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Abstract: Activated carbon (AC) has been widely utilized for the adsorption of pollutants from water.
However, it is difficult to recycle the AC after adsorption. In this paper, we report a facile one-pot
approach to fabricate magnetic poly(vinyl alcohol)/AC composite gel (mPVA/AC CG) by dropwise
addition of an aqueous mixture of PVA, AC and iron ions into the ammonia solution. The obtained
mPVA/AC CG after freeze-drying shows porous microstructure and favorable magnetic properties.
The utilization of mPVA/AC CG for adsorptive removal of methylene blue (MB) and methyl orange
(MO) dyes from water was investigated. The mPVA/AC CG not only exhibited good adsorption
performance for both MB and MO dyes but also could be readily recycled using a magnet after
adsorption. The adsorption process was well described by the pseudo-second-order kinetic model
and the Langmuir isotherm model. Considering the simple fabrication process, good adsorption
performance and favorable magnetic separation capability, this work provides a viable strategy for
combining the features of AC and magnetic gel for fabrication of applicable magnetic adsorbent.

Keywords: magnetic gel; activated carbon; adsorption; dye; methylene blue; methyl orange

1. Introduction

Dyes are widely used in the textile, paper, rubber, leather, cosmetics, pharmaceutical,
food and other industries [1,2]. The widespread use of dyes has led to the production
of a large amount of dye wastewater [3,4]. Since dyes are usually difficult to degrade
naturally and have mutagenicity and carcinogenicity to aquatic organisms and human
body, it is essential to remove dye pollutants from wastewater [5,6]. Up to now, adsorption
technology has been recognized as a promising dye removal technology because of its high
efficiency, convenient operation and wide adaptability to a variety of dyes [7–9]. Activated
carbon (AC) has been the most commonly used adsorbent in the past few decades because
of its porous structure and large specific surface area [10,11]. However, AC is difficult
to recover and reuse after adsorption, which not only causes waste, but also may cause
secondary pollution [12,13]. Therefore, it is important to develop a feasible method to
overcome this limitation of AC adsorbent.

In recent years, magnetic adsorbents have emerged as a new generation of adsorbents
for water purification because they can be easily separated from water by an external
magnetic field [14,15]. In this regard, the decoration of AC with magnetic nanoparticles to
form magnetic AC adsorbent has been widely reported [16–18]. Although the magnetic
AC shows good magnetic separation capability and favorable adsorption performance
towards various water pollutants (e.g., dyes and metal ions) [19,20], the preparation process
is generally tedious and makes it difficult to achieve large-scale production. On the other
hand, magnetic nanoparticles easily fall off the surface of AC [21], resulting in a decrease
of the magnetic properties of AC. Hence, exploring an effective method to combine the
features of AC and magnetic materials is desired.
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In this work, we report a simple one-pot strategy for fabrication of magnetic poly(vinyl
alcohol)/AC composite gel (mPVA/AC CG) through dropwise addition of an aqueous
mixture of PVA, AC and iron ions into ammonia solution (Figure 1). First of all, under
the stabilization of polyvinyl alcohol (PVA), iron ions can react with ammonia solution
to form magnetic Fe3O4 nanoparticles. At the same time, the Fe3O4 nanoparticles can act
as a physical cross-linking agent to gelate PVA macromolecules [22]. During the cross-
linking process, the AC was incorporated into the magnetic gel. After freeze-drying, the
employment of mPVA/AC CG as a magnetic adsorbent for adsorptive removal of both
cationic methylene blue (MB) and anionic methyl orange (MO) dyes was studied. The
influence of AC content, solution pH, contact time and initial dye concentration on the
adsorption was investigated systematically.
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Figure 1. (a) Schematic illustration of the one-pot fabrication of magnetic poly(vinyl alco-
hol)/activated carbon composite gel (mPVA/AC CG). Photographs of aqueous solution of (b) MO
and (c) MB before (left) and after (right) adsorbing by mPVA/AC CG.

2. Materials and Methods
2.1. Materials

Poly(vinyl alcohol) (PVA, Mw = 89,000 Da), FeCl3 powder (99%), FeSO4·7H2O (99%),
activated carbon (AC, 200 mesh), ammonia solution (25 wt%), methylene blue (MB, 98%)
and methyl orange (MO) were purchased from Aladdin Chemistry Co. Ltd. (Shanghai,
China) and used as received. Deionized water was employed throughout the experiments.

