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Abstract: The MgO nanolayer effect on the microstructure and magnetic characterizations added
into Fe/Pt stacked films directly deposited onto MgO (001) single-crystal substrates at the reduced
temperature of 380 ◦C using electron-beam technology was investigated in this present work. The
nanograin isolation and exchange decoupling for the FePt–MgO system is attributed to the magnetic
FePt isolated grains that originate from MgO atoms with a spreading behavior mostly along grain
boundaries owing to its weaker surface energy than that of a single Fe or Pt element. The grain and
domain size decreased when the MgO nanolayer was applied due to the interpenetration of MgO and
created a strain-energy variation at the MgO/FePt interface. Measuring angular-dependent coercivity
indicates a general trend of a domain-wall motion, and changes to the rotation of the reverse-domain
model occurred as the MgO nanolayers were added into FePt films. The intergrain interaction is
confirmed by the Kelly–Henkel plot, which shows that there is strong intergrain exchange coupling
(positive δM type) between neighboring grains in the continuous Fe/Pt stacked films without MgO
nanolayers. In addition, a negative δM type occurred when the Fe/Pt stacked films were added into
MgO nanolayers, showing that the MgO nanolayer can be applied to adjust the force of intergrain
exchange coupling between the adjacent FePt nanograins, and the addition of MgO nanolayers change
into magnetic decoupling; thus, there was a formed dipole interaction in our claimed FePt–MgO
composite structure of stacked ultrathin films at a reduced temperature of 380 ◦C.

Keywords: FePt nanocomposite; MgO nanolayer; stacked ultrathin films; magnetic decoupling/
isolation; angular-dependent coercivity; Kelly–Henkel plot

1. Introduction

Ordered FePt (CuAu (I)- L10 type) compound has undergone significant development
over the past few decades due to its suitable material properties for magnetic storage
media containing mostly grand-saturation magnetization (Ms~1100 emu/cc), a grand-
anisotropy field (Hi~120 kOe), grand-energy products (BH)max, a huge magnetocrystalline
anisotropy constant (Ku~108 erg/cm3), high Curie temperature (Tc~480 ◦C), and excellent
environmental stability [1–13]. Mostly, the properties of high Ku Fe-based compounds could
retard the phenomenon of superparamagnetic effect and keep enough thermal stability to
resist thermal fluctuation, even with a desirable grain size down to the nanometer scale,
which means Fe-based alloys have future potential applications, such as in dense-ensemble
spin systems such as electronic and magnetic storage devices with recording densities
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beyond 10 Tbits/in2 [14,15]. Production of the L10 ordered FePt composite films requires
enough high-temperature processing (usually higher than 500 ◦C), such as post-deposition
annealing or in situ substrate heating during disordered films deposition, to endure the
activation energy barrier from a disordered face-centered cubic (fcc) to an ordered face-
centered tetragonal (fct) L10 phase-transfer process. The ferromagnetic compound with a
chemically ordered state usually displays a strong intergrain exchange coupling between
the neighboring grains owing to the large-grain growth during the ordering/thermal
process. Therefore, the nanocomposited and nanogranular structures formed at low-
temperature processes have received significant attention due to the decoupling of the
intergrain exchange coupling that could improve the signal-to-noise ratio; hence, they have
been considered more suitable for next generation ultra-high-density magnetic storage
media and novel miniature devices [16–27].

Reviewing previously published articles has shown the claims of the method of
bottom or top additive layers; the doping effect of pure metal, nitride, or oxides is an
effective way to adjust the crystalline orientation, microstructure, magnetic coupling,
and chemical ordering of the L10 ferromagnetic thin films to satisfy the needs of the
manufacturing process, especially in technologically ferromagnetic composites for modern
multifunctional devices [28–48]. Insoluble oxide addition into magnetic FePt can provide
a better grain/domain size control and with a weakened intergrain exchange coupling.
In addition, MgO doped into the FePt alloys has been reported not only to enhance the
ordering temperature, but also to cause the preferred crystal orientation with the magnetic
easy axis to change from the out-of-plane to in-plane film direction [49–55]. For the purpose
of decreasing the media noise, it is necessary to weaken the intergrain exchange coupling
between the grains and suppress the grain growth in magnetic continuous media.

