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Abstract: Erbium (Er)-doped Aluminum Nitride (AlN) thin films were deposited and fabricated on
Si (100) and Si (111) substrates in a Nitrogen atmosphere using the plasma magnetron sputtering
technique. The deposited and fabricated thin films were thermally annealed at 900 ◦C in Argon (Ar)
atmosphere. The samples were irradiated with protons at a dose of 1 × 1014 ions/cm2 which carried
an incident energy of 335 keV, using a tandem pelletron accelerator. Rutherford backscattering spec-
troscopy (RBS) and X-ray diffraction (XRD) were used for the stoichiometric and structural analysis of
the films, while Fourier transforms infrared spectroscopy (FTIR) was performed to track the changes
in the optical characteristics of thin films before and after the ions’ irradiation and implantation. The
irradiation has affected the optical and structural properties of the films, which could be exploited to
use the AlN:Er films for various optoelectronic and solid-state device applications.

Keywords: aluminum nitride; magnetron sputtering; tandem accelerator; thermal annealing; spectroscopy

1. Introduction

AlN is considered a fascinating candidate in power generation devices due to its
high bandgap [1–6]. The direct bandgap of 6.12 eV (at room temperature), the thermal
conductivity of 321 W/(mK) [7], and the electrical insulator are some of its attractive fea-
tures. Tuning the properties of a material as desired can be achieved via different physical
and chemical treatments such as the doping of impurities, ions implantation [8], thermal
annealing [9] or functional group attachment [10], etc. It has previously been reported that
rare earth (RE) doped impurities have a significant impact on the optical behavior of AlN.
This is because the doping of these impurities results in changes in structural properties
due to atomic size mismatch and provides recombination centers for the photolumines-
cence, owing to 4f orbitals of RE [11]. The material undergoes a sharp emission when
excited. The application of such modified thin-film semiconductors includes but is not
limited to solid-state devices, memory storage, flat panel displays, and high-resolution
printing. Other than these domains, the implanted or the doped specimens can also be
used in aerospace technology, high power devices, flame detection, petroleum industry,
and under-sea communications [12,13]. Previously published works have shown that ion
implantation/irradiation can be used to modify the electrical, structural, magnetic [14],
optical, and piezoelectric [15,16]. Defect damages due to unexpected erosion as a function
of temperature can also be expected with irradiation, depending on the magnitudes of
physical parameters used during ion bombardment [17,18].
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In this work, we demonstrate the fabrication of AlN:Er thin films using the magnetron
sputtering technique, followed by thermal annealing at a temperature of 900 ◦C (1173 K),
and then a thorough investigation of the change in structural and optical properties induced
by irradiation using RBS, FTIR, and XRD measurement techniques. Our work uniquely
describes the effect of proton irradiation on the structural, electronic, and optical properties
of sputtered AlN:Er films.

2. Materials and Methods
2.1. Thin Film Deposition

Growth of the thin films on a specific plane affects the crystallographic properties of
the films, therefore we either cut along (100) or (111) plane of the single-crystal Si. At 300 K
we deposited the sample using magnetron sputtering, as shown in Figure 1.
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Figure 1. Schematic of sputtering deposition process for the thin film’s growth.

In Figure 1, Al, Er with Si substrate were used as the target, while Ar ions are the
impinging ions deposited over the said targets which were placed on the anode. Al and
Er atoms are sputtered by Ar ions, then Al reacts with N present in the atmosphere and
is deposited as AlN on the Si substrate. The use of a magnet as shown in the schematic is
to focus the beam of Ar ions. The system was powered electrically between 100 W and
200 W. An outlet in the deposition chamber was connected to a cryopump in order to create
a vacuum. A 4 × 10−6 kPa vacuum was produced using the pump [19]. The pressure used
during the operation was set to 3 × 10−5 Torr.

Thin films of AlN doped with Erbium (Er) were prepared by radio frequency (rf)
magnetron sputtering of aluminum targets of 99.999% purity in a pure nitrogen atmosphere.
Doping of the thin films bilayer with Er was accomplished by drilling small holes (3/16 in.
diameter) in the aluminum targets and placing a slug of Er in the holes separately. Erbium
was then co-sputtered with the aluminum.

Bilayer films were deposited by using two targets and using them alternatively by
flipping over the substrate [20].
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2.2. Thin Film Characterizations

We cut a single piece of the as-prepared sample into two pieces and irradiated one
piece among them, leaving behind the other un-irradiated. All the characterizations were
performed at the national center for Physics (NCP), Quaid e Azam University, Islamabad,
Pakistan. Before the irradiation, we annealed the samples thermally at a temperature of
900 ◦C. The dose and the energy of the incident proton beam used were 1 × 1014 ions/cm2

and 335 keV. Later, the samples were characterized for modification in properties upon
irradiation by performing RBS, XRD, and FTIR. The RBS data was obtained for the samples,
using a 5 MV Pelletron tandem accelerator (5UDH-2 Pelletron, National Electrostatic
Corporation, Middleton, WI, USA). The XRD data were acquired on Bruker’s D8 Advance
system using Cu Kα radiation (λ = 1.5406 Å) X-ray source, while the FTIR measurement
was conducted by FT/IR-6600 type A model.

