion system contains water, oil, and a
surfactant, and also often a co-surfactant to stabilize the system, which is commonly a short-
chain alcohol. It is well known that microemulsion polymerization is an effective method
in producing polymers at a nanometric scale (5–100 nm). In this procedure, nanoparticles
surrounded by surfactant molecules provide micelles that can act as a surface for the
aniline monomer. The system is stabilized by a surfactant, and the polymerization reaction
is carried out. The mechanism of formation is as follows: The surfactant self-assembles
over the surface of the nanomaterial to form a micelle structure. Afterwards, acid–base
interaction occurs between the organic group of the surfactant and the amine group in the
aniline. The oxidant is added dropwise to the solution in order to start the polymerization,
which only takes place on the surface of the nanoparticles.

Sun et al. [34] reported the synthesis of an Fe3O4/PANI nanocomposite via the mi-
croemulsion polymerization of Fe3O4 and aniline monomer using SDBS as surfactant and
n-pentanol as a co-surfactant. First, a microemulsion mixture was prepared by dispersing
SDBS and n-pentanol in HCl. Second, Fe3O4 NPs modified with oleic acid (in order to
improve their dispersity in hexane) were dispersed in n-hexane, and aniline monomers
were added to the above microemulsion system. Finally, APS was added as an oxidant in
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order to start the polymerization. In this microemulsion system, the oleic-acid-modified
Fe3O4 in n-hexane was enveloped by SDBS micelles, and aniline monomers could be
attracted around the micelles to polymerize as the PANI shell. The Fe3O4/PANI obtained
via this method had a monodispersed core–shell structure with a diameter of ~20 nm and
superparamagnetic properties. In another work [35], a nanocable core–shell structure of
MWCNT/PANI was prepared via the addition of MWCNT to a microemulsion system of
HCl, hexane, DBAS as a surfactant, butanol as a co-surfactant, and aniline. The reaction
initiator (APS) was added slowly to initiate the polymerization of the aniline monomer.
Finally, the reaction mixture was filtered and rinsed with methanol and water repeatedly.

3.1.2. Inverse Emulsion Polymerization

The inverse emulsion polymerization process involves the formation of an aqueous
solution of the monomer, which is emulsified in a nonpolar organic solvent such as chloroform,
isooctane, toluene, xylene, or hexane—or in a mixture of them—and the polymerization is
initiated with an initiator. The reaction is carried out in a heterogeneous system, which
has several distinct advantages, as in the emulsion polymerization. The physical state of
the emulsion system makes it easier to control the process. Karim et al. [36] synthesized a
nanosized PANI/TiO2 nanocomposite with an average diameter of 50–200 nm, as follows:
CTAB as an emulsifier was dispersed in water and chloroform, followed by the addition of
TiO2 NPs and aniline dissolved in HCl. In order to start the polymerization, APS dissolved
in distilled water was added dropwise as an oxidant. Finally, the mixture was stirred for
24 h and a greenish emulsion was obtained. The organic phase was separated and washed
repeatedly with water, and then acetone was added in order to precipitate the nanocomposites.
In another work [37], a PANI/GO nanocomposite was prepared using dynamic interfacial
inverse emulsion polymerization. An aniline monomer was added to DBSA dissolved in
chloroform followed, by the addition of a graphene sheet. The mixture was ultrasonicated,
and then APS dissolved in distilled water was added. The PANI/graphene dispersion was
precipitated in ethyl alcohol, followed by gravitational filtration.

3.2. One-Pot Synthesis Method

In this method, successive chemical reactions are carried out in the same reactor. There
are two approaches to the synthesis of nanocomposites using this method: the synthe-
sis of the nanomaterial followed by the polymerization of aniline on its surface; or the
synthesis of the PANI polymer followed by the addition of metal salts. This method is
widely used for the synthesis of PANI/metal oxide NP nanocomposites. In this context,
Wang et al. [38] prepared PANI/TiO2 through one-pot synthesis. TiO2 was hydrolyzed
from titanium isopropoxide and citric acid; after 1 h of reaction, aniline monomer was
added, and then APS added dropwise as an oxidant in order to start the polymerization.
The morphological studies revealed that the nanocomposite displayed a core–shell struc-
ture with PANI partially covering TiO2 NPs. Pina et al. [39] prepared Fe3O4/PANI via
one-pot synthesis using N-(4-aminophenyl) aniline and molecular oxygen or H2O2 as
green, ecofriendly oxidizing agents in the presence of Fe3O4 NPs in powder and ferrofluid
forms. The obtained nanocomposites exhibited superparamagnetic properties at room
temperature. Ferrofluid-type Fe3O4 NPs displayed nanorod morphology, with diameters
between 30 and 110 nm. However, Fe3O4 NP powder exhibited more irregular structures.

3.3. Physical Mixing

The physical mixing is the most classical and simple method to prepare PANI nanocom-
posites, because it involves simple mixing of materials that can be performed in solution or
via a solid-state reaction. Zong et al. [40] synthesized a magnetic GO/PANI nanocomposite
for the adsorption of Cd(II) using induced plasma in a custom-built reactor where the GO
surface was first activated under the experimental conditions of voltage of 900 V, gas pressure
of 10 Pa, and power of 100 W. Afterwards, a solution of PANI particles was rapidly poured,
and the reaction occurred at a temperature of 60 ◦C for 48 h under continuous stirring and
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N2 protection. In another study, a polyaniline montmorillonite nanocomposite was prepared
using a mechanochemical intercalation method [41]. Sodium montmorillonite and anilinium
chloride were mixed in a mortar, followed by the addition of APS.

4. Polyaniline/Nanomaterial Composites for Adsorption of Heavy Metals

Nanocomposites based on PANI and nanomaterials have attracted much attention
in the past decade for the adsorption of heavy metals. These nanocomposites display
enhanced adsorption performance as compared to individual materials. These PANI
nanocomposites can be divided into the following groups: PANI/metal oxides, PANI/
carbonaceous nanomaterials, PANI/silica, and PANI/nanoclays. This review focuses
on the physicochemical properties of the prepared materials, their adsorption capacity,
and their mechanism of adsorption of heavy metals. Based on the reviewed literature,
Fe3O4/PANI magnetic nanocomposites and multifunctional magnetic nanocomposites are
the most used materials for the adsorption of metal ions (Figure 6).
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4.1. Metal Oxide or Hydroxide/Polyaniline Composites

