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Abstract: The aim of this paper is to determine the heat transfer properties of biaxial carbon fabrics of
different architectures, including non-crimp stitch bonded fabrics, plain, twill and satin woven fabrics.
The specific heat capacity was determined via DSC (differential scanning calorimetry). A novel
method of numerical analysis of temperature maps from a video using a high-resolution thermal
camera is investigated for the measurement of the in-plane and transverse thermal diffusivity and
conductivity. The determined thermal conductivity parallel to the fibers of a non-crimp stitch bonded
fabric agrees well with the theoretical value calculated employing the rule of mixtures. The presence
of voids due to the yarn crossover regions in woven fabrics leads to a reduced value of transverse
thermal conductivity, especially in the single ply measurements of this study.

Keywords: thermal conductivity; specific heat capacity; woven carbon fabrics; non-crimp stitch
bonded fabric; clayton model

1. Introduction

Heat transfer plays an important role in all stages of composite manufacturing. Heat-
ing in preforming is used to melt the thermoplastic matrix or binder so the fabric can be
deformed and the layers consolidated [1,2] and also cure the adhesive binder for ther-
mosetting binders [3,4]. Preforming takes place in single (SDF) [5] or double diaphragm
forming (DDF) [6,7] or matched tool forming [8]. Mainstream composite manufactur-
ing techniques [9] include autoclave processing [9], resin transfer molding (RTM) [10,11],
vacuum-assisted resin infusion (VARI) [12], automated fiber placement (AFP) [13–15], ther-
moforming [16,17] and pultrusion [18,19]. Controlled heating is used in all techniques
in combination with pressure or vacuum to reduce the matrix viscosity to facilitate resin
flow, impregnation or bleeding and layer consolidation as well as to effect solidification
via curing for reacting resins, especially thermosets, or cooling for thermoplastic matrices.
Product design and process optimization in composite manufacturing is usually conducted
via computer simulations in which the heat transfer equation is of particular significance.

The thermal properties of the composite material and the contact resistance at inter-
faces [20] are key properties in the heat transfer equation that need to be measured and
inputted in the computer algorithms. The rule of mixtures or modifications could be used
to predict the density and specific heat capacity of a composite material [21,22], both of
which are isotropic properties. The specific heat capacity is also measured using differential
scanning calorimetry (DSC) [21].

However, it is more difficult to determine the thermal conductivity which is a property
depending on the fiber direction or the direction of nano-reinforcements for particulates
with an aspect ratio, such as carbon nanotubes, nanofibers and graphene or graphene oxide
which may be either randomly oriented in usual mixing, casting, coating via doctor blade or
spraying techniques [23–25] or oriented via electrophoresis [26] or electrospinning [27], for
example. For unidirectional reinforcements, the rule of mixtures may be used to predict the
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thermal conductivity in the direction parallel to the fibers [28]. As heat transfer is dominant
through the laminate thickness, the thermal conductivity in the direction transverse to the
fibers is critical. It can be predicted by the harmonic mean [28] also known as the inverse
rule of mixtures, but that indicates the lower bound on the composite conductivity [29,30].
The next best constitutive relation for the thermal conductivity of a composite transverse to
the fibers, kc,t, is given by Clayton’s model [31,32]:

kc,t =
km

4

√(1−Vf

)2
( k f ,t

km
− 1
)2

+
4k f ,t

km
−
(

1−Vf

)( k f ,t

km
− 1
)2

(1)

where km and kf,t are the thermal conductivity of the matrix (or air for dry reinforcements)
and transverse thermal conductivity of fibers, respectively, and Vf is the fiber volume
fraction. It must be said that a range of values have been reported for the transverse and
axial thermal conductivity of carbon fibers, depending on precursor, manufacturing route,
treatment and temperature [33]. Modeling becomes even more complicated for multilayer
or woven fabrics, pointing to the necessity of measuring the thermal conductivity.

