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Abstract: Graphene is a unique nanocarbon nanomaterial, frequently explored with polymeric
matrices for technical purposes. An indispensable application of polymer/graphene nanocomposites
has been observed for membrane technology. This review highlights the design, properties, and
promising features of the polymer/graphene nanomaterials and nanocomposite membranes for
the pervasion and purification of toxins, pollutants, microbials, and other desired contents. The
morphology, pore size, pore structure, water flux, permeation, salt rejection, and other membrane
properties are examined. Graphene oxide, an important modified form of graphene, is also utilized
in nanocomposite membranes. Moreover, polymer/graphene nanofibers are employed to develop
high-performance membranes for methodological purposes. The adaptability of polymer/graphene
nanocomposites is observed for water management and purification technologies.

Keywords: graphene; graphene oxide; nanocomposite; membrane; permeation

1. Introduction

Nowadays, research interest in membrane technology has expanded into technical
solicitations and industries [1,2]. Membrane technology has been pragmatic for the man-
agement of toxins, pollutants, and impurities present in domestic and industrial water
sources. Graphene and graphene oxide have been applied as useful additives in polymeric
membranes [3]. Consequently, polymer/graphene nanocomposite-derived separation
membranes have been developed and smeared for water treatment. Graphene is capable of
forming consistent torturous pathways in the membranes supporting diffusion processes [4].
Moreover, contaminants and desired molecules are removed and separated using the poly-
meric membranes with graphene dispersion [5]. Consequently, the organic and inorganic
toxins were removed using the polymer/graphene nanocomposite membranes [6]. In
this regard, different types of polymer/graphene nanocomposite membranes have been
developed, including nanofiltration [7,8], microfiltration [8,9], ultrafiltration [10,11], and
osmosis [12,13] membranes. The newly developed membranes have been studied for im-
portant membrane characteristics, aiming towards permeation or separation applications.
The membrane performance has been assessed for salt rejection, ion/molecule separation,
water flux or permeate flux, membrane surface charge, surface roughness, self-cleaning,
and antibacterial properties. Figure 1 shows the publication trend since the year 1990.
According to a careful estimation, the amount of research on these materials has grown
exponentially to >14,000 articles in the year 2022 [14].

In this review, the design and properties of the polymer/graphene nanocomposite
membranes are considered. Graphene and graphene oxide nanofillers have played a crucial
role in the structuring, morphology, and anticipated performance of these membranes.
Thus, the potential of polymer/graphene nanocomposite membranes has been investigated
for water pollutant and microbial elimination. In these membranes, the polymer/graphene
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nanofiber nanocomposites are also prepared and used. The polymer/graphene nanofibers
have been found to further enhance their membrane performance, owing to a high surface
area. Thus, the polymer/graphene nanocomposite membranes have broadened the scope
of water management technologies. To the best of our knowledge, this review paper is
likely to be an innovative contribution to the current literature, owing to the inventiveness
of the outlining and encompassing literature. This review is comprehensive and intends to
comprise essential technical developments in the field of membrane-related sectors.
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2. Polymeric Nanocomposite Membranes

Polymeric nanocomposite membranes have resolved the emergent challenges of pu-
rification [15]. Various inorganic nanoparticles and organic nanoparticles have been used in
polymeric membranes [16,17]. Polymeric nanocomposite membranes have been intended
to be used to attain an optimum permeation recovery, rate flux recovery rate, self-cleaning,
photocatalytic, and antibacterial properties [18–20]. The properties of nanocomposite mem-
branes have been found to enhance with nanofiller loading, for example, in the case of
polymeric membranes with zinc oxide nanofiller enhancing the permeation recovery rate
up to 100% [21]. The flux recovery rate of the nanocomposite membrane increased to 80%.
The antibacterial activity rate observed was 0.21 against Escherichia coli and Staphylococ-
cus aureus bacterial strains. The photocatalytic efficiency was ~93% and an amount of 78%
was attained for the self-cleaning ability. The type of nanofillers and dispersion may also
enhance the flux and permeability features of the membranes [22]. A comparative study
revealed that the high water flux of polymer/graphene membranes reached 99.8%, rela-
tive to the polymer/carbon nanotube membrane (73%) [23]. The nanoparticle dispersion
defines the diffusion pathways for the improved permeability. Polymeric nanocomposite
membranes have several interactions, such as electrostatic or Van der Waals forces [24],
hydrogen bonding [25], and covalent interactions [26]. Nevertheless, several challenges,
such as the pore size, pore distribution, and nanofiller dispersion, need to be addressed for
the optimization of high-performance nanocomposite membranes [27,28].