2.2. Characterization

Powder X-ray diffraction (XRD) spectra were taken on a Holland PANalytical X-Pert
PRO X-ray diffractometer with Cu-Kα radiation. The magnetization curve was determined
on a MPMS XL-7 vibrating-sample magnetometer (VSM) at 300 K. UV-vis absorption
spectra were collected on a UV-3600 UV-vis spectrophotometer (Shimadzu). Scanning
electron microscopy (SEM) image associated with energy-dispersive X-ray (EDX) spectrum
were recorded using a FEI SIRION 200 field emission microscope. Fourier transform
infrared (FTIR) spectra were collected on a Thermo Nexus 470 FT-IR spectrometer using a
KBr disk.

2.3. Preparation of mPVA/AC CG

The mPVA/AC CG can be easily fabricated using a one-pot reaction based on the
simultaneous formation of Fe3O4 particles and physical crosslinking of PVA (see Figure 1).
To ensure that the mPVA/AC CG possesses a sufficient magnetic separation capability,
the theoretical content of Fe3O4 particles was kept at 20 wt%. The Fe3O4 particles were
formed by co-precipitation of Fe3+ and Fe2+ in ammonia solution and the molar ratio of
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Fe3+/Fe2+ was kept as constant at 2/1. For mPVA/AC CG with 50 wt% of AC, 0.695 g of
PVA was dissolved in 20 mL of deionized water to form a PVA solution. Then, 1.08 g of
FeCl3 (4.0 mmol) and 0.56 g FeSO4·7H2O (2.0 mmol) were added into the PVA solution
with stirring at room temperature. Subsequently, 1.16 g of AC was added and the mixture
was stirred at room temperature for 15 min. Then, the mixture was gradually dropped
into 50 mL of ammonia solution at room temperature to afford black mPVA/AC CG beads.
After reaction, the mPVA/AC CG beads were washed with deionized water repeatedly and
freeze-dried. For comparison, mPVA/AC CG samples with 0 wt%, 30 wt%, and 40 wt% of
AC were also fabricated in the same condition as above except for the amounts of PVA and
AC added.

2.4. Adsorption Experiments

The dye adsorption performance of mPVA/AC CG was systematically evaluated by a
batch adsorption manner. In this study, MB and MO were selected as representative dyes
for adsorption experiments (Table 1). The influence of solution pH was investigated over
pH range of 4–9. The effects of initial dye concentration (0.1–8.0 mM) and contact time were
studied at pH 7 and room temperature. In a typical procedure, 20.0 mg of mPVA/AC CG
and 5.0 mL of dye solution with known concentration (0.1–8.0 mM) were mixed by shaking
at 100 rpm for specific time in a dark chamber. The adsorption process was monitored
using a UV-vis spectrophotometer at room temperature until adsorption equilibrium was
reached (about 300 min). All adsorption experiments were performed at least three times
to minimize random error. Calibration curves were plotted between the concentration of
dye solution and absorbance. The adsorption capacity of mPVA/AC CG at equilibrium
(Qe) (mg/g) was calculated according to the following equation:

Qe =
(C 0 − Ce)V

m
(1)

where C0 and Ce are the initial and equilibrium concentration of dye (mg/L), respectively,
V is the volume of the dye solution (L), and m (g) is the mass of mPVA/AC CG.

Table 1. Structure and characteristics of MB and MO dyes.

Dye Chemical Structure λmax
(nm)

Molecular Weight
(g mol−1)

MB
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2.5. Reusability Evaluation

Regeneration experiments were carried out by immersing the MB–adsorbed mPVA/AC
CG into ethanol. The suspension was sonicated in an ultrasonic bath (100 W) for 30 min.
Subsequently, the mPVA/AC CG was separated by a magnet and washed with deionized
water. The mPVA/AC CG was freeze-dried again for adsorption.

3. Results and Discussions
3.1. Preparation and Characterization of mPVA/AC CG

The one-pot reaction for fabrication of mPVA/AC CG is based on the simultaneous
formation of magnetic Fe3O4 nanoparticles, cross-linking of PVA macromolecules and
incorporation of AC (Figure 1). Upon dropwise addition of the mixture of PVA, AC and iron
ions into the ammonia solution, black mPVA/AC CG beads were formed immediately. The
size of mPVA/AC CG beads was in the range of 1.5–3.0 mm (Figure 2a). The morphology of
freeze-dried mPVA/AC CG was observed by SEM. As can be seen in Figure 2b,c, the surface
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morphology of mPVA/AC CG was similar to that of AC, indicating that the microstructure
of AC was well retained during the reaction process. An obvious porous microstructure can
be seen in the mPVA/AC CG sample. It is expected that these pores promote the transport
of dye molecules during the adsorption process. In addition, an obvious Fe element signal
can be observed in the EDX spectrum of the mPVA/AC CG (Figure 2d), which is consistent
with the expected composition of mPVA/AC CG.
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Figure 2. (a) Photograph of mPVA/AC CG beads. (b) SEM image of AC. (c) SEM image and (d) EDX
spectrum of mPVA/AC CG sample.