The main issue in the measurement of thermal conductivity is to account for the contact
resistance [20]. Standardized Hukseflux THISYSTMTM and THASYSTMTM devices have
been used for the measurements of the transverse and in-plane thermal conductivity,
respectively [31]. They both include two samples sandwiched between a central thin heater
and two outer heat sinks. A known heat flux is applied and temperature is measured at
the heater and each heat sink: from these values and the dimensions of the samples, the
thermal conductivity is determined according to Fourier’s law. The contact resistance may
be reduced by immersion in glycerol [31] but this would not be recommended for dry
fabrics as the glycerol would infiltrate and loosen the fabric structure. In fact, as glycerol
is still used for the rest of the contact surfaces, El-Hage et al. [33] sealed the dry fabric
samples to avoid glycerol infiltration. They found that the through-thickness thermal
conductivity of non-crimp carbon fabrics and twill woven carbon fabrics increased with
increasing fiber fraction up to when a plateau was reached at about Vf = 0.43 and 0.50,
respectively, which might be attributed to the corresponding increase in contact points and
contact area up to the packing fraction. Beyond these studies [31,33], there have been no
further developments in the technique for measuring the thermal conductivity of textiles in
composite materials.

The use of infrared (IR) thermal mapping may be a better method to focus on the
heat transfer inside the sample area only to determine its thermal conductivity and then
move to the interface to determine the interface contact resistance. This novel technique
has been recently developed in our group [34] to measure the thermal conductivity of
a thermoelectric wearable textile and the individual materials of its composite structure.
Hence, this latest novel technique will be investigated in this study to determine both the
through-thickness transverse and in-plane conductivity of fabrics in this work, in particular
with regard to the diaphragm forming process, as illustrated in Figure 1. The aim of
this study is to determine the heat transfer properties of 0/90◦ biaxial fabrics of different
architectures, including a non-crimp stitch bonded fabric, plain, twill and satin woven
fabrics, and compare the values with the predictions of Clayton’s model.
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2. Materials and Methods
2.1. Materials

Figure 2 displays micrographs of the four fabrics tested in this study, where these
images were obtained using a KEYENCE VHX-7000 digital microscope in transmission
mode. A biaxial, non-crimp, 10 k carbon fiber fabric NCF300-biaxial (Figure 2a) of an
areal density of 300 g m−2 and a measured uncompressed thickness of 0.70 mm. The NCF
consisted of two identical plies at 0/90◦ orientation, held together with a polyester yarn in
a straight plain stitch pattern with a pitch of 5 mm. A plain woven carbon fabric A0186/000
(Fothergill Engineered Fabrics, UK) (Figure 2b) with an areal density of 199 g m−2 and
a measured uncompressed thickness of 0.27 mm. A 4 × 4 twill woven 3 k carbon fabric
A0188/000 (Fothergill Engineered Fabrics, UK) (Figure 2c) with 17 ends per inch and
17 picks per inch, an areal density of 283 g m−2, and a measured uncompressed thickness
of 0.31 mm. A 5H satin woven 3 k carbon fabric HexForce 433 (Hexcel, Stamford, CT, USA)
(Figure 2d) with 18 ends per inch and 18 picks per inch, an areal density of 285 g m−2, and
a measured uncompressed thickness of 0.3 mm. A silicone rubber diaphragm was used in
the simulated thermal conduction experiments (Figure 3a,b).
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Figure 3. Diagrams of the setups for the measurement of (a) the transverse thermal conductivity and
(c) the longitudinal thermal conductivity. The IR camera faces the fabric: (b) the assembly opposite
the camera for the measurement of the transverse conductivity. Red arrows indicate the heat flow
from the heated plate.

2.2. Measurement of the Specific Heat Capacity

The specific heat capacity of all the fabrics and the silicone rubber diaphragm was de-
termined via differential scanning calorimetry (DSC) experiments, using a TA Instruments
DSC Q1000. A DSC scan was carried out in the temperature range of 15–140 ◦C, at a rate
of 5 ◦C min−1.

