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Abstract: This work focuses on the adsorptive removal of patent blue V (PBV) dye from aqueous
solution by Zn/Al layered double hydroxide in fresh (LDH) and calcined (CLDH) forms. The
material was synthesized via coprecipitation and samples were characterized by XRD, FTIR and
TGA-DTA. Dye retention was evaluated under different experimental conditions of contact time,
pH, adsorbent dosage, temperature and initial dye concentration. Experimental results show that
highest adsorption capacity occurred at acidic medium. Kinetics data were properly fitted with
the pseudo-second-order model. Equilibrium data were best correlated to Langmuir model with
maximum monolayer adsorption capacities of 185.40 and 344.37 mg/g, respectively, for LDH and
CLDH. The process was endothermic and spontaneous in nature. Based on the preliminary study,
full factorial experimental design (24) was used for the optimization of the effect of solution pH,
adsorbent dose, initial dye concentration and the calcination. Thus, the optimal conditions to reach
high equilibrium adsorption capacity were achieved at pH of 5, adsorbent dosage of 0.1 g/L, and
initial dye concentration of 15 mg/L by CLDH.

Keywords: patent blue V; calcined LDH; sequestration; experimental design

1. Introduction

Water is an essential substance for daily life. Due to the expansion of industrial, agri-
cultural and domestic activities, this substance is highly contaminated by industrial sludge,
heavy metals, pesticides, organic dyes and other chemicals. This results in serious diseases
affecting biomes and biota. According to the UNESCO World Water Assessment Program
(WWAP), 100 million people, 1 million sea birds and 1 lakh marine mammals die each year
due water pollution [1]. As ones of the most water polluting industries, textile and paper
industries emit many organic dyes during the coloring process [2]. Even a tiny amount
of these dyes can affect the quality of water. Among the dyes, patent blue V from the
class of azo dyes is commonly used in cosmetic and food industry, which provides direct
contact with human body. It is known to cause headache, asthma and allergic reactions [3,4].
However, various technologies are used in the treatment of wastewaters containing the
excess level of dyes, including photodegradation [5], chemical coagulation [6], biodegrada-
tion [7], catalytic reduction [8] and electro-chemical treatment [9]. Among these processes,
adsorption is proven to be one of the most attractive and effective techniques [10]. There-
fore, several materials have attracted considerable attention as adsorbents in dye removal
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applications. Layered double hydroxides (LDH) or anionic clays are known by their high
retention capacity for anionic dyes [11] and are easily synthesized, less expensive, regen-
erable, large surface area, super anion exchange capacity and environmental friendliness.
These compounds can be described by the general formula: [MII

1−xMIII
x(OH)2]x+.(An−

x/n).
mH2O, where MII represents a divalent cation (Mg2+, Zn2+, Ni2+, Mn2+, Fe2+ . . . ), MIII

represents a trivalent cation (Al3+, Cr3+, Fe3+, Co3+, Mn3+ . . . ), An− the compensating
anion (Cl−, NO−

3, ClO−
4, CO2−

3 . . . ), n the charge of the anion, and m is the number of
water molecules located in the interlayer region together with the anion. The coefficient, x,
is the molar fraction, [MIII/(MII + MIII)] [12].

The main purpose of this work was to evaluate the potential of fresh and calcined
Zn/Al LDH as adsorbent for the removal of PBV dye from aqueous solution. Various
factors such as contact time, solution pH, adsorbent dose, temperature and initial dye
concentration were studied. This paper also investigated the combined effect of the most
influencing parameters, which are solution pH, adsorbent dose, initial dye concentration
and nature of adsorbent. Full factorial experimental design with two levels (24) was used
to acquire the optimal conditions for high removal efficiency.

2. Materials and Methods

All used chemicals were of analytical grade and were used without further purifica-
tion. Zinc nitrate (Zn(NO3)2·6H2O) (≥99%), aluminum nitrate (Al(NO3)3·9H2O) (≥98%),
sodium carbonate (Na2CO3) (99.5–100.5%), sodium hydroxide (NaOH) (≥99%), hydrochlo-
ric acid (HCl) (37%), sodium chloride NaCl (99.5%) and patent blue V (C27H31N2NaO7S2)
(100%) were obtained from Sigma-Aldrich (Germany). Bidistilled water was used as the
solvent throughout this study. The characteristics and chemical structure of the dye are
listed in Table 1.