Metal oxide or hydroxide nanoparticles have received great interest in the field of
environmental remediation due to their high surface area, small particle size, and specific
physical/chemical properties that favor the adsorption and degradation of toxic compounds.
However, they show poor performance when used as adsorbents for the removal of heavy
metals, because of the challenge of separating them from aqueous solution and reusing them.
Rajakumar et al. [42] reported the synthesis of Mn2O3-doped polyaniline; they observed a
decrease in the crystalline nature of Mn2O3 after coating it with polyaniline. The adsorption
performance of the nanocomposite toward Pb(II), Cd(II), and Ni(II) ions was tested, and
the maximum adsorption capacities were 437, 480. and 494 mg/g, respectively, at pH 6,
T = 35 ◦C within 60 min. Fast chelation between metal ions and doped metal hydroxyl
groups was the main mechanism involved. The uptake of Pb(II) was also investigated using
Sb2O3-coated polyaniline [43], fabricated via an in situ polymerization method in the presence
of hydroxypropyl cellulose as a surfactant. Structural analysis confirmed the existence of
Sb2O3 NPs in the polyaniline matrix, and the nanocomposites had an average size of 55 nm.
The uptake process was highly pH-dependent, increasing with decreasing pH; the adsorption
capacity at optimum conditions of pH 3 and t = 30 min was 21.05 mg/g. Ion exchange and
surface complexation were the main mechanisms responsible for the adsorption. In another
study, an Al2O3/PANI nanocomposite was prepared via a new one-pot method including
simultaneous exfoliation of aluminum nanofibers and electropolymerization of aniline [44];
the nanocomposite displayed a nanofibrous, nanoporous structure with pore diameter in the
range of 70–100 nm. The adsorption performance of the nanocomposite was in the following
order—Cu2+, Pb2+ > Zn2+ > Cd2+ > Ni2+, Co2+—with significant selectivity toward Cu(II)
and Pb(II).
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In another attempt, the uptake of arsenic by a nanocomposite based on ZnO/CeO2
nanoparticles, nanocellulose, and PANI was examined [45]. Microstructural analyses
of the prepared material illustrated the successful encapsulation of the metallic nano-
oxides onto the PANI nanocellulose support, with CeO2 nanoparticles of 1.05 nm and ZnO
nanoparticles of 10.5 nm. Moreover, AES analysis indicated that 95.75% of the ZnO/CeO2
nanoparticles used were successfully embedded onto the nanocellulose. Furthermore, a
total of 98.33% of the ZnO/CeO2/nanocellulose nanoparticles were successfully embedded
onto the porous polyaniline support. The adsorption efficiency of the nanocomposite
was found to remain fairly consistent throughout the pH range. The adsorption effi-
ciency was above ∼95% under different concentrations and pH conditions. Moosavian
and Moazezi [46] prepared a PANI/ZnO nanocomposite as an adsorbent for the removal
of Cd(II) and Zn(II). The removal efficiency reached only 35% and 45% for Zn(II) and
Cd(II), respectively; therefore, this nanocomposite is not a highly efficient adsorbent for
the removal of heavy metals. In another study, ZnO/PANI was synthesized using the
same method and tested for the adsorption of Cr(VI) [47]. The maximum capacity was
139.47 mg/g at pH = 2, 50 ◦C within 120 min. As compared with the previous study, the
nanocomposite showed better adsorption performance toward Cr(VI) than Cd(II) and
Zn(II). The only difference in the synthesis was the molar ratio of aniline/ZnO, which was
10 and 5, respectively, suggesting that increasing the percentage of ZnO in the nanocom-
posite enhanced its adsorption properties. In another work, a hybrid nanocomposite with
a ZnO core and a xanthan-gum-grafted PANI shell was prepared via an oxidative free
radical graft copolymerization method and tested for the uptake of Cr(VI) [48]. The pre-
pared nanocomposite displayed a high-order crystal structure, as well as a higher thermal
stability compared to pure PANI. The nanocomposite exhibited a rough heterogeneous and
fibrillar structure with a well-organized dispersion of xanthan gum, PANI, and ZnO in the
matrix. Furthermore, ZnO nanoparticles with an average size of 31.2 nm were encapsulated
in an orderly manner by XG–PANI. The maximum adsorption capacity was found to be
346.18 mg/g at pH 2 within 120 min, which is higher than that of ZnO/PANI, explained
by the fact that xanthan gum exhibits a chemical structure with abundant hydroxyl and
carboxyl groups that boosted the properties of the nanocomposite.

Another study reported the investigation of MnO2-coated polyaniline nanofibers for the
removal of Cr(VI) [49]. The prepared nanocomposite displayed uniform nanofibers with an
average length of around 250–300 nm. The adsorption of Cr(VI) was highly pH-dependent,
with a maximum capacity of 39.3 mg/g at pH 1 within 60 min. Chen et al. [50]. inves-
tigated the synthesis of PANI-doped TiO2 NPs for the removal of a highly concentrated
aqueous solution of Pb(II), Zn(II), and Cu(II) in single- and multiple-metal systems. The
structural analysis showed that TiO2 was covered by PANI due to the strong interaction
between the two. The adsorption capacities in single-metal systems were 0.594 mmol/g,
0.460 mmol/g, and 0.140 mmol/g, and in multiple-metal systems were 0.547 mmol/g,
0.324 mmol/g, and 0 mmol/g, for Zn(II), Pb(II), and Cu(II), respectively. This confirms
that the nanocomposite had no affinity toward Cu(II) in the multiple-metal system; therefore,
it can be used as an adsorbent with selective properties. Khong et al. [51] investigated the
synthesis of multifunctional nanocomposites via the incorporation of TiO2 NPs and carbon
nanotubes (SWNTs, MWNTs) in the presence of hexanoic acid (HA) as a dopant in polyaniline
using a template-free method. The surface analysis indicated that the crystallinity and thermal
stability of polyaniline was improved after the incorporation of TiO2, MWNTs, and SWNTs.
The adsorption of heavy metals onto PANI/HA/TiO2/SWNTs showed a removal efficiency
with the ascending order of Pb(II) < Cd(II) < Cu(II) < Fe(III). The nanocomposite showed
potential recyclability up to 7 cycles and good selectivity for Fe(III) with a high removal
efficiency in the presence of other heavy metals.