2.3. Measurement of the Thermal Conductivity

The thermal diffusivity was determined from the analysis of temperature map videos
captured using a thermal imaging IR camera, FLIR A300 with a high magnification lens
(25 µm resolution). Figure 3 displays the two set ups for the measurement of the transverse
(though-thickness) and longitudinal (one of the in-plane directions) thermal diffusivity. For
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the measurement of the transverse diffusivity, the fabric was placed on the hot plate (Fisher
Scientific 280 mm × 280 mm Digital Hotplate), covered by the silicone rubber diaphragm
and secured in place using a weight on the top (Figure 3a,b). The camera faced the free thin
side of the fabric as shown in Figure 3a. For the measurement of the longitudinal thermal
diffusivity, the fabric was partly placed on the hot plate and was partly left “hanging” out
of the plate as in a cantilever plate set up, with a thin support at the end so the fabric would
remain flat during the experiment. The camera faced the free thin side of the fabric between
the hot plate and the support.

Initially, the hot plate was at room temperature when the materials were assembled on
top of it. To setup the camera and find the correct focus point, a piece of paper was used to
not preheat any of the materials. The location was then marked so the fabric could be placed
onto the hot plate in the correct position and was not preheated before the experiment began.
During the experiment, the hot plate was heated from room temperature, Troom = 20 ◦C, to
100 ◦C, mimicking the conditions in preforming where heating to 90–100 ◦C is required to
activate the binder. The temperature images from the IR camera were video recorded at a
frame rate of 30 Hz. All post-processing was carried out using the FLIR Tools+ software.
The hot plate temperature was monitored using type-K thermocouples and recorded on
a PICO thermocouple datalogger. For each type of fabric and conductivity measurement,
2–3 repeat experiments were carried out. The following heat transfer equation was applied
for the fabric face opposite the camera:

∂T
∂t

=
ki

ρcp

∂2T
∂x2

i
+

h
ρcpl

(Ta − T) (2)

where T is temperature, Ta is the ambient temperature, t is time, xi is the dominant direction
of heat flow, the transverse direction xT for Figure 3a,b to measure the through-thickness
transverse conductivity kT, and the longitudinal direction xll for Figure 3c to measure
the longitudinal conductivity kll. ρ is the fabric density, calculated from the areal density
of fabric, ρa, divided by the fabric thickness as measured during the experiment with
a micrometer and the IR camera photographs. While it is expected that the fabric is
uncompressed in the measurement of the longitudinal conductivity, it is compressed in the
measurement of the transverse conductivity. The fabric volume fraction is also calculated
from its density, considering that it consists of carbon fiber (ignoring the stitch and binder
mass) of a density of 1760 kg m−3. cp is the specific heat capacity of the fabric measured
from the DSC experiments. h is the heat transfer coefficient between the fabric and the air
and l is the boundary layer length of this heat transfer due to natural convection.

Equation (2) is discretized following the time implicit finite volume/finite difference
technique [34–36] yielding:
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where superscripts n and n + 1 are the previous and current times, ∆t is the timestep
between n + 1 and n times, and subscripts j − 1, j, j + 1 (or their midpoints j + 1/2, j − 1/2)
denote successive discrete points in the xi axis or the variable T at those locations. In general,
triads of points were selected in the transverse direction (through-thickness) within the
fabric and the silicone rubber diaphragm, as depicted in Figure 4a, or in the longitudinal
direction, as depicted in Figure 4b, in images of temperature maps to use Equation (3) at
different times in the temperature map video obtained from the IR thermal camera. The
temperatures at these points were obtained, so an X-Y plot was constructed according
to Equation (3):

Y =
Tn+1

j − Tn
j

∆t
,→ X =
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Then, Equation (3) was linearly fitted to obtain the thermal diffusivity ki/ρcp from the
gradient of the line, where a constant rate of heat loss to the ambient environment was
assumed represented by the intercept of the linear fit. Using the cp value obtained from the
DSC experiments, the transverse and longitudinal thermal conductivities were determined
from the transverse and longitudinal thermal diffusivities, respectively. According to the
discretization method in Equation (3), the method of determining the thermal diffusivity
(and hence thermal conductivity) is second-order accurate with regard to the space interval
between two consequent points in each triad of points j − 1, j, j + 1 selected for the
numerical analysis.