Table 1. Molecular structure and physical characteristics of patent blue V.

Name Molecular Structure MW (g/mol) λmax (nm)

Patent blue V
(Acid blue 3)
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LDH was synthesized by several authors previously, using the coprecipitation method
at constant pH [12,13]. A mixture solution of Zn(NO3)2·6H2O and Al(NO3)3·9H2O with a
total concentration of metal ions (Zn and Al) of 2 mol/L and Na2CO3 (1 mol/L) was added
drop-wise in a backer containing 50 mL of bidistilled water. The pH of the mixture solution
was adjusted and kept constant at 8.5 ± 0.2 during the synthesis by addition of suitable
amounts of NaOH solution (2 mol/L). The formed gel was stirred vigorously for 4 h and
then transferred into an autoclave and hydrothermally treated at 75 ◦C for 16 h. Finally, the
precipitate was washed several times with deionized water until the solution was neutral
and dried at 100 ◦C for 24 h. The resulting product (LDH) was ground into fine powder and
stored in sample bottle for further use. Part of the resulting material was calcined at 500 ◦C
in a tubular furnace for 6 h to obtain CLDH. Powder XRD patterns of the samples were
recorded in 2θ range from 5 to 70◦ at room temperature on a D2 PHASER diffractometer,
using CuKα radiations with 30 KV and 10 mA. FT-IR spectra were recorded in the range
of 4000 to 400 cm−1 using a Perkin Elmer (FTIR-2000) spectrophotometer. The sample
was prepared by finely mixing 1 mg of adsorbent with 100 mg of KBr to prepare pellet.
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Thermogravimetric and differential thermal analysis (TGA-DTA) curves were recorded on
a SETARAM (SENSYSevo) instrument, in the temperature range from 30 to 700 ◦C with a
heating rate of 10 ◦C/min under argon atmosphere. The pH of point of zero charge (pHpzc)
was determined according to the method described by Noh and Schwarz [14]. The pH of
NaCl aqueous solution (50 mL at 0.01 mol/L) was adjusted to successive initial values in
the range of 2–12 by addition of HNO3 and/or NaOH. Moreover, 0.05 g of each biosorbent
was added in the solution and stirred for 6 h. The final pH was measured and plotted vs.
the initial pH. The pHpzc was determined at the value for which pHfinal = pHinitial.

Adsorption experiments were conducted at different conditions by adding different
dosages (0.05–0.8 g/L) of LDH or CLDH to 100 mL of dye solution of predetermined
concentrations (15–150 mg/L). The initial solution pH was varied in the range of 3–12, the
contact time was in the range of 2–120 min, and temperature was in the range of 25–55 ◦C.
After each adsorption experiment completed, the solid phase was separated from the
liquid phase by centrifugation at 3000 rpm for 10 min. Then, the dye concentration was
determined using a TOMOS V-1100 UV type Spectrophotometer.

The adsorption yield (%Removal) of the dye and the adsorption capacity (q (mg/g))
were evaluated by the following equations:

%Removal = ((C0 − C)/C0) ∗ 100 (1)

q = (C0 − C)/R (2)

where C0 and C are respectively initial and residual dye concentration a time t (mg/L), and
R is the adsorbent dosage (g/L).

Based on the effect of each individual factor, the most influencing factors were used
for the optimization of the process by experimental design. Table 2 shows the four factors
used and their levels. The experiments were performed according to a full factorial design
at two levels (24), with 16 experiments. The adsorption behavior was optimized by using a
first-order polynomial model (Equation (3)):

Y = b0 + b1A + b2B + b3C + b4D + b12AB + b13AC + b14AD + b23BC + b24BD +
Yb34CD + b123ABC + b124ABD + b134ACD + b234BCD + b1234ABCD

(3)

where, Y is the response of interest (adsorption capacity of PBV dye).