In this present work, a straightforward and simple method was demonstrated to ob-
tain isolated FePt nanograins with (001) orientation when the addition of MgO nanolayers
was used to form FePt self-organized nanogranular films for ultra-high-density magnetic
storage media. This study also shows significant differences without and with MgO ad-
ditive nanolayers into FePt stacked ultrathin films on the microstructure and magnetic
characteristics at a reduced deposition temperature of 380 ◦C. Compared with our previous
works, without any buffer layer, a thinner thickness of an Fe and Pt stacked layer were
designed and assisted in this present study to decrease the formation temperature of the L10
ordered FePt composite transformation [56,57]. The corresponding magnetization reversal
mechanism and intergranular exchange coupling of the claimed FePt–MgO composite
structure with stacked ultrathin films were also systematically investigated. Particularly,
the relationship between micro/nanostructure and the magnetization reversal process (co-
ercivity mechanism) is discussed in detail for L10 ordered FePt–MgO films and this similar
concept could become the viewing reference point for recent developments in the general
design rules and specific technical methods in related anisotropic alloy nanocomposite rare
earth permanent films.

2. Experiments and Composite Film Structures

Nanocomposited Fe/Pt stacked structures made up of [Fe (0.5 nm)/Pt (0.5 nm)]10
ultrathin films were deposited under a vacuum of 6.67 × 10−6 Pa by electron-beam technol-
ogy (homemade) directly on the (001) magnesium oxide substrates without any buffer layer.
Two MgO layers were symmetrically evaporated atop the [Fe/Pt]3 and [Fe/Pt]7 bilayers
without introducing any oxygen gas, and their thickness was fixed at 1 nm. All films
were fabricated at a reduced temperature of 380 ◦C with an evaporation rate of around
0.02 nm/s. The preparation process of Fe/Pt stacked ultrathin films in this study was with
the purpose of lowering the diffusion distance of Pt and Fe atoms into the L10 ordered
crystal lattice, whose concept is the same as the atomic arrangement in the unit cell via an
artificial atomic-scale stacked formation [58–60]. The field emission electron probe X-ray
microanalysis (FE-EPMA, JEOL, Tokyo, Japan) was used to confirm the chemical composi-
tion of the binary FePt alloy, which was Fe48Pt52. The X-ray diffraction (XRD, PANalytical,



J. Compos. Sci. 2022, 6, 158 3 of 16

Almelo, The Netherlands) with Cu Kα radiation (λ = 1.54 Å) was used to identify the
crystalline structure, and the receiving slit was set to 0.1 mm, and the time per step was
3 s with a scan speed of 0.01◦ 2θ/s during the XRD measurement with the proportional
counter. The Zeiss Supra field emission-scanning electron microscope (FE-SEM, Dresden,
Germany), equipped with an Oxford Instruments NordlysNanoTM camera was used to
observe the surface microstructure of the films. It could provide a sufficient number of
grains for the initial estimate of grain size in the scan area with 3 × 3 µm2, and the beam
was with a step-moved size of 10 nm. A plane-view microstructure was used to measure
the grain orientation distribution and grain size distribution quantitatively. The distin-
guishing feature of transmission electron microscopy (TEM, JEOL, Tokyo, Japan) was used
to observe the crystalline nanostructure and corresponding nanograin sizes, respectively.
The vibrating sample magnetometer (VSM, Lake Shore 7400, Westerville, OH, USA) with a
maximum applied field of 20 kOe was used to identify the magnetic characteristics at room
temperature. The Dimension 3100 atomic force microscope (AFM) equipped with magnetic
force microscopy (MFM) mode (Veeco Instruments) has been used to observe the surface
roughness and magnetic domain morphology.

The following comparison will be focused on the pure Fe/Pt stacked film structures
without and with addition of two period MgO nanolayers (hereafter denoted as FePt–MgO)
in order to investigate the variable defects at the interfaces between MgO and Fe/Pt stacked
ultrathin films on the microstructure and corresponding magnetization reversal mechanism
of the claimed FePt–MgO composited nanogranular films.

3. Results and Discussion

Figure 1 shows the FE-SEM surface micrograph of the FePt films (a) without and
(b) with a total of 2 nm additive MgO layer obtained by secondary electron image (SEI)
mode, respectively. Pure FePt film without the MgO additive nanolayer was connected,
and the microstructure seems like a continuous film, as shown in Figure 1a. In addition, the
surface micrograph changes from continuous to nanogranular microstructures in the FePt
with the addition of MgO nanolayers as shown in Figure 1b. It confirms that the continuous
formed state of the pure FePt film is disrupted by the addition of the MgO nanolayers,
leading to the generation of nanogranular FePt composited thin films.
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Figure 1. FE-SEM surface micrographs of the FePt films (a) without and (b) with a total of 2 nm MgO
additive nanolayers were obtained by secondary electron image (SEI) mode, respectively.