There are several advantages to using graphene nanofillers in polymeric membranes,
relative to other nanofillers [29]. The inclusion of graphene yields lightweight and high-
strength polymeric nanocomposite materials. Compared to other nanomaterials, graphene
is structurally unique and its lateral dimensions are larger, with a thickness at the atomic
scale [30]. Graphene has been considered to be a promising nanomaterial in liquid barrier
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applications. Better aligned graphene nanosheets do not allow the diffusion of small
liquid molecules through their plane and may cause selective permeation. Graphene and
its derivatives have the ability to form ion-selective membranes [31]. Graphene oxide
nanosheets have a relatively larger interlayer distance and empty spaces, relative to the
carbon nanotube and other nanocarbon nanofillers in polymeric matrices. Molecular
simulations and experiments have also established that graphene and its derivatives are
beneficially reinforced in the permeation of membrane applications [32].

3. Graphene

Graphene is a one-atom-thick two-dimensional sheet of sp2 hybridized carbon atoms [33,34].
The discovery of graphene dates back to 2004 [35]. Graphene has been known to synthesize
using organic synthesis, chemical vapor deposition, graphite exfoliation/intercalation,
mechanical cleavage, and other techniques [36–38]. Graphene possesses fascinating struc-
tural and physical physiognomies. It is claimed to be the thinnest and most transparent
nanomaterial [39,40]. Graphene is >200 times stronger than steel, with a Young’s modulus
of 1 TPa [41]. Graphene has a high electron mobility of 200,000 cm2 V−1 s−1 and a thermal
conductivity of 3000–5000 W/mK [42,43]. The nanosheet may have the propensity to crum-
ble due to Van der Waals forces [44–46]. Graphene with hydrophilic surface functionalities,
such as hydroxyl, carbonyl, epoxide, and carboxylic groups, has often been referred to as
graphene oxide (GO) [47]. Figure 2 shows the structure of graphene and graphene oxide.
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Graphene-based nanocomposites possess a high electrical conductivity, thermal con-
ductivity, thermal stability, chemical stability, and mechanical sturdiness features [48].
Graphene-based nanocomposites have been utilized in membranes [49,50], anticorrosion
coatings [51], electronics [52], sensors [53], energy storage devices [54,55], batteries [56],
microbial fuel cells [57], and tissue engineering [58].

4. Polymer/Graphene Nanofibers for Nanocomposite Membranes

Polymeric nanofibers have been developed using various polymeric matrices, such as
polyethylene, polypropylene, polyamide, polyacrylonitrile, polyester, etc. [59–61]. Poly-
meric nanofibers possess a fine resilience, strength, toughness, thermal/chemical constancy,
and environmental stability. Important uses of polymeric nanofibers have been found in
membranes, packaging, textiles, and biomedical gear [62–66]. Moreover, high-performance,
temperature-stable polymeric nanofibers have been applied in advanced technical fields
related to automotive and aerospace applications [67,68]. The most important application of
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polymeric nanofibers concerns membrane technology. In this regard, polymeric nanocom-
posite nanofibers have been tested [69]. Graphene-reinforced polymeric nanofibers have
been used to design nanocomposite membranes [70–73].