Table 2. Process factors and their levels.

Factors Levels
Low (−) High (+)

A. Adsorbent dosage (mg/g) 0.1 0.3
B. Solution pH 5 7

C. Dye concentration (mg/L) 15 30
D. Nature of adsorbent LDH CLDH

3. Results and Discussion
3.1. Characterization
3.1.1. X-ray Diffraction (XRD) Study

The XRD patterns of the fresh and calcined Zn-Al-LDH are shown in Figure 1. The
figure exhibits the characteristic reflections of the LDH structure for fresh sample with
planes (003), (006), (012), (015), (018), (110) and (113). Remarkable changes were observed
after calcination at 500 ◦C. The lamellar structure collapsed and new peaks corresponding
to ZnO oxide started to appear indicated by the peaks at 2θ = 31.8◦, 34.5◦, 36.3◦, 47.6◦, 56.6◦,
62.9◦, 66.4◦, 68◦ and 69.1◦. These peaks correspond to the reflections from (100), (002), (101),
(102), (110), (103), (200), (112) and (201) planes, respectively. This is also confirmed by the
JCPDS data (Card No. 36-1451) [15].
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Figure 1. XRD patterns of LDH material before and after calcination at 500 ◦C.

3.1.2. Fourier Transform Infrared (FTIR) Analysis

Figure 2 shows the FTIR spectra of LDH before and after calcination. The spectrum of
the fresh LDH shows a broad band between 3600 and 3200 cm−1, which is attributed to
the stretching vibration of the OH groups of physically adsorbed and interlamellar water
molecules [16]. Another common band for the LDH materials is found at about 1600 cm−1,
attributed to the O-H bending vibrations of water molecules [16]. The band at 1364 cm−1 is
assigned to the stretching vibration of the CO3

2− groups in the LDH interlayer [16]. This
band rapidly disappears after calcination due to the thermal decomposition of carbonate
ions. Bands around 700–400 cm−1 could be related to the lattice vibration modes such as
the translation vibrations by M-O (590 and 670 cm−1) and O-M-O (430 cm−1) [17,18].
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3.1.3. Thermal Analysis (TGA-DTA)

The thermal decomposition of the LDH was investigated by TGA-DTA analysis.
According to the literature, the decomposition of LDH includes three main stages which
are the loss of adsorbed water, the decomposition of H2O, OH and finally CO3. The
TGA-DTA curves of LDH material obtained shown in Figure 3 are quite similar to those
reported in previous research works [19]. The TGA-DTA curves of synthesized LDH show
a first mass loss at ∼100 ◦C, which can be accredited to the loss of adsorbed water. It was
followed by a second more pronounced and sharp endothermic phenomenon around 160
to 240 ◦C. This mass loss was due to loss of hydration water from the interlayer region. A
third step, extending up to 320 ◦C, is assigned to the overlapped mass losses due to the
dehydroxylation of the layers and the decomposition of the carbonates.
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3.2. Dye Removal from Aqueous Solution
3.2.1. Effect of Solution pH

The effect of solution pH on the removal of PBV was investigated in a pH range
varying from 3 to 12 as shown in Figure 4. It was observed that the highest adsorption was
obtained in the pH range of 3 to 5 and then continually decreased with pH increase. The pH
change would directly affect the negatively and positively charged site distribution profile
on the surface of the adsorbents. The pH point of zero charge (pHpzc) of the adsorbents
and the pKa value of dye molecule are important factors controlling this behavior. The pKa
of PBV is 2.78, displaying that the dye molecules present as monovalent anions in solution
in the studied pH range. The pHpzc of adsorbents were 7.47 and 8.1 for LDH and CLDH,
respectively. Therefore, at pH > pHpzc the surface charge is negative, disfavoring the anions
forms of dye molecules adsorption. At pH < pHpzc, the surface of adsorbents becomes
more positively charged leading to an increase in the dye removal due to strengthening
attractive forces among the positive charge of the surface of the adsorbents and negative
charge of the dye molecules.
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Figure 4. Effect of pH on the adsorption of PBV: C0 = 15 mg/L, R = 0.1 g/L, agitation time = 2 h,
T = 25 ◦C.