Figure 2 shows the bright-field TEM images of the FePt films (a) without and (b) with
MgO additive nanolayers. TEM analysis was employed to examine the crystallographic
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orientation and microstructure of the films in detail. A clear variation in the surface
micrograph of the FePt is displayed in the structures with MgO additive nanolayers. The
surface micrograph obviously varies from continuous to nanogranular structures as the
MgO nanolayers are added into the FePt. The images reveal that the average grain size
of FePt and FePt–MgO are about 15 and 9 nm, respectively. It can be observed that the
reduced grain size tends to be more uniform with addition of the MgO. The FePt films were
grown initially with the island growth mode at this total film thickness [61]. The strongly
faceted islands of FePt grains are observed with large size distribution. This implies that a
number of small grains were formed in the initial stage of the film deposition, and then
they connected to form big grains with continuous morphology. The primary facet planes
of FePt are (100) and (010) and alignment with the direction of MgO [100], and the minor
facet plane is (110), indicating that the surface energy of the (100) planes is the lowest.
The stripe contrast observed in the FePt–MgO grains are the Moiré pattern generating
from the lattice parameter difference between FePt and MgO, which is generated from
the lattice mismatch between FePt and MgO with aFePt = 0.40 nm and aMgO = 0.42 nm,
respectively [62]. Figure 2b shows that the FePt grains are dispersed in the MgO matrix. The
reduction of the grain size should be mainly due to the MgO additive nanolayers/grains
between the Fe and Pt layers/grains acting as barriers, which have prevented the diffusion
and migration of the Fe and Pt atoms, and thus the coarse grain is limited. The surface
energy of Fe (2.9 Jm−2) and Pt (2.7 Jm−2) are much greater than that of MgO (1.2 Jm−2) [63].
This describes that MgO atoms could lightly diffuse into the magnetic FePt grains along
their boundaries and create a strain-energy variation at the interface due to its much smaller
surface energy than that of pure Pt or Fe atoms [64].
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MgO additive nanolayers, and the inset is the corresponding selective electron diffraction pattern
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thin films.

The inset shown in Figure 2b is the electron diffraction pattern (EDP) of FePt–MgO
films. The selected area EDP shows that the orientation relationship between the FePt
grains and the MgO substrate is along the MgO [100]//FePt [100] direction, indicating that
the FePt–MgO films are (001) preferred orientation even after the FePt with the addition of
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MgO process. In both FePt and FePt–MgO systems, highly textured (001) FePt films with
a L10 crystal structure were formed. In the case of the FePt–MgO system, the presence of
twins will introduce some local misalignments of the growth axis from the [001] direction.
The surface roughness will be greater in the FePt–MgO system due to existing MgO/FePt
interfaces and the thicker FePt–MgO composited film, indicating a more severe intermixing
of the FePt–MgO alloy composite. Figure 2c shows cross-sectional TEM micrographs
of nominally 12 nm thick FePt–MgO films grown on MgO(001) substrate. Remarkably
different growth morphology is obtained and confirmed in the FePt–MgO system. Typically,
the pure FePt with 10 nm thick film is continuous. In the case of the FePt–MgO film, the film
micrograph has partially coalesced elongated islands with average real thickness equal to
11 ± 1 nm. This behavior shows an island growth case whereby the initially grown grains
extend laterally with increasing thickness, and finally coalesce into a continuous state.
Meanwhile, MgO nanolayers added into FePt that formed inclined twins and stacking
faults on the {1 1 1} plane, thus causing the disrupted grain growth which is presented here.

The out-of-plane (perpendicular) and in-plane (parallel) hysteresis curves for FePt
films without and with MgO additive nanolayers are shown in Figure 3a,b, respectively.
The magnetic easy axis is constantly perpendicular to the film plane, and the perpendicular
anisotropy is clearly demonstrated for both films. The related magnetic characteristics
including remanent squareness ratio (Mr⊥/Ms⊥), saturation magnetization (Ms⊥), and
out-of-plane coercivity (Hc⊥) values are listed in Table 1 in detail. The coercivity value
of the FePt thin films reduced from 7500 to 5100 Oe (FePt–MgO). The saturation mag-
netization (Ms⊥) and remanent squareness ratio (Mr⊥/Ms⊥) values were reduced and
ranged from 825 to 687 emu/cm3 (FePt–MgO) and 0.99 to 0.91 (FePt–MgO), respectively.
The reduction of the squareness ratio may indicate that the intergranular interactions of
FePt are less magnetically coupled with the addition of the MgO nanolayer and could
prove that MgO atoms penetrated into FePt magnetic grains through the grain boundary to
decouple the intergranular interaction between the FePt neighboring magnetic grains. The
magnetic characteristics including the magnetic reversal mechanism and the corresponding
intergranular exchange coupling of the designed FePt–MgO composite-stacked ultrathin
films are compared and discussed below. The difference of magnetic characteristics for
FePt–MgO may be due to the addition of MgO acting as nucleation sites to prevent the
domain-wall motion and varying the coercivity. The other difference may be induced by the
interlayer diffusion that changes the film composition, thus decreasing the film coercivity
of FePt–MgO. Actually, the coercivity of L10 FePt alloy is strongly dependent on the degree
of chemical ordering. Comparison with the XRD results will be discussed below, and the
variation of FePt film coercivity with the MgO additive nanolayers is consistent with the
variation of the chemically ordering degree.