Polyacrylonitrile nanofibers and derived membranes with graphene and GO have
been exploited for technical applications [74,75]. Poly(lactic acid), GO-based nanofibers
and the resulting membranes have been employed in tissue engineering scaffolds [76].
Moreover, chitosan/graphene nanofibers have been pragmatically used for antibacterial ma-
terials and membranes [77]. The dispersion of graphene and GO nanosheets in polymeric
nanofibers and membranes has been considered for the enhancement of properties [78].
Furthermore, nanocomposite membranes have superior interfacial interactions between
the matrix and nanofillers, leading to superior physical properties [79,80]. In nanofiber
membranes, the dispersal of nanoparticles controls the crusade of molecules through the
system. Polymer/graphene nanofiber nanocomposites have been frequently fabricated
using electrostatic spinning [81,82], melt spinning [83], wet spinning [84], and several other
techniques. Electrostatic spinning or electrospinning is a technique which uses electric
force to draw polymer fibers from a solution/melt. Melt spinning is an extrusion process
used for fiber formation. The desired polymer is melted for extrusion through a spinneret
and fibers are solidified by cooling. The wet spinning method is used to form fibers from a
polymer solution through spinning. Among these methods, the electrospinning technique
has been commonly espoused for nanocomposite nanofibers [85]. Polymer/graphene
nanofiber and related nanocomposite membranes have exceptional electrical conductivity,
mechanical strength, thermal stability, antibacterial, purification, and permeation prop-
erties [86–89]. An important recent study was reported by Ali et al. [90]. They prepared
chitosan/gelatin nanofiber (GS/GL NF) scaffolds containing graphene nanosheets for
wound healing. Figure 3 shows the electrospinning process and parameters used to form
the GS/GL NF. The transmission electron microscopy (TEM) image shows the reinforce-
ment of graphene nanosheets in the GS/GL NF (Figure 4). The arrows were used to point
to the graphene nanosheets within the nanofibers. Figure 5 reveals the porosities of the
electrospun nanofibrous membranes. The electrospinning method was found to enhance
the porosity of the nanofibers up to 0.15 wt.% graphene loading.
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Electrospun poly(vinyl fluoride)/GO nanofiber-based membranes were developed [56].
The membranes were used for arsenate removal. The maximum adsorption capacity
obtained was over 180 mg/g. The polymer nanofiber/graphene or graphene oxide-
based membranes were beneficially applied in oil–water separation [91], water treat-
ment [92], and radiation shielding materials [93]. High-performance advantages of polymer
nanofiber/graphene membranes relative to polymer/graphene nanocomposites were ob-
served due to the high surface area provided by the polymeric nanofibers [94].
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5. Polymer/Graphene Nanocomposite Membranes for Water Permeation

Primarily, the application of polymer/graphene nanocomposites has focused on the
synthesis aspects [95–97]. Nanocomposites constructed using graphene nanofillers had a
light weight, low cost, durability, and high strength [98]. Despite traditional composites,
polymer/graphene nanocomposites have been employed and designed with facile tech-
niques and advanced properties [99]. Water treatment methodologies have engaged these
membranes for the desalination and management of water [100]. The use of nanocomposite
membranes with various polymers and nanoparticles has been adopted in membrane
technology [101,102]. Nanocomposite membranes have had several of their properties
enhanced, including their specific porosity, hydrophilicity, robustness, heat stability, perme-
ability, and selectivity. Phase inversion and solution casting methods have been commonly
applied for the preparation of nanocomposite membranes [103]. Different types of phase
inversion methods have been used to form membranes, such as precipitation from the
solution precipitation, vapor phase, precipitation by controlled evaporation, thermally
induced phase separation, and immersion precipitation, etc. [104]. The most commonly
used technique is the solvent-based phase inversion. Figure 6 portrays the fabrication of
nanocomposite membranes through this phase inversion technique [105].
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Polymers such as polysulfone [106], nylon [107], poly(vinyl acetate) [108], poly(vinyl
alcohol) [109], etc., have been effectively used with graphene and GO nanoparticles. Phase
inversion-generated nanocomposite membranes have been used for nanofiltration, micro-
filtration, or ultrafiltration processes. The choice of solvent used in the phase inversion
technique may cause a better dispersion of the graphene and GO nanoparticles in the
polymer matrices [110,111].

5.1. Poly(Vinyl Alcohol) Membranes with Graphene Nanofiller

Poly(vinyl alcohol) (PVA) and graphene or GO-derived nanocomposites have been pre-
viously mentioned [109,112]. Hydrophilic GO-developed hydrogen bonding interactions
with a PVA matrix. Das et al. [113] formed poly(vinyl alcohol)/graphene oxide (PVA/GO)
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membranes through electrospinning. The PVA/GO membrane had high crystallinity and
thermal stability characteristics. In some cases, graphene or GO have been used as the
major matrix material to from membranes [114]. Sun et al. [115] formed poly(vinyl al-
cohol)/graphene oxide (PVA/GO)-based pervaporation desalination membranes. The
PVA/GO crosslinked membranes were prepared using the pressure-assisted filtration tech-
nique on cellulose microfiltration substrate. Figure 7 illustrates the membrane fabrication
stages. In these membranes, GO was used as a major matrix material and PVA was used as
a binder. Figure 8 displays the brick–mortar model for the neat GO and PVA/GO mem-
branes. The nanocomposite membranes with various GO contents exposed the intercalated
nanostructure. The diffusion permeability of the nanocomposite membrane was dependent
on the GO loading. The 10 wt.% GO-loaded membrane had a water flux of 98.1 kg m−2 h−1