3. Results

RBS is an analytical technique that is normally used to acquire depth information
profiling, elemental identification, and their relative concentrations (stoichiometry) in the
target material [3,15]. The analysis is based on the ion solid interaction phenomenon where
the lighter ions (typically protons or alpha) have acolumbic interaction with the target
and backscattered containing the information about the material in the form of energy.
The spectrum of RBS for the AlN:Er was obtained using a 2.0 MeV He++ beam used in
a perpendicular direction to the surface area of the targets. The measured current of the
He beam ranged from 26 to 36 nA, where the charge collection was 20 µC. The detector
was held constant at its position at 170◦ to the beam of ions. In order to extract the film’s
parameters from these results, a fitting of the experimental data was carried out using
SIMNRA [21], with a detector resolution of 28 keV. Figure 2 illustrates in the green and
red colors the experimental and computational curves, respectively obtained from the RBS
analysis. The obtained results also provided the approximate thickness of the film to be
~160 nm. Since the Er ions have no penetration power (almost negligible incident energy)
surface deposition will most likely occur. Moreover, oxygen has further been defused
in the substrate forming a layer of silicon dioxide. Oxygen is an unwanted element that
has been seen in the entire RBS spectrum, which may have been introduced in the AlN
films during the deposition process as an impurity specie or after the completion of the
deposition process and exposure to the air. The elemental composition and thickness of the
films is shown in Table 1.
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Table 1. Elemental composition and thickness of the films.

Sample Al (%) N (%) O (%) Er Thickness

AlN:Er 43.0 35.1 20.5 1.4 160 nm

Irradiation causes the formation of point defects within the matrix of the targeted
materials [22,23]. These defects agglomerates, form dislocations and voids alter first the
structural and then the mechanical characteristics of the materials. AlN can be found in
wurtzite, rocksalt, or Zinc blende structure [24,25], but the doping of Er due to size mis-
match will have apparently perturbed their crystallinity. On the other hand, the irradiation
will deteriorate it more. Therefore, the microstructure characterization was performed
systematically by using XRD. A Cu Kα radiation (λ = 1.5406 Å) was directed onto the target
to obtain information regarding the diffracted ray at room temperature, which will inform
us about the structure of the films. Figure 3 compares the XRD spectra obtained for the
deposited and implanted samples.
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microstructure before and after the ions implantation.

In Figure 3, the peaks at (012), (111), and (003) correspond to the planes of the Si
substrate [26,27]. For Al, the identified peaks are (200), (110), and (110) [27]. As can be seen
from the XRD curves, the existing peaks in the as-deposited film are replaced with some
new peaks, i.e., Si [0100] [28] and Al [220] [29]. From the XRD measurements, it can be
vividly seen that the impinged ions seriously affected the crystallinity of the samples. The
number of peaks in the implanted sample was reduced and the intensity of diffracted light
reduced, which confirmed that the ion-implanted film was amorphized in comparison to
the as-deposited one.

FTIR measurements are used to monitor a change in the composition of the mate-
rial or the presence of certain contamination of external elements through the absorption
of infrared radiation in the samples. In our case, FTIR of the films was studied to ob-
serve the likely subsurface bonds formation, other than the impurities doped in AlN. The
measurements were taken in transmittance mode and the wavenumber range was from
4000–500 cm−1.
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In Figure 4, Al-N bonds are shown in the peak which ranges from 500 to 1000 cm−1

announcing the existence of the vibration mode for Al–N bonds, while the presence of
small peaks in the range from 1050 to 1400 are representing stretching of them [30,31].
In the range of 2270–2420 cm−1 the peaks represent the CO2. This is supported by other
authors who claimed that these peaks are not from the samples but contributed from
the spectrometer to the FTIR spectra [32,33], while at 1105 cm−1 the absorption peak is
attributed to Si–O stretching [34].
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Figure 4. FTIR measurements of AlN:Er before and after irradiation.

4. Conclusions

Thin films of AlN:Er were fabricated using a magnetron sputtering mechanism. Ther-
mal annealing after the fabrication was performed at 900 ◦C. Protons were illuminated on
the surface of the thin films using a tandem pelletron accelerator with an incident energy
of 335 keV at a dose of 1 × 1014 ions/cm2. The composition of the thin films remained
unchanged with the irradiation. It was concurred that the structural properties seriously
vary with irradiation. New peaks were observed with the irradiation, such as Si (111),
Al (110), Al (200), etc. No new bonding was observed with the FTIR analysis before and
after the irradiation, which implies that no new elements have been formed with the proton
irradiation. The transmittance increased with irradiation, which inferred changes in the
transparency of the material.
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