In a study conducted by Sahu et al. [52], a thorium oxide nanoparticle core-coated
polyaniline nanocomposite synthesized via an in situ polymerization method was applied
to remove Cr(VI). The surface of the prepared nanocomposite was uniformly coated
with amorphous PANI, and each distinct ThO2 NP was coated with a PANI shell. The
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nanocomposite exhibited a good thermal stability, even beyond 700 ◦C, as well as a high
specific surface area of 86.98 m2/g and low average pore diameter of 3.9 nm, with a pore
distribution in the nanoscale range, which implied its highly porous nature. The adsorbent
displayed a maximum adsorption capacity of 141 mg/g under the optimal conditions of
pH 5, T = 323 K, and t = 60 min as equilibrium time. The mechanisms of Cr(VI) adsorption
by ThO2/PANI were due to the anionic adsorption of Cr(VI) via electrostatic interaction
and adsorption, coupled with the partial reduction of Cr(VI) to Cr(III) (Figure 7). Moreover,
the ThO2/PANI nanocomposite showed good stability and potential reusability.
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Metal hydroxide/PANI nanocomposites have also been investigated for the adsorp-
tion of heavy metals. In this vein, Bhaumik et al. [53] investigated the removal of Cr(VI) by
polyaniline-coated Ni(OH)2. In brief, PANI nanotubes were prepared via a self-assembly
method using 2-naphtalene sulfonic acid as a dopant; afterwards, Ni(OH)2 NPs were de-
posited on the surface of PANI nanotubes via wet chemical reaction in the presence of nickel
chloride, hydrazine hydrate, and NaOH at 60 ◦C. The composite exhibited a nanotubular
structure with an average diameter of 150–230 nm. However, the deposition of Ni(OH)2
on its surface reduced the visibility of the tubular structure of the nanocomposite. The
nanocomposite exhibited an average pore diameter of 21.1 nm, with a total pore volume
of 0.141 cm3/g and a specific surface area of 26.85 m2/g—higher than that of PANI. It
displayed a higher adsorption capacity of 625 mg/g at pH 4 and T = 25 ◦C compared with
its PANI nanotube counterpart. We et al. [54] synthesized iron-oxide/hydroxide-NP-coated
phytic acid polyaniline. The nanocomposite surface contained a large number of amine
and imine groups, and exhibited a specific surface area of 23.38 m2/g—lower than that
of FeOOH (104.5 m2/g). Batch adsorption performance was tested toward U(VI), with a
maximum adsorption capacity of 555.8 mg/g at pH 8, 298 K, and fast equilibrium in 5 min.
Moreover, the coexisting ions were found to have an insignificant effect on the adsorption
of U(VI), implying that the composite is a potential selective adsorbent for U(VI).

4.2. Polyaniline/Magnetic Nanoparticles

Magnetic nanoparticles have recently attracted considerable attention as effective ma-
terials in the removal of heavy metals from aqueous solution, owing to their high surface
area, facile functionalization, chemical and physical stability, designable structure, and
superparamagnetic properties, which offer a potential advantage to overcome the sepa-
ration challenge via a simple and compact process through the application of an external
magnetic field. Spinel ferrite nanoparticles—including iron-oxide-based materials such as
maghemite (γ-Fe2O3), hematite (α-Fe2O3), and magnetite (Fe3O4)—have been fully studied
owing to their low toxicity, relatively high saturation magnetization at room temperature,
and biocompatibility. However, they are susceptible to acid conditions, air oxidation, and
aggregation in aqueous systems [55]. As a result, the synthesis of magnetic polyaniline
nanocomposite materials is an effective strategy to prevent particles from being massed
and oxidized. Different magnetic polyaniline nanocomposites have been synthesized using
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different methods. Well-defined core–shell nanocomposites can be synthesized using an in
situ polymerization method of aniline on the surface of magnetic NPs in the presence of an
oxidant in acidic media at 0–5 ◦C, or by microemulsion polymerization in the presence of
structural direct agents, which can act as soft templates based on their self-assembly—such
as p-toluenesulfonic acid (pTSA), sodium dodecyl sulfate (SDS), cetyltrimethylammonium
bromide (CTAB), and tartaric acid.

Gu et al. [56] reported the synthesis of Fe3O4/PANI nanocomposites for the removal
of Cr(VI) from aqueous solution. The microstructure characterization showed that the
nanocomposites’ surface became rougher, and a thin PANI layer was observed surrounding
the Fe3O4 NPs. After adsorption of Cr(VI), the nanocomposites exhibited similar magnetic
properties, confirming that PANI effectively protected the Fe3O4 NPs from dissolution,
although a slight decrease in the specific surface area was observed. The synthesized
material performed a fast and efficient removal of Cr(VI) in a wide pH range. The surface
analyses after adsorption revealed that the surface reduction of Cr(VI) to Cr(III) and
electron attraction between NH2 of PANI and CrO4

2− were the main mechanisms of Cr(VI)
adsorption, and the oxidation form of PANI had partially changed from emeraldine salt to
pernigraniline. In another work, the uptake of Cr(VI) using Fe3O4/PANI microspheres was
examined [57]. The microstructural analysis illustrated that Fe3O4 NPs were composed of
microspheres with a diameter of 250 nm and nanospheres of 30–50 nm after coating with
PANI. The surface was coarse and the PANI/Fe3O4 spheres increased in diameter up to
310 nm with a well-defined core–shell structure. Chavez-Guiajardo et al. [58] studied the
removal of Cu(II) and Cr(VI) ions from aqueous media using a polyaniline maghemite
nanocomposite (PANI/γ-Fe2O3). The nanocomposite was composed of several Fe3O4 NPs
coated with PANI, with a particle size distribution that varied from 51 nm to 142 nm, and an
average diameter of (87 ± 32) nm. The composite exhibited the highest adsorption capacity
toward Cr(VI), of 195 mg/g, compared to 107 mg/g obtained for Cu(II). Ebrahim et al. [59]
reported the synthesis of a polyaniline/akageneite nanocomposite by mechanically mixing
70% polyaniline prepared via in situ polymerization and 30% akageneite prepared via a
coprecipitation method. According to their findings, the adsorption of Cr(VI) onto the
nanocomposite was highly pH-dependent, with a high removal capacity in a wide pH
range, from 2 to 9. The equilibrium rate was achieved rapidly—within 5 min—with a
maximum adsorption capacity of 17.5 mg/g at pH 2. The NC was tested to remove Cr(VI)
from a leather tanning wastewater sample, and exhibited a removal efficiency of 93.4%
at pH 2. In another attempt, Sadeghi et al. [60] synthesized a nanocomposite adsorbent
based on magnetic Fe3O4 NPs coated with polyaniline for the removal of Pb(II) ions. The
adsorption results showed that the maximum adsorption capacity was 111.11 mg/g at
pH 9, achieved in 60 min; however, an increase in the absorbent dosage was found to
have a negative effect on the adsorption of Pb(II). Lyu et al. [61] investigated the synthesis
of a 3D hierarchical coral-like micro/nanostructural polyaniline labeled CL–PANI and
two magnetic nanocomposites that exhibited excellent adsorption and easy separation
performance with two different modes: a CL–PANI core coated a shell of Fe3O4 NPs,
and a core of Fe3O4 NPs protected by a CL–PANI shell. Surface analysis of the prepared
CL–PANI@Fe3O4 illustrated that CL–PANI was well coated by Fe3O4 NPs with a diameter
of 10 nm and a uniform distribution, confirmed by the presence of lattice fingers with an
interplanar distance of 0.3 nm, correlated to the magnetite phase. The CL–PANI@Fe3O4
depicted a 3D-like-structure with no obvious magnetite on the surface. However, the lattice
fingers with an interplanar distance of 0.3 nm could still be observed, implying that Fe3O4
was confined inside the nanocomposite. CL–PANI modified with Fe3O4 NPs showed a
decreased adsorption capacity; on the other hand, the mechanism studies found that the
nanocomposites produced more active sites for immobilizing the reduced Cr(III) ions and
facilitated the separation of the adsorbent from the solution. Based on the comparison
of the nanocomposites’ properties, Fe3O4@CL–PANI was found to be more promising in
the practical treatment of Cr(VI), displaying higher adsorption and chromium reduction
capacity. Moreover, the as-synthesized adsorbents exhibited high regeneration capacity