To further investigate the structure of mPVA/AC CG, a powder XRD measurement
was performed. As shown in Figure 3a, the wide diffraction peak at 2θ = 19.7◦ is the
characteristic peak of semicrystalline PVA. The diffraction patterns and relative intensities
of other peaks matched well with that of Fe3O4 (JCPDS 19-0629), indicating that Fe3O4
particles were formed in the mPVA/AC CG [23]. Additionally, the magnetic property of
mPVA/AC CG was determined by VSM at 300 K. The mPVA/AC CG exhibited a favorable
superparamagnetic behavior with a saturation magnetization value of about 7.3 emu/g
(Figure 3b), which promised a good magnetic separation capability as confirmed in the
inset of Figure 3b.

3.2. Adsorption Performance of mPVA/AC CG

The adsorption performance of bead-like mPVA/AC CG was studied using MB and
MO as two typical dyes. The chemical structures of MB and MO are presented in Table 1.
As shown in Figure 4a,b, the aqueous solutions of MB and MO have obvious absorption
peaks at 662 nm and 463 nm, respectively. After mixing mPVA/AC CG, the intensity of
these peaks decreased gradually, indicating that mPVA/AC CG adsorbent can effectively
adsorb MB and MO molecules from water. To further probe the adsorption performance
of mPVA/AC CG, the effects of AC content, solution pH, contact time, and initial dye
concentration were studied systematically.
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Figure 3. (a) Powder XRD pattern of mPVA/AC CG. (b) Magnetization curve (300 K) of mPVA/AC
CG. Inset: photograph of mPVA/AC CG beads in water after placement of a magnet.
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Figure 4. UV-vis absorption spectra of (a) MB and (b) MO after mixing mPVA/AC CG with 50 wt%
of AC at pH 7 for different times. The initial dye concentration was 0.1 mM.

First, the influence of AC content on the adsorption capacity of mPVA/AC CG was
investigated. For comparison, the adsorption capacity of AC was also determined with
the same condition. At a relatively high initial dye concentration (5.0 mM), the saturated
adsorption capacities of mPVA/AC CG for both MB and MO increased obviously, with
an increase in the content of AC (Figure 5a). For example, the adsorption capacities of
mPVA/AC CG samples with 0 wt%, 30 wt%, 40 wt% and 50 wt% of AC towards MB were
94.3 mg/g, 137.6 mg/g, 150.2 mg/g and 172.1 mg/g, respectively. It is worth noting that it
is difficult to obtain structurally stable mPVA/AC CG by further increasing the content of
AC, because too little PVA cannot form a stable magnetic gel. Therefore, the mPVA/AC
CG sample with 50 wt% of AC was chosen for the subsequent adsorption experiments.
Although the adsorption capacity of the mPVA/AC CG sample was lower than that of AC,
it could be easily collected by a magnet after adsorption. This feature is highly desirable for
practical adsorption applications.

Since the interactions between dye molecules and adsorbent are heavily affected by
solution pH [24,25], the effect of pH on the adsorption performance of mPVA/AC CG was
assessed in the pH range of 4–9. As depicted in Figure 5b, the variation of solution pH
has slight influence on the adsorption capacity of mPVA/AC CG towards both MB and
MO. This result suggests that changing the surface charges of dye molecules and adsorbent
has negligible effect on the adsorption. Therefore, the main driving force behind dye
adsorption by mPVA/AC CG is not electrostatic interaction, but by molecular interactions
(e.g., hydrogen bonding and van der Waals force) [26,27].
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Figure 5. (a) Adsorption capacities of AC and mPVA/AC CG samples with different content of AC
for adsorption of MB and MO. The initial dye concentration was 5 mM. (b) Effect of solution pH on
the adsorption of MB and MO by mPVA/AC CG. The initial dye concentration was 0.1 mM.