and a salt rejection of 99.9%. The membranes revealed a fine capability to handle a high
brine concentration.
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ethanol molecule diameter of 4.5 Å. Therefore, the nanosheet allowed the passage and 

permeation of ethanol molecules. Consequently, the separation process was promoted. 

The 1 wt.% GO-loaded membrane revealed a permeate flux of ~0.137 kg m−2 h−1. The 

Figure 8. The brick–mortar model of pure GO and PVA/GO intercalated membranes [115]. GO—
graphene oxide; PVA/GO—poly (vinyl alcohol)/graphene oxide. Reproduced with permission from
ref. [115]. Copyright 2020 Elsevier.

Castro-Muñoz et al. [116] fabricated a PVA/GO nanocomposite membrane through
the solution method. The membranes were used for the dehydration of ethanol. Figure 9
demonstrates the water permeation mechanism through the PVA/GO nanocomposite
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membrane. The GO nanosheet possessed a d-spacing of ~5 Å, which was larger than the
ethanol molecule diameter of 4.5 Å. Therefore, the nanosheet allowed the passage and
permeation of ethanol molecules. Consequently, the separation process was promoted.
The 1 wt.% GO-loaded membrane revealed a permeate flux of ~0.137 kg m−2 h−1. The
PVA/graphene nanocomposite membranes revealed a successful enhancement of water
flux and salt rejection features.
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5.2. Poly(Vinyl Acetate)/Graphene Nanocomposite Membranes

Poly(vinyl acetate) (PVAc) and graphene nanocomposite have previously been estab-
lished [117,118]. Zhang et al. [119] fabricated PVAc and GO-derived nanocomposite mem-
branes. Interactions between the PVAc matrix and GO nanosheets were observed. Kolya
et al. [120] prepared PVAc, reduced graphene oxide (rGO), and a poly(diallyl dimethylam-
monium chloride) (PDDA)-derived nanocomposite membrane using the solution method.
The hydrophobic properties of PVAc were enhanced by using PPDA-modified rGO. The con-
tact angle of the PVAc/rGO/PPDA membrane was 188% higher than the neat PVAc (21%).
More research efforts are desired in the field of PVAc and functional graphene membranes.

5.3. Poly(Vinyl Chloride)/Graphene Nanocomposite Membranes

The polyvinyl chloride (PVC) nanocomposites filled with graphene nanofillers have
previously been reported on [121–123]. Zhao et al. [124] designed poly(vinyl chloride) (PVC)
and GO-based PVC/GO nanocomposite membranes using the phase inversion technique.
A finger-like macrovoid structure was observed in the morphology of PVC and PVC/GO.
In nanocomposite membranes, the GO addition destroyed the macrovoid appearance. The
membrane was used for the filtration of bovine serum albumin (BSA). Figure 10 shows
the permeation flux of the neat PVC and PVC/GO nanocomposite membranes for water
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and BSA filtration. The hydrophilic nature of the PVC/GO membranes prevented the
absorption of BSA on the membrane’s surface.
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Namdar et al. [125] prepared PVC/GO membranes and studied their surface charge.
The surface charge of neat PVC membrane was −8.72 Mv, which changed to −33.17 mV
with GO loading in the membrane. The electrostatic interaction between the functional GO
and polymer caused this effect. Khakpour et al. [126] studied the roughness of PVC/GO
membranes. This study revealed an enhancement in the surface roughness from 35 to
45 nm with an increasing nanofiller content from 0.05 to 0.15 wt.%. Subsequently, the poly-
mer/graphene nanocomposite membranes have been effectively applied for water filtration
and decontamination [127]. Nevertheless, polymer/graphene and polymer/graphene
oxide nanocomposite membranes may suffer the shortcoming of membrane fouling. More-
over, the lifetime of these membranes needs to be improved.