J. Compos. Sci. 2021, 5, 233 11 of 22

and stability; as a result, less iron leaching was detected from Fe3O4@CL–PANI than
from CL–PANI@Fe3O4, suggesting that coating the magnetite cores with PANI shell could
further inhibit the corrosion of Fe3O4 particles.

Agrawal and Singh [62] prepared a NiFe2O4/PANI nanocomposite via the in situ
polymerization of aniline and 5%wt NiFe2O4 and evaluated it for its Cr(VI) adsorption.
The chemical structure and morphology of the prepared NiFe2O4 NPs revealed a more
crystalline structure compared to the nanocomposite. The maximum capacity obtained
from the Langmuir isotherm was 12.19 mg/g at pH 2. In another study, a polyaniline
nanofiber/zero-valent iron Fe0 (Fe0/PANI) nanocomposite was synthesized via the chemi-
cal oxidative polymerization of aniline monomer in the presence of FeCl3, followed by the
addition of FeCl2/FeCl3, after which NaBH4 was added in order to embed Fe0 NPs on the
PANI nanofibers [63]. The composite exhibited a rougher surface compared to polyaniline,
with a particle diameter ranging from 50 to 150 nm, which confirmed that Fe0 NPs with an
average diameter of 14.27 nm were successfully deposited onto the PANI nanofibers. The
Fe0/PANI composite revealed a specific surface area of 42.58 m2/g—higher than that of
PANI and Fe0 NPs. The adsorption kinetics of Cr(VI) and As(V) were fast for both pollu-
tants, and the maximum adsorption capacities were 42.37 and 434.78 mg/g for As(V) and
Cr(VI), respectively. Singh and Rachna [64] synthesized a CuFe2O4/PANI nanocomposite
via a simple polymerization method for the removal of Cr(VI) from aqueous solution. The
equilibrium isotherm showed a good fit with the Langmuir isotherm equation, with a
maximum adsorption capacity of 676.08 mg/g at pH 2. In addition, the as-synthesized
nanocomposite was reused for four consecutive cycles, with a removal capacity of 70%.

4.3. Multifunctional Magnetic Polyaniline Nanocomposites

Magnetic mesoporous carbon-coated PANI prepared via the incorporation of carbon
precursors, an SBA-15 template, and FeCl3, followed by in situ polymerization, was
investigated for the adsorption and reduction of Cr(VI) [65]. The nanocomposite exhibited
a high removal efficiency of 92%, with a maximum adsorption capacity of 172.33 mg/g at
pH 2 within 120 min. The nanocomposites could be well regenerated and maintained at
over 90% Cr(VI) adsorption efficiency after seven cycles. In another study, Tang et al. [66]
synthesized a magnetic mesoporous silica-coated polyaniline composite for the removal of
Cr(VI). The prepared material exhibited a cage-like, uniform, mesoporous structure, and
showed a maximum adsorption capacity of 193.85 mg/g at pH 2.

A superparamagnetic nanocomposite of polyaniline thiacalix[4] arene labeled
Fe3O4@PANI–AmAZoTCA was synthesized in three steps: First, functionally polymer-
izable thiacalixarene (AmAZoTCA) was synthesized via stepwise addition of ethyl ac-
etate and azodiamine to TCA[4], followed by the synthesis of the copolymer PANI–
AmAZoTCA[4] through copolymerization in acidic media in the presence of APS [67].
Afterwards, the Fe3O4@PANI–AmAZoTCA was obtained via in situ coprecipitation of
a mixed solution of Fe(II), Fe(III), and PANI–AmAZoTCA[4]. The composite exhibited
a semicrystalline morphology with Fe3O4 NPs in spherical particle form, with a homo-
geneous 30–40 nm size distribution. The adsorption performance toward Cu(II), Cd(II),
Co(II), and Cr(III) showed great adsorption capacities of 312.5, 285.7, 312.5, and 303 mg/g,
respectively.

The adsorption of Cu(II) using a multifunctional magnetic nanocomposite with a
polystyrene core, transition layer of Fe3O4 NPs, and PANI shell—designated PS/Fe3O4@
PANI—was investigated by Li et al. [68]. First, PS/Fe3O4 was prepared by electrostatic
attraction at pH 3 between negatively charged polystyrene prepared via emulsifier-free
emulsion polymerization and positively charged Fe3O4 nanoparticles obtained by chemical
coprecipitation, followed by the coating of the PANI on the surface of the PS/Fe3O4 using
a swelling–diffusion–interfacial polymerization method. The nanocomposite displayed a
uniform size and spherical outline. The adsorption results revealed excellent adsorption
capacity for Cu(II) (181.5 mg/g) at pH 5. Zhang et al. [69] developed a multifunctional
magnetic adsorbent containing MnO2 and PANI—designated Fe3O4/PANI/MnO2—for
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the removal of Cd(II). In short, Fe3O4 NPs were synthesized via a solvothermal method,
after which PANI was coated on the surface of Fe3O4 NPs via the oxidative polymerization
of aniline in the presence of PVP(K30) in acidic medium, using APS as an oxidant, at room
temperature, and sonicated for various lengths of time. MnO2 NPs were deposited on the
surface of Fe3O4/PANI via wet chemical reaction using KMnO4 at 0–5 ◦C, leading to the
formation of an Fe3O4/PANI/MnO2 hybrid core–shell. The prepared material exhibited a
uniform spherical nanostructure with particles of 300 nm in diameter, and a hierarchical
nanostructure where the surfaces were covered with numerous interconnected MnO2
nanoflakes. Batch experiments indicated a maximum adsorption capacity of 154 mg/g at
PH 6.3. Chao et al. [70] synthesized a magnetic, chitosan-core-coated, polyaniline shell
Fe3O4/CS@PANI nanoadsorbent for the removal of Cr(VI); the adsorption was fast, and
the maximum adsorption capacity reached 186.6 mg/g in a strong acidic medium of pH
2. In addition, no leaching during the adsorption was observed; thus, chitosan and PANI
coatings protected the Fe3O4 core from dissolution and enhanced the adsorption. The
as-synthesized adsorbents exhibited high regeneration capacity and stability of more than
90% in the removal of Cr(VI) after five consecutive cycles.