3. Results and Discussion
3.1. Results of Specific Heat Capacity

Figures 5 and 6 present the results of the DSC experiments in the form of specific
heat capacity, cp, as a function of temperature. The results clearly show an almost lin-
ear relationship of the specific heat capacity as a function of temperature for most parts
of each curve. The dip at the end of the cp graphs indicates the end of the test a lit-
tle before 140 ◦C. The silicone rubber seems to have the highest cp value, varying from
1.3 J g−1 K−1 at 30 ◦C to 1.4 J g−1 K−1 at 138 ◦C (Figure 5a), which agrees with the litera-
ture [37] reporting cp = 1.3 J g−1 K−1 at room temperature for a silicon rubber of density
1100 kg m−3. The unidirectional NCF exhibits the lowest cp, varying from 0.12 J g−1 K−1

at 30 ◦C to 0.25 J g−1 K−1 at 138 ◦C (Figure 5b). This agrees with the measured low cp
value of 0.1 g−1 K−1 at room temperature for pure graphite [38]. As fabrics are formed in
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biaxial stitched or woven structures, more air is incorporated in the structure of higher
cp = 1 J g−1 K−1 [39] than graphite, increasing the overall cp value of the fabric. NCF300-
biaxial has a cp varying from 0.67 J g−1 K−1 at 30 ◦C to 0.82 J g−1 K−1 at 138 ◦C (Figure 5c).
According to the material specifications, the polyester stitch has a glass transition of 80 ◦C
and melting point of 260–270 ◦C, and the binding agent has a melting point of 110 ◦C. No
endothermic effects indicating glass transition of the stitch or melting of the binder are
visible in the DSC curves, which may be due to the fact that the amount of binder (below
5 wt%) and stitch in the sample pan on the DSC instrument are negligible in their effect on
heat flow.
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Figure 6. Results of the specific heat capacity from DSC experiments of (a) plain woven fabric,
(b) 4 × 4 twill woven fabric, and (c) 5H satin woven fabric.

The plain weave has a cp varying from 0.78 J g−1 K−1 at 30 ◦C to 1 J g−1 K−1 at
138 ◦C (Figure 6a). The 4 × 4 twill weave has a cp varying from 0.57 J g−1 K−1 at 30 ◦C to
0.7 J g−1 K−1 at 125 ◦C (Figure 6b). The 5H satin weave has a cp varying from 0.75 J g−1 K−1

at 30 ◦C to 0.94 J g−1 K−1 at 138 ◦C (Figure 6c).

3.2. Results of Thermal Conductivity

All results of thermal conductivity are summarized in Table 1. First of all, the analysis
for the longitudinal thermal conductivity parallel to the fibers of one layer of NCF300-
biaxial is presented in Figure 7, with the X,Y axes of the plot defined by the relations in (3a).
Triads of points were selected in the bottom ply as depicted in Figure 4b, where parallel
horizontal fibers were facing the camera. The linear fit of Equation (3) in Figure 7 yields an
elongational thermal diffusivity of 6.8 × 10−6 m2 s−1, which after substituting the density
and specific heat capacity values yields a value for the elongational thermal conductivity
of NCF300-biaxial: kll = 2.9 ± 0.4 W m−1 K−1 (standard error calculated from three repeat
experiments). Taking the value of the axial thermal conductivity of T-300 carbon fibers as
kf,a = 8.4 W m−1 K−1 [31,39–43] and a measured Vf = 0.35 (via burn off tests), the rule of
mixtures yields a theoretically calculated kll = 2.94 W m−1 K−1, which is very close to the
experimental value, also taking into account the experimental errors.



J. Compos. Sci. 2022, 6, 155 7 of 11

Table 1. Thermal conductivity values for all fabrics of this study determined from the analysis of the
experimental data of thermal map videos and from theoretical models using Equation (1) and the
rule of mixtures for the prediction of the transverse and elongational conductivity, respectively.