3.2.2. Effect of Adsorbent Dosage

Figure 5 represents the effect of adsorbent dosage on PBV removal by fresh and
calcined LDH. The figure shows that the effectiveness of retention increases with the
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increase of adsorbent dosage from 0.05 g/L to a value of 0.4 g/L, where it shows a plateau.
This result is due to the fact that the increase in the adsorbents dosage increases the number
of adsorption sites available for non-adsorbed dye molecules. The figure also shows that
the removal efficiency does not reach 100% despite the continuous increase of adsorbent
dosage behind 0.4 g/L. This suggests low to moderate interaction of the adsorbents by the
dye molecules at low concentration in solution. From the figure, it can be also concluded
that the affinity of PBV dye to CLDH is greater than that of fresh LDH.
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3.2.3. Adsorption Kinetics

Contact time is an important design parameter on which depends adsorption process
as it provides information about the dynamic of the reaction in terms of order and of the
rate constant. As shown in Figure 6, the removal capacity of PBV by CLDH and LDH both
exhibited a rapid increase in the first 10 min of reaction time, then, gradually increased until
reaching equilibrium at 30 min. Adsorption kinetics data were analyzed using pseudo-first-
order model (Equation (4)) [20] and pseudo-second-order model (Equation (5)) [21].

q = qe (1 − e−K1t) (4)

q = (K2 qe
2 t)/(1 + K2 qe t) (5)

where qe and q (both in mg/g) are, respectively, the amounts of dye adsorbed at equilibrium
and at any time t (min), k1 (1/min) is the rate constant of pseudo-first-order model and k2
(g/mg min) is the rate constant of pseudo-second-order model.

Parameters of the pseudo-first-order and pseudo-second-order models were estimated
with the aid of the nonlinear regression. The obtained data and the correlation coefficients,
r2, are given in Table 3. The Table indicates that the r2 values are higher and closer to 1 for
the pseudo-second-order model compared to those of the pseudo-first-order model. The
calculated equilibrium values (qcal) of the pseudo-second-order model are consistent with
the experimental data. This result suggests that the adsorption of PBV onto LDH and CLDH
could be better described by the pseudo-second-order model instead of pseudo-first-order
kinetic model.
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Figure 6. Adsorption kinetics of PBV by (a) CLDH and (b) LDH: C0 = 15 mg/L, R = 0.1 g/L, initial
pH = 5.52 and T = 25 ◦C.

Table 3. Kinetics models constants for PBV adsorption by CLDH and LDH.

Adsorbent qexp (mg/g)
Pseudo First-Order Pseudo Second-Order

qcal (mg/g) K1 (1/min) r2 qcal (mg/g) K2 (g/mg min) r2

CLDH 99.36 94.52 0.347 0.991 101.47 0.005 0.998
LDH 49.48 47.47 0.368 0.959 50.83 0.012 0.990

3.2.4. Adsorption Isotherms

Adsorption isotherm plays a crucial role in analyzing the adsorption capacity of
materials and providing information about solution-surface interaction. The adsorption
capacities of LDH and CLDH with increasing the initial dye concentration are shown
in Figure 7. The figure indicates that the adsorbed amounts of PBV increased with the
increase in equilibrium dye concentration. It’s evident that high concentration in solution
implicates high dye molecule fixed at the surface of the adsorbent. However, when the
equilibrium concentration exceeded 60 mg/L, the adsorbents reached a saturated state. Ob-
tained equilibrium data were analyzed using Langmuir (Equation (6)) [22] and Freundlich
(Equation (7)) [23] isotherm models.

qe = (qm KL Ce)/(1 + KL Ce) (6)

qe = KF Ce
1/n (7)

where qm (mg/g) is the Langmuir maximum monolayer adsorption capacity, KL (L/mg) is
the Langmuir equilibrium constant related to the adsorption affinity, KF (mg1−1/ng−1L1/n)
is the Freundlich constant related to the adsorption capacity and n is the heterogeneity
factor related to the adsorption intensity.