Kumar et al. [71] prepared a multifunctional GO/SiO2@PANI nanocomposite via
the in situ polymerization of aniline in the presence of SiO2 and GO for the adsorption
of Cu(II) and Cr(VI). The nanocomposite showed the highest adsorption toward Cr(VI),
with a maximum adsorption capacity of 512.47–540.17 mg/g, compared to Cu(II), with a
maximum adsorption of 258.27–314.11 mg/g, at 30–50 ◦C, respectively. Taleb et al. [72]
investigated a SiO2/CuFe2O4@PANI composite for the removal of Mn(II), Fe(II), and Cu(II);
the composite displayed compacted and agglomerated particles of cubic CuFe2O4 NPs
and thin layers of PANI with different shapes in contact with the spherical SiO2 NPs. The
maximum adsorption capacities were 285.71, 416.67, and 454.55 mg/g for Cu(II), Fe(II),
and Mn(II), respectively, at pH 5 within 300 min.

4.4. Carbon-Based Nanomaterial/PANI Nanocomposites

Carbon-based nanomaterials—including carbon nanotubes, as well as graphene and
its derivatives—have drawn wide attention in recent years as novel materials for envi-
ronmental applications due to their unique chemical and physical properties, as well as
their high surface-area-to-volume ratio, controlled pore size distribution, and manipula-
ble surface chemistry. The surfaces of these materials contain some functional groups,
which play an important role in the adsorption process. Therefore, in order to obtain suit-
able structures, enhanced adsorptive capacities, and abundant functional groups, carbon
nanomaterial/PANI composites have been investigated.

4.4.1. PANI/Graphene Derivatives

Currently, there is great interest in graphene derivatives. GO is the oxidized form
of graphene that is commonly prepared by the Hummers method, and includes a large
amount of oxygen-containing functional groups, epoxy and hydroxyl groups in the basal
planes, and carboxyl acid groups at the edge. GO is characterized by its high mechanical
strength and a theoretical specific surface area of around 2630 m2/g, making it a suitable
material for the efficient removal of heavy metal ions from aqueous solution. However,
GO has high affinity toward water, implying the possibility of leaching and high cost of
synthesis. Moreover, the available functional groups on GO are very limited. Therefore, the
introduction of new functional groups on GO’s surface using polyaniline polymer leads to
an efficient nanocomposite with remarkable adsorption properties. Aniline is known to
be a good electron donor, while graphene is a strong electron acceptor. A previous study
reported that the interaction between GO and PANI occurs though chemical bonding,
hydrogen bonding, π–π interactions, and electrostatic interactions [73].

In this context, Zhang et al. [74] reported the synthesis of polyaniline nanorod-dotted
graphene oxide nanosheets via dilute polymerization below −20 ◦C. The composite exhib-
ited a high Cr(VI) adsorption capacity of 1149.4 mg/g, coupled with reduction into Cr(III).
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Moreover, the synthesized nanocomposite was stable and environmentally friendly, with
high regeneration capacity and recyclability, and no obvious decrease in capacity even after
five cycles. In another study, Fan et al. [75] reported the synthesis of a three-dimensional
polyaniline graphene oxide PANI/GO material. The prepared material exhibited a loose
and spongy macroscale porous structure, with sponges showing a rough and shaggy struc-
ture with numerous pores. The optimal weight ratio of PANI to GO was found to be 0.64:1.
The adsorption performance toward Hg(II) showed a maximum adsorption capacity of
80.7 mg/g at pH 5. In addition, the presence of coexisting ions weakly affected the ad-
sorption of Hg(II). In another attempt, a polyaniline nanocomposite coated with graphene
sheets was prepared via the in situ polymerization of aniline on the surface of prepared GO,
followed by reduction using borohydride [76]. The nanocomposites displayed a coral-like
dendritic nanofiber morphology similar to that of PANI. The adsorption performance was
tested toward Cr(VI), and the nanocomposite with 10% GO loading showed a maximum
adsorption capacity of 192 mg/g under optimal conditions of pH 2 and 20 min of equilib-
rium time. In another study, Ramezanzadeh et al. [77] reported the synthesis of graphene
oxide nanosheets coated with highly crystalline PANI nanofibers for the removal of Zn(II).
The surface analysis indicated that PANI nanofibers were successfully linked to the GO
and successfully enveloped the graphene oxide surface. Microstructural analyses indicated
a rough and uneven morphology, implying the deposition of fine PANI nanofibers on the
GO surface. The adsorption capacity was 1160 mg/g under optimal conditions of pH 7,
within 20 min. The UV–Visible spectral analysis of GO/PANI after adsorption displayed
that in spite of the high adsorption, the stability of the PANI/GO particles was damaged,
leading to their agglomeration and sedimentation. In another attempt, Zong et al. [40]
reported the synthesis of an Fe3O4/GO/PANI nanocomposite using a low-temperature
plasma technique, for the adsorption of Cd(II) in single and binary systems with phenol.
The maximum adsorption capacity was 2.87 µmol/g, due to chemical complexation. In
terms of pH, at lower pH values the mechanisms of Cd(II) uptake were due to ion exchange
and/or surface complexation, although at high pH values adsorption was dominant. In
the binary system, the presence of phenol led to an increase in the adsorption of Cd(II)
onto the composites; however, the adsorption of phenol was not influenced by Cd(II) ions
coexisting in binary solution systems.

Yang et al. [78] investigated the removal of Pb(II) using a novel lignosulfonate graphene
oxide polyaniline LS–GO–PANI nanocomposite. The maximum adsorption capacity was
216.4 mg/g at pH 5 and T = 30 ◦C. The synergistic effect of the functional groups on LS–GO–
PANI played the key role in Pb(II) adsorption. In another study, Liu et al. [79] introduced
magnetite nanoparticles onto the surface of a PANI/GO nanocomposite in order to facilitate
the separation of the material after adsorption. The nanocomposite exhibited a rougher,
wrinkled structure after the deposition of PANI, with the presence of Fe3O4 NPs on the
surface. It was reported that the adsorption of Cu(II) was fast, strongly dependent on pH,
and independent of ionic strength, with a calculated removal capacity of 101.94 mg/g at
pH 5.8 and T = 65 ◦C. In another work, a PANI/rGO/Fe3O4 nanocomposite was prepared
by Li et al. [80] via polymerization of aniline monomers on the surface of solvothermally
prepared rGO/Fe3O4. The nanocomposite with 30% GO was found to exhibit the highest
adsorption capacity for Hg(II) and magnetic properties for easy magnetic recovery. The
maximum adsorption capacity was calculated as 460.24 mg/g at pH 6.5 within 24 h.