Thermal Conductivity (W m−1 K−1) NCF300-Biaxial Plain Weave 4 × 4 Twill Weave 5H Satin Weave

kT experimental 0.070 ± 0.007 0.05 ± 0.02 0.04 ± 0.02 0.004 ± 0.003
kT theoretical 0.063 0.069 0.057 0.065

kll experimental 2.9 ± 0.4
kll theoretical 2.94
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The next step is the determination of the transverse conductivity for all fabrics, the
analysis of which is presented in Figure 8 and the results are presented in Table 1. Starting
with NCF300-biaxial in Figure 8a, a transverse thermal diffusivity of 0.15 × 10−6 m2 s−1

is determined from the gradient of the linear data fit, yielding a thermal conductivity of
kT = 70 ± 7 mW m−1 K−1(standard error calculated from three repeat experiments). Em-
ploying Clayton’s Equation (1) and substituting the values kf,a = 8.4 W m−1 K−1 [31,39–43],
kf,t = 0.84 W m−1 K−1 [31,40,44], and air as the matrix with km = 26–34 W m−1 K−1 in the
temperature range of 30–140 ◦C [45], the theoretical value for the transverse conductivity
of NCF300-biaxial was found to be: kT = 63 mW m−1 K−1. Comparing our thermal conduc-
tivity values to those of El-Hage et al. [33], our elongational conductivity is lower, but ours
refers to one ply with fibers parallel to the face opposite the thermal camera. Considering
that our total NCF300-biaxial is at 0/90 orientation, the overall in-plane conductivity is the
average of kll and kT values (uncompressed), yielding 1.45 W m−1 K−1, which is similar
to that measured in the literature [33]. Our kT values are lower than El-Hage’s et al. [33],
where the latter found kT = 0.11 W m−1 K−1 for a six-layer NCF stack, but are closer to the
theoretical values of Clayton’s model than El-Hage’s values. Furthermore, differences exist
between NCFs with regard to the frequency and type of stitch, resulting in different size
voids or eyelets at the locations of the stitch entering the fabric.

Figure 8b presents the analysis for yielding the transverse thermal conductivity of
the plain weave in this study determined as kT = 0.05 ± 0.02 W m−1 K−1 (standard error
calculated from two repeat experiments), which is lower than that of the NCF300-biaxial
and lower than the prediction of Clayton’s model presented in Table 1 for an equivalent
0/90 ◦ fabric with the same fiber fraction as the plain weave, Vf = 0.42. It is clear that
the large voids present at the yarn crossover points of the uncompressed plain weave
(with such low Vf) result in low transverse thermal conductivity and create a gap between
the experimental and theoretical values. Moreover, a large data scatter in relation to the
linear fit is observed in Figure 8b compared to Figures 8a and 7 and a high experimental
error between the repeat experiments is also observed. This scatter was also observed
in the measurements of the thermal conductivity of thermoelectric fabrics using thermal
maps [34] and attributed to the fact that the j − 1, j, and j + 1 numerical location points
of the discretized Equation (3) were distributed in the mesoscopic scale of the fabric [46],
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hence, each point may be located in a macropore between yarns or inside a yarn or at other
intermediate locations. So, the individual temperature measurements do not represent
the composite cross-section as a continuum but individual components of the mesoscopic
structure. Nevertheless, it is considered that the best fits through each dataset represent an
average thermal conductivity for the continuum.
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Figure 8c presents the analysis for the 4 × 4 twill weave resulting in
kT = 0.04 ± 0.02 W m−1 K−1 (standard error calculated from two repeat experiments), which
is similar to the transverse thermal conductivity of the plain weave, given similar issues of
void space in the loose crossover regions. It is also compared to a higher theoretical value
of kT = 0.057 W m−1 K−1 for the 4 × 4 twill weave using Clayton’s model (Table 1), the
difference again being due to the lack of a detailed microstructural pattern in Clayton’s
model. The 5H satin weave (Figure 8d) had a surprisingly low transverse conductivity
from the analysis of the temperature maps, kT = 0.004 ± 0.003 W m−1 K−1 (standard error
calculated from two repeat experiments), which was confirmed from the analysis of the
data from other triads of transverse locations in the fabric. The reason for this might be that
the crossover pattern creates a much looser structure than an equivalent stitched fabric. In
the case of the 5H satin weave, it seems that the long 0◦ yarn regions over four 90◦ yarns
leave a long gap from the hot plate, which dramatically reduces the rate of heat conduction
and, hence, the transverse thermal conductivity of the overall fabric.