The effect of contact time on the uptake of MB and MO by mPVA/AC CG was studied
with 20 mg of mPVA/AC CG in 5 mL of 0.1 mM dye at pH 7. As presented in Figure 6a,
the mPVA/AC CG exhibited a fast adsorption rate during the initial 30 min for both MB
and MO dyes. The whole adsorption process reached equilibrium within about 300 min.
The rapid adsorption in the initial stage was due to the interactions between dye molecules
and binding sites on the outer surface of mPVA/AC CG. When these binding sites reach
saturation, the binding sites on the inner surface of mPVA/AC CG begin to participate
in the adsorption of dye molecules, resulting in a relatively slow increase in adsorption
capacity [28]. To further probe the adsorption mechanism, the adsorption data were
analyzed using two important kinetic models including pseudo-first-order and pseudo-
second-order kinetic models [29,30]. The values of kinetic parameters were calculated
based on the slope and intercept of the corresponding fitting curve (Figure 6b,c) and the
results are illustrated in Table 2. As can be seen in Figure 6b,c, the pseudo-second-order
kinetic model possesses much higher correlation coefficients (R2) values (0.999 and 0.994
for MB and MO, respectively) than that of the pseudo-first-order kinetic model (0.972
and 0.990 for MB and MO, respectively). Furthermore, the calculated Qe values (25.80
and 22.05 mg/g for MB and MO, respectively) based on the pseudo-second-order kinetic
model are similar to the experimental Qe values (24.34 and 20.55 mg/g for MB and MO,
respectively) (Table 2). All these results suggest that the adsorption process obeyed the
pseudo-second-order kinetic model, which means that chemisorption occurred.
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Figure 6. (a) Effect of contact time on the adsorption of MB and MO by mPVA/AC CG at pH 7. The
initial dye concentration was 0.1 mM. (b) Plots of ln(Qe − Qt) against t based on the pseudo-first-order
kinetic model. (c) Plots of t/Qt against t based on the pseudo-second-order kinetic model.



J. Compos. Sci. 2022, 6, 55 7 of 11

Table 2. The kinetic parameters for the adsorption of MB and MO onto the mPVA/AC CG.

Pseudo-First-Order Pseudo-Second-Order
ln(Qe − Qt) = lnQe − k1t t/Qt = 1/k2Q2

e + t/Qe

Qe-exp
(mg/g)

Qe-cal
(mg/g)

k1
(min−1) R2 Qe-cal

(mg/g)
k2

(mg−1 min−1) R2

MB 24.34 ± 0.62 29.02 ± 0.15 0.028 ± 0.003 0.972 25.80 ± 0.94 0.0017 ± 0.0001 0.999

MO 20.55 ± 0.39 16.65 ± 0.13 0.012 ± 0.002 0.990 22.05 ± 0.75 0.0016 ± 0.0001 0.994

In order to further understand the interaction between mPVA/AC CG and dyes, the
equilibrium adsorption isotherm of mPVA/AC CG was studied. As depicted in Figure 7a,
the Qe values of mPVA/AC CG for both MB and MO dyes were enhanced when increasing
the equilibrium concentration associated with the initial dye concentration. This is because
a higher initial concentration can not only provide sufficient driving force to overcome
the mass transfer resistance of dye molecules from aqueous phase to mPVA/AC CG
phase, but also provide more opportunities for dye molecules to come into contact with
the binding sites of mPVA/AC CG. Two well-known models, Langmuir and Freundlich
isotherm models were employed to analyze the isotherm data [31,32]. The Langmuir
isotherm assumes that the surface of the adsorbent has homogeneous binding sites with
identical adsorption energies, while the Freundlich isotherm model assumes that the
surface of the adsorbent is heterogeneous in nature. The fitting results and the calculated
isotherm constants are shown in Figure 7b,c and Table 3. Clearly, the Langmuir isotherm
model exhibits higher R2 value of 0.992 and 0.990 for uptake of MB and MO, respectively,
and, thus, it is more suitable for description of the adsorption process compared with
the Freundlich isotherm model. Therefore, the adsorption of MB and MO molecules
onto the mPVA/AC CG occurred at specific homogeneous binding sites. A monolayer
coverage of MB or MO was formed on the surface of mPVA/AC CG. The maximum
adsorption capacity (Qm) of mPVA/AC CG for MB and MO based on the Langmuir
isotherm model was calculated to be 173.91 and 146.63 mg/g, respectively, which is higher
than many other reported magnetic adsorbents (see Table 4) [33–40] such as magnetic
graphene oxide (64.23 mg/g for MB) [33], magnetic carbon nanotubes (15.74 mg/g for
MB) [34], magnetic rectorite/Fe3O4 composites (60.24 mg/g for MB) [35], magnetic γ-
Fe2O3@GL (69.93–91.74 mg/g for MB) [36], magnetic lignin-based carbon nanoparticles
(113.00 mg/g for MO) [38], and magnetic LDH@Fe3O4/PVA composites (19.59 mg/g
for MO) [39].
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Figure 7. (a) Adsorption isotherms for the adsorption of MB and MO by mPVA/AC CG at pH 7.
(b) The values of Ce/Qe against Ce based on the Langmuir isotherm model. (c) The values of lnQe

against lnCe based on the Freundlich isotherm model.
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Table 3. The isotherm parameters for the adsorption of MB and MO onto the mPVA/AC CG.