The fitting parameters and correlation coefficient values (r2) are all listed in Table 4.
According to the r2 values, the more suitable model for this system is the Langmuir model.
This result indicates that the adsorption processes is more likely to be homogeneous
and monolayer. The obtained qm values indicate that the adsorption capacity of CLDH
(344.37 mg/g) is much higher than of LDH (185.40 mg/g). In addition, KL value obtained
for CLDH is higher compared to that obtained for LDH, which confirm the high affinity
of PBV dye to calcined LDH. This increase in the adsorption capacity of LDH with cal-
cination could be attributed to the reconstruction phenomena. The calcination of LDH
structure leads to the decomposition of the carbonate anion CO3

2− in the interlayer space
and the formation of mixed oxides with memory effect. When these mixed oxides are
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hydrated in solution, they reconstruct LDH structure by intercalation of dye molecules in
its intermalleolar space [24].
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Figure 7. Experimental points and nonlinear fitted isotherm curves of PBV adsorption by (a) CLDH
and (b) LDH: R = 0.1 g/L, agitation time = 2 h, initial pH = 5.62 and T = 25 ◦C.

Table 4. Isotherm models constants calculated for PBV adsorption by Fresh and calcined LDH.

Adsorbent
Langmuir Freundlich

qm (mg/g) KL (L/mg) r2 KF (mg1–1/n/g·L−1/n) n r2

CLDH 344.37 0.074 0.993 83.231 3.487 0.943
LDH 185.40 0.057 0.967 41.608 3.453 0.906

3.2.5. Effect of Temperature

The changes observed in the adsorption of PBV by varying solution temperature in the
range of 25–55 ◦C are shown in Figure 8. From the figure, it can be seen that the adsorption
yield was enhanced by rise in temperature. Thermodynamic parameters; ∆H◦, ∆G◦, and
∆S◦ were applied to assess the spontaneity and heat exchange during the adsorption
process. They were calculated using the following equation:

LnKD = −∆G◦/RT = −∆H◦/RT + ∆S◦/R (8)

where KD is the distribution constant of dye between solid phase and liquid phase (qe/Ce),
R is the universal gas constant (8.314 J/mol K), T is solution temperature in K, ∆G◦ is the
Gibbs free energy, ∆S◦ is the entropy, and ∆H◦ is enthalpy. ∆S◦ and ∆H◦ were estimated
from the slope and intercept of the plot of lnKD vs. 1/T yields.

The calculated parameters are illustrated in Table 5. The negative values of ∆G◦ and
positive values of ∆S◦ imply that the removal process of PBV on both LDH and CLDH
is feasible and spontaneous. Meanwhile, ∆H◦ > 0 further demonstrates the endothermic
nature of the process. Additionally, the values of ∆H◦ are lower 40 kJ/mol, suggesting
physical adsorption process.
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Figure 8. Effect of temperature on the adsorption of PBV by CLDH and LDH: C0 = 15 mg/L, agitation
time = 2 h, initial pH = 5.57 and R = 0.1 g/L.

Table 5. Thermodynamic parameters of the adsorption of PBV by CLDH and LDH.

Adsorbent T (K) KD ∆G◦ (kJ/mol) ∆H◦ (kJ/mol) ∆S◦ (J/K·mol)

CLDH 298 16.48 −6.94 11.67 62.41
308 18.36 −7.46
318 21.06 −8.09
328 25.31 −8.82

LDH 298 4.79 −3.89 13.71 59.01
308 6.10 −4.63
318 6.64 −5.01
328 8.18 −5.73

3.3. Process Optimization
3.3.1. Experimental Results

The experimental results obtained at the designed conditions according to the full
factorial experimental design are presented in Table 6. According to the table, the highest
adsorption capacity of 92.2 mg/g was obtained by CLDH at initial dye concentration
of 15 mg/L, pH of 5, and adsorbent dosage of 0.1 g/L. Statistical analysis was used to
determine a well-fitted regression model. Values of the main effects of individual variables
and their interaction effects obtained are presented in Table 7. From the table, it can be
observed that the calcination of LDH has a positive effect on PBV adsorption. Meanwhile,
the other remaining individual terms present a negative effect on the adsorption. The
analysis of the interaction effects shows that the most significant interaction was between
adsorbent dosage and initial dye concentration with a positive effect (b13 = +4.93), followed
by the interaction between adsorbent dosage and the nature of LDH (b14 = −6.93).