It must also be noted that the heat conduction measurements were performed on a
single layer of each fabric, in direct contact with the flat hot plate and the flat diaphragm,
which leaves larger gaps compared to large stacks of fabrics which would benefit from the
nesting of yarns and other microstructural features that would increase the overall number
of contact points and contact area between individual fabric layers, yielding higher values
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of transverse thermal conductivity. Indeed, this was observed by El-Hage et al. [33] when
they increased the number of fabric layers in the stack, especially when they secured the
assembly with through-thickness stitching in 3D fabric architectures.

4. Conclusions

The heat transfer properties of single play fabrics were measured using DSC to deter-
mine the specific heat capacity and temperature maps from the video of an IR thermal imag-
ing camera to determine the longitudinal (parallel to fiber) and transverse (though-thickness
of fabric) thermal conductivity. DSC in the temperature range of 30–138 ◦C yielded cp val-
ues in the corresponding range of 1.3–1.4 J g−1 K−1 for silicone rubber (used as diaphragm
material in preforming) and 0.12–0.25 J g−1 K−1 for the unidirectional carbon NCF, agreeing
with the data in the literature [37,38]. Biaxial carbon woven fabrics exhibited higher cp
values than the unidirectional NCF, in the corresponding range of 0.67–0.82 J g−1 K−1 for
the NCF300-biaxial, 0.78–1 J g−1 K−1 for the plain weave, 0.57–0.7 J g−1 K−1 for the 4 × 4
twill weave, and 0.75–0.94 J g−1 K−1 for the 5H satin weave.

One may conclude that the novel technique of thermal map analysis is appropriate
for the determination of the thermal diffusivity at the continuum level from the linear
fit of the experimental data, even if there is considerable data scatter due to the discrete
locations of the data points distributed in the mesoscopic scale of the fabric architecture
where individual points might correspond to voids or particular features of the yarn or
tow pattern. In particular, the determined value of the elongational thermal conductivity
kll = 2.9 ± 0.4 W m−1K−1 of the NCF300-biaxial carbon fabric agreed well with the theoret-
ical value calculated employing the rule of mixtures. The transverse thermal conductivity
of the NCF300-biaxial carbon fabric is kT = 0.070 ± 0.007 W m−1K−1, 41 times lower than
the elongational thermal conductivity following the same trend as the predictions of the
theoretical modeling, where the Clayton model was employed for kT.

Comparing the different fabric architectures, the effect of voids due to yarn crossovers
in woven fabrics was evident in the measured values of both cp and kT. A unidirectional
NCF fabric exhibited the lowest cp value, close to that of pure graphite. The rest of the
biaxial fabrics, NCF or woven, had higher cp values due to the air trapped in the voids
of their structure. In terms of the measured transverse conductivity, all biaxial carbon
fabrics, especially the woven fabrics that have more voids due to the yarn crossover regions,
exhibited low thermal conductivity: 0.05± 0.02 W m−1K−1 for the plain weave, 0.04 ± 0.02
0.04 ± 0.02 W m−1K−1 for the 4 × 4 twill weave, and 0.004 ± 0.003 W m−1K−1 for the 5H
satin weave. This was attributed to the fact that they were all laid as single ply leaving
large gaps between the fabric and the hot plate at or between the yarn crossover regions. It
is also noticed that the percentage standard error in the repeat experiments to determine
the transverse thermal conductivity is higher for the woven fabrics, 40–75%, than for the
NCF-biaxial fabric, 10%. It is expected that stacks of fabrics would have higher transverse
conductivity due to beneficial contributions from nesting effects. The Clayton model
predictions of kT demonstrated the best agreement for the NCF300-biaxial fabric which
contained the smallest number of voids under compression, especially between the flat
surfaces of the hot plate and the rubber diaphragm.
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