Isotherm Model Parameter MB MO

Langmuir: Ce/Qe = Ce/Qm + 1/KLQm Qm (mg/g) 173.91 ± 1.6 146.63 ± 1.3
KL (L/mg) 0.018 ± 0.002 0.004 ± 0.001

R2 0.992 0.990

Freundlich: lnQe = lnKF + bFlnCe KF (mg/g) 12.93 ± 0.21 3.065 ± 0.038
bF 0.370 ± 0.031 0.511 ± 0.022
R2 0.947 0.989

Table 4. Comparison of the maximum monolayer adsorption of MB and MO onto various mag-
netic adsorbents.

Dye Adsorbent Qmax
(mg/g) Reference

MB Magnetic GO 64.23 33

MB Magnetic carbon nanotube 15.74 34

MB Magnetic rectorite/Fe3O4 composites 60.24 35

MB Magentic γ-Fe2O3@GL 69.93–91.74 36

MB Magnetic GO-Fe3O4 hybrid 167.3 37

MB mPVA/AC CG 173.91 This study

MO Magnetic lignin-based carbon
nanoparticles 113.00 38

MO Magnetic LDH@Fe3O4/PVA composites 19.59 39

MO Chitosan modified magnetic kaolin 349.70 40

MO mPVA/AC CG 146.63 This study

To better understand the adsorption mechanism, FTIR spectra of mPVA/AC CG before
and after uptake of MB and MO were recorded. In the FTIR spectrum of mPVA/AC CG
(Figure 8), the characteristic peaks at about 3412 and 1109 cm−1 were assigned to the -OH
group and C–O bond of PVA, respectively. The two bands at 2942 and 2861 cm−1 were
assigned to the stretching vibration of the C–H bond. After adsorption of MB and MO, the
characteristic absorption bands corresponding to the vibrations of the aromatic ring (e.g.,
1600 and 823 cm−1) and C-N bond (e.g., 1318 cm−1) appeared (Figure 8) [41,42], indicating
the successful uptake of MB and MO dyes by mPVA/AC CG.
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Figure 8. FTIR spectra of mPVA/AC CG (a), MB−adsorbed mPVA/AC CG (b) and MO−adsorbed
mPVA/AC CG (c).
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For real adsorption application, an adsorbent with good reusability is highly desirable.
In this work, the reusability of MB−adsorbed mPVA/AC CG was assessed by employ-
ing ethanol as an eluting agent. As can be seen in Figure 9a, the removal efficiency of
desorbed mPVA/AC CG decreased with the increase of reuse times. Compared with
the original removal efficiency, the removal efficiency remained about 72.1% after five
cycles of desorption−adsorption. Nevertheless, the adsorption capacity of regenerated
mPVA/AC CG could still reach 155.39 mg/g, which is higher than many reported magnetic
adsorbents [33–36]. In addition, even after five cycles of regeneration−adsorption, the
mPVA/AC CG still exhibited similar a saturation magnetization value to that of the newly
prepared one (Figure 9b), indicating the good structural stability of mPVA/AC CG.
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Figure 9. (a) Removal efficiency of mPVA/AC CG adsorbent in five successive cycles of desorption-
adsorption. (b) Magnetization curve (300 K) of mPVA/AC CG adsorbent after reuse for five times.

4. Conclusions

In summary, we have demonstrated a facile one-pot strategy for fabrication of mPVA/AC
CG based on the simultaneous formation of a magnetic PVA gel and incorporation of AC.
Due to its porous microstructure and favorable magnetic property, the mPVA/AC CG
showed good adsorption performance and favorable magnetic separation capability for
adsorptive removal of MB and MO dyes from water. The adsorption data fitted well
with the pseudo-second-order kinetic and Langmuir isotherm models. Compared with
previously reported AC adsorbents and magnetic gel adsorbents, this study highlights the
combined merits of AC and magnetic gel, consequently offering an effective approach for
preparing an applicable magnetic adsorbent for the practical removal of dye pollutants
from wastewater.
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