Table 6. Factorial experimental design matrix in coded and real values and experimental results.

Run
Coded Values Actual Values

qe (mg/g)
A B C D A B C D

1 −1 −1 −1 −1 5 0.1 15 LDH 48.62
2 −1 1 −1 −1 5 0.3 15 LDH 32.36
3 1 −1 −1 −1 7 0.1 15 LDH 26.67
4 1 1 −1 −1 7 0.3 15 LDH 20.45
5 −1 −1 1 −1 5 0.1 30 LDH 15.90
6 −1 1 1 −1 5 0.3 30 LDH 22.00
7 1 −1 1 −1 7 0.1 30 LDH 11.81
8 1 1 1 −1 7 0.3 30 LDH 14.20
9 −1 −1 −1 1 5 0.1 15 CLDH 92.24
10 −1 1 −1 1 5 0.3 15 CLDH 40.47



J. Compos. Sci. 2022, 6, 115 10 of 14

Table 6. Cont.

Run
Coded Values Actual Values

qe (mg/g)
A B C D A B C D

11 1 −1 −1 1 7 0.1 15 CLDH 72.48
12 1 1 −1 1 7 0.3 15 CLDH 37.88
13 −1 −1 1 1 5 0.1 30 CLDH 59.80
14 −1 1 1 1 5 0.3 30 CLDH 36.56
15 1 −1 1 1 7 0.1 30 CLDH 47.78
16 1 1 1 1 7 0.3 30 CLDH 32.59

Table 7. Values of model coefficients for adsorptive removal of PBV.

Main Coefficient Value

b0 38.24
b1 −8.67
b2 −5.26
b3 −8.16
b4 14.24
b12 1.97
b13 4.93
b14 −6.93
b23 1.77
b24 0.13
b34 0.05
b123 −1.43
b124 1.18
b134 1.06
b234 −0.08
b1234 0.04

3.3.2. Analysis of Variance (ANOVA)

ANOVA is a statistical technique that subdivides the total variation in a set of data into
component parts associated with specific source of variation for adequacy and significance
of predicted model. Data obtained from ANOVA analysis for the coded quadratic model
at a confidence level of 95% are represented in Table 8. The table shows that the equation
adequately represents the actual relationship between response and the significant variables.
This is confirmed by a higher F value while the p value < 0.05. In this model the F value
is 361.05 and p value is 0.0002 (which is less than 0.05, justifying the significance of the
model). Moreover, interaction effects as significant model terms can be used for modeling
the experimental system. According to the ANOVA analysis, the significant terms are the
adsorbent dosage (A), solution pH (B), initial dye concentration (C), nature of LDH (D),
the interaction between adsorbent dosage and pH solution (AB), the interaction between
adsorbent dosage and initial dye concentration (AC) and the interaction between solution
pH and initial dye concentration (BC). From the obtained fitting equation (Equation (9)), it
appears that the adsorption of PBV was positively correlated to the nature of LDH, and
the interaction between adsorbent dosage and solution pH, adsorbent dose and initial
dye concentration, and between solution pH and initial dye concentration. Meanwhile,
the increase in adsorbent dosage, solution pH and initial dye concentration resulted in a
reduction of PBV adsorption.

Y = 38.24 − 8.67 A − 5.26 B − 8.16 C + 14.24 D + 1.97 AB + 4.93 AC + 1.77 BC (9)



J. Compos. Sci. 2022, 6, 115 11 of 14

Table 8. Analysis of variance for PBV adsorption.