4.4.2. Carbon Nanotubes/PANI

An effective nanocomposite consisting of MWCNT-coated polyaniline—designated
PANI/MWCNTs—was investigated via a plasma-induced polymerization method [81].
The prepared material illustrated that the MWCNTs’ surface became rougher and at-
tached to many branches, with more stacking morphology, after being coated by PANI.
The composite displayed an adsorption capacity toward Pb(II) of 22.2 mg/g. More-
over, the removal of Pb(II) was highly pH-dependent, increasing with increasing pH,
whereas the presence of ionic strength had no effect on the adsorption. In another study,
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Kumar et al. [82] worked on the uptake of Cr(VI) by a dodecylbenzene sulfonic acid
(DBSA)-doped polyaniline/multiwalled carbon nanotubes nanocomposite prepared us-
ing a microemulsion polymerization method. The prepared material displayed a rough,
rope-like structure of polyaniline-coated MWCNTs. The adsorption of Cr(VI) was mainly
temperature- and pH-dependent. Furthermore, ionic strength significantly affected the
adsorption due to the competition at the active sites between Cr(VI) and anions. The
maximum adsorption capacity was 55.55 mg/g at T = 30 ◦C and pH 2. The same au-
thors evaluated the capability of functionalized, multiwalled carbon nanotube polyaniline
prepared via an in situ oxidative polymerization method, which was then doped with
para-toluenesulfonic acid—designated pTSA–Pani@CNT—for the removal of Cr(VI) ions
from aqueous media [83]. The as-prepared composite displayed a rough surface and
interconnected thin fibers, along with the polymerization of aniline between the wedges,
leading to the formation of an interconnected network-like structure, as well as an interwo-
ven fibrous and porous structure. The maximum adsorption capacity was 166.66 mg/g at
pH 2. In another study, Ansari et al. [84] reported the synthesis of MCNT–GO combined
with polyaniline and doped with para-toluenesulfonic acid (pTSA). The nanocomposite
showed that the diameter of MWCNTs increased with the observance of network-like,
interwoven, fibrous structures after coating with GO and PANI, while aniline was polymer-
ized between the wedges of the MWCNTs and on the tube surfaces with the space in the
network of micro- and nanometer pores. The nanocomposite had an adsorption capacity
toward Cr(VI) of 142.87 mg/g at pH 2 and 30 ◦C, whereas the equilibrium was achieved
within 500 min—explained by the fact that the adsorption was controlled by boundary and
intraparticle diffusion.

4.5. Silica/Polyaniline Nanocomposite

Silica and ordered mesoporous silica have been extensively studied for their widespread
application in areas such as catalysis and environmental protection. The significance of
these materials arises from their pore sizes, which allow controlled accessibility to large
molecules, depending on pore geometry. Moreover, they have an open pore structure,
which allows improved access and transfer of target molecules compared to the bottleneck
pores of amorphous materials, which resist molecular diffusion to the adsorption sites.
The modification of these materials with PANI support is of great interest, and many
researchers have worked on PANI/mesoporous silica composites to make adsorbents to
remove toxic ions from water and wastewater.

A PANI/SiO2 nanocomposite was synthesized via the in situ polymerization of aniline
monomers on the surface of commercial SiO2 NPs [85]. The maximum removal capacity of
Cr(VI) was 63.41 mg/g within 60 min at 303 K, pH 4.2, and 50 mg/L as the initial concentra-
tion of Cr(VI) ions. Ion exchange and adsorption-coupled reduction were the main mecha-
nisms of Cr(VI) adsorption onto PANI/SiO2. In another work, a polyaniline/hexagonal
mesoporous silica (HMS) nanocomposite was synthesized by Javadian et al. [86] using a
microemulsion polymerization method in the presence of hydroxypropyl cellulose as a
surfactant. The PANI was successfully grafted onto the surface of silica with a spherical
and uniform structure. The maximum adsorption capacity of Ni(II) was 257.17 mg/g at a
concentration of 300 mg/L of Ni(II) solution. A polyaniline/polypyrrole/hexagonal-type
mesoporous silica nanocomposite was also investigated for the removal of Cd(II) [87]. The
composite was fabricated based on the oxidative polymerization of aniline and pyrrole
monomers and HMS nanoparticles, in the presence of hydroxypropyl cellulose as a surfac-
tant. The maximum adsorption capacity was 384.61 mg/g at pH 8 within 8 min, and the
nanocomposite exhibited good regeneration capacity.

Mahmoud et al. [88] prepared two novel nanocomposites consisting of nanosilica
functionalized with nanopolyaniline and crosslinked nanopolyaniline through a simple
and green method based on a solid–solid reaction between nanosilica and nanopolyaniline
or crosslinked nanopolyaniline. The adsorption performance was tested for the removal
of Cu(II), Cd(II), Hg(II), and Pb(II) ions. The nanocomposite prepared with crosslinked
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nanopolyaniline was found to be more efficient in the removal of Cd, Hg, and Pb, while the
other composite exhibited a higher Cu(II) adsorption capacity. The presence of coexisting
cations indicated strong interference in the adsorption process. In addition, the nanocom-
posites were successfully tested for the adsorption of heavy metals from drinking water,
seawater, and wastewater samples, with excellent recovery.

4.6. Nanoclay/PANI Nanocomposites

Nanoclays have been studied in various disciplines, owing to their wide availability,
relatively low cost, and low environmental impact. Nanoclays are nanoparticles of layered
structural units made up of one or two tetrahedral silica sheets around an octahedral
aluminum sheet. The surface of clay is accessible for anchoring functional molecules.
However, they have a very limited adsorption capacity for the removal of heavy metals
from aqueous solution. For the purpose of enhancing their adsorption capacity and struc-
tural properties, the PANI polymer was incorporated into raw clay in order to develop
nanocomposite materials that combine the exceptional properties of each matrix. Mont-
morillonite (MMT) clay is the most extensively studied filler for polymer nanocomposites;
it is a natural, abundant, and inexpensive mineral that has a unique layered structure,
large specific surface area, and chemical and mechanical stability, as well as a high cation
exchange capacity. Moreover, it is a highly hydrophobic clay, so the presence of MMT clay
in a composite improves its hydrophobicity. In this regard, Chen et al. [89] synthesized
a flak-like PANI/montmorillonite nanocomposite via in situ chemical polymerization of
modified pristine MMT with poly(2-acrylamido-2-methylpropanesulfonic acid), HCl, APS,
and aniline monomer. The effectiveness of adsorption by PANI/MMT was evaluated based
on Cr(VI) adsorption. The MMT/PANI ratio of the nanocomposite affects its morphology.
An MMT/PANI ratio of 0.25 was found to have the maximum removal efficiency, due to
the uniform flake-like structure and rough surface that afford active sites for adsorption.
A maximum adsorption capacity of 167.5 mg/g was obtained at pH 2. Furthermore, the
composite showed good adsorption even after four consecutive adsorption/desorption
cycles. In another work, a bioconducting starch/montmorillonite/polyaniline nanocom-
posite was prepared by Olad et al. [90] and employed as a biocompatible, biodegradable,
and efficient adsorbent for the removal of Cr(VI) from aqueous solution. The as-synthesized
nanocomposite exhibited a semicrystalline structure with an average particle size between 70
and 90 nm. The maximum adsorption capacity was calculated as 208.33 mg/g within 15 min.
In addition, the as-synthesized nanocomposite was reused for three consecutive cycles.