5.4. Nylon 6/Graphene Nanocomposite Membranes

Nylon 6/graphene nanocomposites have gained much research attention [128,129].
Pant et al. [130] produced nylon 6/GO nanocomposite membranes using the solution
route. A pore diameter of 14 nm was observed. The hydrogen bonding interaction was
conducted between the nylon 6 and GO. Gong et al. [131] prepared the nylon 6/GO
nanocomposite membranes through solution phase processing. A homogeneous dispersion
of GO was observed in nylon 6. Li et al. [132] used in situ polymerization for the formation
of the nylon 6/graphene nanocomposite membrane. The 0.7 wt.% graphene addition
heightened the mechanical, tribological, and membrane properties of the nylon 6 membrane.
Mehrani et al. [133] prepared the nylon 6/GO with poly(m-aminophenol) through the use
of the electrospinning method. These membranes had the capability to separate a milk and
water solution up to 88–101%.

5.5. Polysulfone/Graphene Nanocomposite Membranes

Polysulfone (PSF) and graphene-based nanocomposites have previously been reported
on [134–136]. Ammar et al. [137] industrialized PSF and GO-derived nanocomposite mem-
branes. The morphology of the membranes was studied by using microscopic techniques.
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The water flux of the nanocomposite membranes was enhanced with the addition of GO due
to the hydrophilic nature and hydrogen bonding between the matrix and nanofiller [138].
Rezaee et al. [139] fabricated polysulfone/graphene oxide (PSF/GO) membranes through
the use of the solution casting method. The membranes had up to a 2 wt.% GO con-
tent. Atomic force microscopy (AFM) was employed to study the membrane morphology
(Figure 11). The deep dark areas in the three-dimensional images revealed the existence
of nanopores in the membranes. The bright bulging areas indicated the polymer matrix.
The mean surface roughness of the neat polymer was 2.9 ± 0.23 nm, which was decreased
to 2.5 ± 0.30 nm with 1 wt.% GO loading. The graphene loading revealed an electrostatic
interaction and a good compatibility with the membrane matrix, and so the roughness
was decreased [140–142]. Moreover, the GO loading of up to 1 wt.% increased the charge
and zeta potential of the membranes. Figure 12 shows the influence of pH on the rejection
rate of arsenate (As). The rejection rate was enhanced with increasing pH values (Table 1).
Ganesh et al. [143] formed polysulfone and graphene oxide-based PSF/GO nanocomposite
membranes. They used the wet phase inversion technique to fabricate the membranes [144].
Figure 13 depicts the change in the water uptake of PSF/GO nanocomposite membranes
with a growing pH. The water uptake was enhanced with the level of GO loading. This
effect was observed due to the hydrophilic nature of GO.
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Figure 11. AFM three-dimensional surface morphology of prepared membranes (a) pure PSF;
(b) PSF/GO 0.5; (c) PSF/GO 1; (d) PSF/GO 2 membranes [139]. PSF—polysulfone; PSF/GO—
polysulfone/graphene oxide; AFM—atomic force microscopy. Reproduced with permission from
ref. [139]. Copyright 2015 Springer.
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Figure 12. Percentage rejection of As (V) at different pH by prepared membranes with various
GO contents (operating pressure = 4 bar; initial As (V) concentration = 300 ± 10 µg/L; feed
temperature = 25 ± 0.5 ◦C) [139]. As—arsenate; PSF—polysulfone; PSF/GO—polysulfone/graphene
oxide. Reproduced with permission from ref. [139]. Copyright 2015 Springer.
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Table 1. Effect of GO content on water contact angle, pure water flux, and pore structure parame-
ters of the prepared membranes [139]. PSF—polysulfone; PSF/GO—polysulfone/graphene oxide.
Reproduced with permission from ref. [139]. Copyright 2015 Springer.