Source Sum of Squares df Mean Square F Value p-Value Prob > F

Model 7310.92 7 609.24 361.05 0.0002 significant
A 1203.9 1 1203.9 713.46 0.0001
B 441.96 1 441.96 261.91 0.0005
C 1064.86 1 1064.86 631.06 0.0001
D 3242.99 1 3242.99 1921.87 <0.0001

AB 62.21 1 62.21 36.87 0.0090
AC 389.18 1 389.18 230.64 0.0006
BC 50.16 1 50.16 29.72 0.0121

Residual 5.06 3 1.69
Cor Total 7315.99 10

R2 = 0.980; Radj2 = 0.997.

For testing significant effects of regression coefficients for the proposed model, pre-
dicted values were compared with experimental values as shown is Table 9. From the table,
it can be seen that the values nearly coincide, which indicates a correspondence between
the mathematical model and the experimental data. The correlation between the theoretical
and experimental response calculated by the model is satisfactory. The normality of the data
can be checked by plotting normal probability plot of the residuals. The data are normally
distributed, when the data points on the plot fall fairly close to the straight line. Normal
probability plot of residual calculated for the considered model are shown in Figure 9. The
figure shows a linear relationship with high correlation coefficient which suggests good
applicability of the model for the explanation of experimental data.

Table 9. Predicted vs. experimental response for the equilibrium adsorption capacity of PBV.

Run Actual Predicted Residual
1 20.45 20.76 −0.31
2 14.20 14.82 −0.62
3 72.48 71.59 0.89
4 59.80 60.11 −0.31
5 48.62 48.00 0.62
6 92.24 92.86 −0.62
7 32.59 31.97 0.62
8 15.90 15.59 0.31
9 47.78 47.74 0.04
10 40.47 40.50 −0.03
11 32.36 32.32 0.04
12 37.88 37.57 0.31
13 11.81 11.85 −0.04
14 36.56 37.45 −0.87
15 22.01 21.11 0.89
16 26.67 27.56 −0.89

3.3.3. Response Surface Analysis

Response surface methodology (RSM) was developed by considering the significant
interactions in the full experimental design to optimize the critical factors and describe
the nature of the response in the experiment. 3D surface plots of interaction effects are
given in Figure 10. The figure presents three significant interactions between adsorbent
dosage/solution pH, adsorbent dosage/dye concentration and dye concentration/solution
pH. From Figure 10a, it could be seen that the equilibrium adsorption capacity of PBV
increased with decreasing adsorbent dosage and solution pH. The greater adsorption
efficiency was obtained at initial concentration of 15 mg/L with CLDH. However, the
adsorption increased with decreasing adsorbent dosage and dye concentration (Figure 10b).
The highest value was obtained at pH of 5 with CLDH. Figure 10c indicates that the PBV
adsorption capacity increased when the solution pH and dye concentration decreased.
The highest equilibrium adsorption capacity was obtained at adsorbent dose of 0.1 g/L
with CLDH.
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3.3.4. Optimization Analysis

The optimum conditions for four variables; adsorbent dosage, solution pH, dye
concentration and nature of LDH were obtained. The best conditions for the removal
of PBV are obtained by calcined LDH at initial concentration of 15 mg/L, pH of 5, and
adsorbent dosage of 0.1 g/L. Under these conditions, the highest equilibrium adsorption
capacity was obtained. In addition, it was observed that the experimental values obtained
were in good agreement with the values predicted from the models, with relatively small
errors between the predicted and the experimental values, which were only 0.02%.

4. Conclusions

In summary, the synthesized zinc/aluminum layered double hydroxides were utilized
for the removal of patent blue V dye from aqueous solution under different conditions.
It can be observed that calcination of LDH strongly enhances its adsorption potential.
The process is very rapid and the adsorption yield increased with an increase in the
adsorbent dosage. The highest adsorption occurred in acidic medium. Kinetic data were
best fitted to the pseudo-second-order kinetic model. Dye adsorption increased with the
increase in the initial concentration according to Langmuir adsorption isotherm model.
The adsorption process was endothermic. The effects of significant variables and their
interactions in the adsorption were determined by full factorial experimental and optimum
were established. The predicted values were in good agreement with the experimental with
relatively small errors.
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