Ali et al. [91] synthesized two nanocomposites—functional phytic-acid-doped polyani-
line (P–PANI), and phytic-acid-doped polyaniline/montmorillonite (P–PANI@ MMT)—by
varying the amount of MMT via radical polymerization for the removal of Cu(II) from
aqueous solutions. Phytic acid interacts with amine and imine groups in the PANI matrix;
thus, it represents an opportunity for the removal of free metal ions from aqueous media.
The authors found that coating the MMT’s surface with the P–PANI causes compressive
stress on the layers of the MMT; as a result, the d-spacing is decreased, despite the presence
of functional groups anchored onto the MMT surface enhancing the capacity for adsorption
of Cu(II). The maximum adsorption capacities for P–PANI and P–PANI@Mt were 66.36
and 87.72 mg/g, respectively, at pH 5 within 10 min. However, the adsorption capacity
decreased when increasing the amount of MMT in the composite, which is explained
by the tendency of clay particles to aggregate in the PANI matrix and, therefore, hinder
the availability of active sites. In a study conducted by Piri et al. [92], a polyaniline/clay
nanocomposite was fabricated and tested for the removal of Pb(II) from aqueous solution.
The surface characterization of the PANI/clay nanocomposite showed that the clay layers
were flaked in the nanocomposite. Therefore, it was revealed that PANI was introduced in
the layers of the clay, resulting in intercalated layered silicate PANI particles. Batch adsorp-
tion studies showed that the nanocomposite exhibited a maximum adsorption capacity of
70.4 mg/g at pH 5, achieved in 25 min.
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Another category of nanoclays is layered double hydroxides (LDHs). LDHs are
unique among layered compounds, because they have positively charged host layers and
counteranions in the interlayer. Due to their excellent exchangeability, LDHs can work
as precursors to introduce other species to fabricate nanocomposite materials, revealing
important applications in adsorption. Zhu et al. [93] reported the synthesis of a Mg/Al
LDH polyaniline nanocomposite. First, Mg/Al LDH was synthesized via a hydrothermal
method, followed by in situ oxidative polymerization of aniline monomers on the surface
of the LDH. The as-synthesized composite showed a homogenous combination of PANI
and the LDH structure, with a rough surface and an average diameter of 200 nm. The
composite exhibited a high adsorption capacity for Cr(VI) ions of 393.7 mg/g at pH 3
within 90 min. In another work, Dinari and Neamati [94] synthesized citrate-intercalated
Ca/Fe LDH modified with aminopropyl trimethoxisilane/polyaniline nanocomposites.
The citrate intercalate Ca/Fe LDH was prepared via coprecipitation, and then modified
with aminopropyltriethoxysilane followed by polymerization of aniline monomers, and
tested for the adsorption of Pb(II) from aqueous media. The nanocomposite consisted
of uniform LDH nanoparticles in the polymer matrix due to the silane coupling agent.
According to experimental results, the adsorption capacity was dependent on the solution’s
pH, and was higher in the sample prepared with a high silane ratio due to the increase
in the number of available sites on the surface of OH and NH2, which are hydrophilic
functional groups, and indicate a high tendency to adsorption.

4.7. Other Nanomaterial-Based PANI Composites

In addition to the previously cited categories of nanomaterials, other nanomaterials
have been cited in the literature as fillers for polyaniline nanocomposites. Hexagonal
boron nitride (h-BN)—a two-dimensional material, also known as white graphite, with
a similar structure—composed of alternating B and N atoms, exhibits unique physical
and chemical properties such as high specific surface area, numerous structural defects,
low density, high chemical durability, oxidation resistance, and excellent thermal stability.
However, it also has a distinctive hydrophobicity and poor functional groups on its surface;
to overcome these limitations, and depending on its unique abilities, h-BN was used as a
supporting nanomaterial. Karthikeyan et al. [95] investigated the removal of Cr(VI) by a
hexagonal boron nitride nanosheet-coated polyaniline, synthesized using a simple in situ
chemical oxidation method with various wt% of aniline. The prepared nanocomposite,
after deposition of PANI onto h-BN, exhibited a distinctive architecture and tubular matrix,
exaggerating the surface charge of the prepared material. According to the authors, PANI
was heterogeneously substituted and entrenched deeply within the h-BN composite. In
addition, it displayed an amorphous and porous nature. The adsorption of Cr(VI) onto
the prepared adsorbent was enhanced when the molar ratio of PANI in the composite
increased because of the composite’s positive character, due to the compensation of the par-
tial positive effect of PANI on h-BN. The maximum adsorption capacity was 133.44 mg/g
at pH 3–5. The mechanism of adsorption was mainly governed by electrostatic attrac-
tion, ion exchange, and complexation combined with reduction, in addition to chelation
with possible hydrogen bonding. MoS2 with a graphite-like structure was also used by
Qui et al. [96]. The hybrid nanocomposite was fabricated with molybdenum disulfide and
acid-doped polyaniline immobilized on porous polyacrylonitrile nanofibers. The uptake
process of Cr(VI) onto the composite was fast, and the equilibrium was achieved in 30 min,
with a maximum adsorption capacity of 341.61 mg/g at pH 3. Ion exchange, electrostatic
interactions, and redox reactions were the main mechanisms of Cr(VI) adsorption. More-
over, the composite was well regenerated, and was reused for six successive cycles without
any significant decrease in adsorption capacity.