Membrane Contact Angle Pure Water Flux
(L/m2h) Porosity (%) Pore Diameter

(nm)

Pure PSF 73.5 ± 2.1 19.7 ± 3.2 48.3 ± 2.6 6.9 ± 0.56

PSF/GO 0.5 66.7 ± 1.6 32.3 ± 3.5 77.9 ± 2.2 8.3 ± 0.31

PSF/GO 1 51.3 ± 1.2 49.9 ± 2.6 86.5 ± 1.8 9.1 ± 0.63

PSF/GO 2 54.8 ± 1.4 46.4 ± 2.0 82.1 ± 2.6 8.7 ± 0.42

Lai et al. [145] prepared thin film nanocomposite membranes of crosslinked polysul-
fone and polyamide using interfacial polymerization. The GO nanosheets were embed-
ded in the matrices. TEM images of the polysulfone/polyamide membrane and polysul-
fone/polyamide/graphene oxide membranes are given in Figure 14. The GO nanosheets
could be obviously seen in the 0.02 wt.% GO-loaded membrane, whereas these nanosheets
were not perceived in the neat polymer membrane.
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6. Compensations/Shortcomings of Graphene Nanocomposites in Membrane Technology

The use of polymeric membranes with nanofillers, such as carbon nanotubes and
metal oxides, is preferred, since other inorganic nanoparticles may involve a high toxicity,
cost, processability issues, etc. [146–148]. Conversely, graphene nanocomposites have
the advantages of flexibility, stability, environmental friendliness, and no involvement of
harmful or toxic solvents. Such nanocomposites have a high dispersion and alignment
properties of graphene materials, promoting a better diffusion, water flux, and barrier
features of the membranes. Moreover, polymer/graphene nanocomposite membranes
have a fine structural flexibility, high flux, high permeation, salt rejection, and high ion
or desired species-related separation properties. Nevertheless, graphene nanocomposites
may have several shortcomings. Most importantly, polymer/graphene nanomaterials may
possess the problem of graphene nanoflake aggregation. The surface of graphene needs
to be functionalized for a better dispersal in polymers and well-matched interfaces in
the matrix–nanofiller. Some graphene oxide and modified graphene nanostructures have
been developed to design functional membrane nanomaterials. Still, up till now, very few
amalgamations of graphene and polymer-based membranes have been identified. The
crucial thoughtfulness of the structure–property relationships of polymer/graphene mem-
branes has been found to be essential for future developments. Thus, research concerning
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polymer/graphene-derived membranes has been an emerging field, expecting further
research attention in the future [149].

7. Future and Summary

The essential features of graphene-based nanocomposite membranes were inves-
tigated [150]. Polymer/graphene nanocomposite membranes such as PVC/graphene,
PVAc/graphene, PVA/graphene, PSF/graphene, and nylon 6/graphene were studied for
their morphology, high barrier, water uptake, flux, toxins removal, desalination, and per-
meation characteristics. The initial function of graphene is to offer membranes mechanical
features such as strength, toughness, and flexibility. Graphene dispersion and interactions
with polymers have been found to augment membrane properties. The matrix–nanofiller
associations and compatibility have been found to be indispensable for the enhancement of
membrane performance. The dispersal and alignment of graphene and graphene oxide
develop the aligned nanostructure for the diffusion and permeation of the membranes. In
these membranes, the pore structure, wettability, and nanoparticle scattering may promote
the transmission and purification of water. Graphene-dispersed nanofibers have also been
used to develop membranes for filtration and permeation purposes. Consequently, the
barrier properties of polymer/graphene and polymer graphene oxide membranes may
affect the membrane properties. The morphology and pore structure of the membranes
may fluently transport molecules through the graphene-dispersed membranes.

The major limitations in membrane separation processes were identified as fouling,
shrinkage, and hydrophobicity [151]. Fouling is the phenomena of the deposition of par-
ticles/colloids, salts, or other molecules inside the pores of membranes during filtration.
This leads to a decrease in the permeation flux, membrane life, durability, and selectivity
properties during filtration. The main reason for fouling was recognized as the hydropho-
bicity of the membranes. Most of the polymeric membranes are hydrophobic due to the
lack of a functional group in the backbone [152]. To overcome these drawbacks, the in-
clusion of graphene and graphene derivatives may impart important features onto the
membranes such as hydrophilicity to prevent antifouling and enhance the durability and
self-cleaning properties.

Hence, the potential of polymer/graphene membranes, including nanofibrous mem-
branes, was explored in this article. Graphene and its derivatives may overcome challenges
in the way of the promising future of membrane nanomaterials.
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