5. Regeneration of the Adsorbents

Regeneration of adsorbents is an important aspect, as it determines their economic fea-
sibility. In general, regeneration is defined as the ability to recover the adsorbate molecules
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accumulated on the surface of the adsorbent in order to regain its initial adsorption capac-
ity and make possible its reuse in another adsorption/desorption cycle. An appropriate
adsorbent should exhibit potential regeneration capacity even though its removal efficiency
decreases after each regeneration cycle due to the incomplete desorption. The adsorbent–
adsorbate interaction strength and the adsorbate concentration loaded onto the adsorbent
play major roles in the regeneration process. There are three major ways to regenerate
adsorbents: thermal regeneration, chemical regeneration, and microbiological regeneration.
The choice of an adequate method depends on the type and nature of both the adsorbent
and the adsorbate, as well as the cost and processing conditions. For that reason, low-cost,
easy-operation, efficient, and ecofriendly regeneration technologies are required to enhance
the cost efficacy.

In the case of polyaniline nanocomposite adsorbents, chemical regeneration using
acid and base eluents is the most common approach used for regeneration, as can be seen
in Table 1. Most of the authors used NaOH, HCl, or HNO3 solutions for the desorption
of absorbed metals from the considered nanocomposite. For example, Lyu et al. [61]
evaluated the desorption of Cr(VI) from polyaniline-coated magnetic nanoparticles using
0.1 M NaOH solution for 30 min; the authors reported that 80% of the adsorption capacity
was maintained after 10 consecutive cycles. Fan et al. [75] reported the regeneration
of a polyaniline/graphene oxide nanocomposite using 0.1 M HNO3 eluent for 24 h; no
obvious change in adsorption capacity was observed within seven cycles. In another study,
Kumar et al. [82] tried to regenerate a polyaniline/carbon nanotube nanocomposite using
water, 0.1 M HCl, 0.1 M NaCl, and 0.1 M NaOH. The maximum desorption efficiency was
obtained using 0.1 M NaCl and 0.1 M NaOH. It can be concluded from these studies that
the regeneration of polyaniline nanocomposite adsorbents is a simple and feasible process.

Table 1. Summary of various desorbing agents for the regeneration of PANI nanocomposite adsorbents.

Composite Adsorbate Desorbing Agent Number of
Cycles Desorption (%) Removal

Efficiency (%) Ref.

Xanthan gum/ZnO/PANI Cr(VI) 0.2 M NaOH 5 46 51.67 [48]

ThO2/PANI Cr(VI) 1 M NaOH 5 - 85 [52]

Fe3O4/PANI Cr(VI) 1 M
HCl/sonication - - 100 [56]

Fe3O4/PANI Cr(VI) 0.5 M NaOH 5 90 - [57]

yFe3O4/PANI Cu(II) 0.1 M HCl 4 50 98 [58]

yFe3O4/PANI Cr(VI) 0.1 M NaOH 4 40 80 [58]

CL–PANI/Fe3O4 Cr(VI) 0.1 M NaOH 10 - 80 [61]

Magnetic SiO2/PANI Cr(VI) 0.01 M NaOH 5 - 66 [66]

Fe3O4@PANI–AmAzoTCA[4]

Cu
Cd
Co
Cr(III)

0.1 M HCl
0.1 M HCl
0.1 M HCl
0.1 M HCl

3
3
3
3

-
-
-
-

95.9
93.3
92
94

[67]

PS/Fe3O4@PANI Cu(II) 0.1 M HCl 8 - 83 [68]

GO/PANI Hg(II) 0.1 M HNO3 7 - 70 [75]

GO/PANI Zn pH = 7 4 - 50 [77]

Fe3O4/GO/PANI Cu(II) pH = 5.8 6 - 90 [79]

rGO/PANI Hg(II) pH = 1
pH = 13 - 50.4

73.4
-
- [80]

DP/MWCNT/PANI Cr(VI)

0.1 M NaCl
0.1 M NaOH
1 M NaOH
1 M NaOH

-
-
-
-

2.9
10.5
20.77
24

-
-
-
-

[82]

pTSA–Pani@CNT Cr(VI)
0.1 M NaOH
0.1 M HCl
Acetone

3 - '98 [83]

h-BN/PANI Cr(VI) 0.1 M NaOH 5 - - [95]

MoS2/PANI/PAN Cr(VI) 0.5 M NaOH 6 - '88 [96]
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6. Conclusions and Perspectives

This review article presents different polyaniline-nanocomposite-based nanomaterials
for the removal of heavy metals from aqueous solution, using the adsorption process as
one of the most simple, effective, and economical methods for water treatment. From the
large number of published studies reviewed here, it can be observed that the preparation
methods and synthesis conditions such as pH, temperature, and the presence of dopants
are of great importance, as they influence the morphology and adsorption properties of
the resulting nanocomposite. Hexavalent chromium was the most studied heavy metal
using PANI nanocomposite adsorbents, due to the fact that it is widely used in numerous
industries, poses a threat to the environment, and can cause harmful diseases. Polyaniline
in the prepared nanocomposites was found in emeraldine form. The use of dopants and
surfactants enhanced the adsorption capacity of the nanocomposites. The CoFe2O3/PANI
nanocomposite was found to be the most effective nanocomposite for Cr(VI) removal
compared with other metal oxide/PANI nanocomposites. In addition, coating spinel with
PANI inhibited leaching. Moreover, PANI nanocomposites exhibited enhanced thermal
stability compared to PANI alone. A GO/PANI nanocomposite exhibited the highest
adsorption capacity. Based on thermodynamic studies, the adsorption of heavy metals
on nanocomposites was found to be mostly endothermic. In addition, the mechanism
and kinetics of adsorption of heavy metals on various PANI nanocomposite adsorbents
depend on the chemical nature of the materials and various physicochemical experimental
conditions, such as pH, adsorbent dosage, initial metal ion concentration, and the presence
of coexisting ions. Therefore, these factors are to be taken into account when evaluating
the adsorption capacity of different adsorbents. This review article also reveals that the
Langmuir and Freundlich adsorption isotherm models are usually used to evaluate the
adsorption capacity of various nanocomposites. The kinetic data of adsorption of heavy
metals usually follow the pseudo-second-order kinetic model and Freundlich isotherm.
Furthermore, the nanocomposites displayed good recyclability, which is a crucial feature
in the adsorption process.

Despite the great number of research articles published in the field of polyaniline
nanocomposite adsorbents for the removal of heavy metals, the application of these compos-
ites for large-scale water treatment and desalination did not attain their optimal performance.
The future perspectives to achieve optimal performance of the adsorbents are as follows:

• Searching for more low-cost and easily available nanomaterials to combine with polyani-
line in order to decrease the production costs and sustain the adsorbent-based market;

• Functionalizing nanocomposites by increasing the number of functional groups that are
able to enhance the adsorption efficiency and improve the selectivity of the adsorbents;

• Conducting large-scale studies and evaluating the operational costs for real wastewa-
ter treatment.
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