The angular dependence of coercivity is for the purpose of examining the magnetization
reversal behavior of the FePt films without and with MgO additive nanolayers, as shown
in Figure 4. Shown in Figure 4 are the ideally theoretical curves, defining two boundary
conditions of rotation of the Stoner–Wohlfarth (S–W) and domain-wall motion types, respec-
tively. For an ideal domain-wall motion type, the coercivity at the angle θ is proportional to
1/cos(θ), where θ is the angle between the easy axis of the uniaxial magnetic anisotropy and
its applied field. For the S–W type with the rotation mechanism, the transformation of the
coercivity reduces with enhancing θ. The angular dependence of the coercivity curve for the
FePt without the MgO nanolayer showed typical peak behavior owing to the continuous film
micrograph that existed in the pure FePt films. In this present work, the magnetic alignment
of the easy axis perpendicular to the film plane is near to the Bloch-like domain walls. This
significantly enhances the propagation of the domain walls while the surface micrograph of
pure FePt films is continuous, as shown in Figures 1 and 2. When the FePt films were added
with MgO nanolayers, the curve was near to the rotation type, and the magnetization reversal
behavior became more independent. The above results indicate an inclination in progress
lessened domain-wall motion behavior, but an enhanced rotation type in the magnetization
reversal behavior with the addition of the MgO layer into the FePt films, which may reduce the



J. Compos. Sci. 2022, 6, 158 6 of 16

intergranular interaction between the FePt neighboring magnetic grains. As for the obtained
results mentioned above, the magnetization reversal mechanism and corresponding coercivity
mechanism of the FePt–MgO composite alloy case could be simply adjusted by the total
content of the MgO nanolayer.
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Table 1. FePt films without and with MgO additive layers listed the out-of-plane coercivity (Hc⊥),
saturation magnetization (Ms⊥), and remanent squareness ratio (Mr⊥/Ms⊥) values, respectively.
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(Ratio)
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Figure 5 shows a Kelly–Henkel plot (δM measurement) for the FePt films without and
with MgO additive nanolayers, respectively. The δM measurement has been applied to
distinguish the intergrain interaction in magnetic materials, which is defined as [65]:

δM = MDCD(H) − [1 − 2MIRM(H)] (1)

where MDCD(H) and MIRM(H) are the normalized dc-demagnetization remanence and
isothermal remanence as a function of the applied magnetic field, respectively. The positive
δM type shows strong ferromagnetic intergrain interactions. In addition, the negative δM
type shows dipole intergrain interactions associated with incoherent rotation. It can be
clearly observed from Figure 5 that FePt films without MgO addition showed a positive δM
type (strong ferromagnetic intergrain interaction), while FePt films with the MgO additive
nanolayers showed only the negative δM type at all applied magnetic fields (decouple
interaction). This describes that the independent moment rotation of the FePt films is caused
by the MgO atoms being penetrated into FePt magnetic grains via the grain boundary,
leading to the reduction of exchange intergrain interactions between neighboring magnetic
grains. The important parameter δM value is well known to reflect the noise of magnetic
recording media; this value variation can be adjusted easily by the total content of MgO in
our claimed FePt–MgO composite case, which decides the intergrain interaction for the
ferromagnetic composite alloy system.
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The obvious change of the perpendicular magnetization behavior in FePt films without
and with MgO additive nanolayers is clearly identified by the initial magnetization loops
as shown in Figure 6a. The normalized initial magnetization loop will be used to clarify
the magnetization reversal mechanism as shown in Figure 6b. For the FePt films with the
addition of MgO nanolayers, it became much harder to saturate compared with the pure
FePt films at the same applied magnetic field. If the magnetization reversal behavior is
near to rotation of the Stoner–Wohlfarth (S–W) type, the single domain magnetic grains
only reversed their magnetization behavior when the external applied magnetic field
exceeded the anisotropy energy [66–70]. Thus, the pure FePt film without addition of MgO
nanolayers is close to the domain-wall motion type of initial magnetization loops, and FePt
film with addition of MgO nanolayers is close to the typical nucleation type of the initial
magnetization loop.

The coercivity of ferromagnetic substances is strongly correlated with their anisotropy
field and microstructure. Consequently, the temperature dependence of coercivity, Hc(T) of
a ferromagnetic material can be described as [71]:

Hc(T) = αKαexHi(T) − NeffMs(T) (2)

where αK, αex, and Neff are represented by microstructure parameters and are associated
with the nonideal microstructure of the ferromagnetic material. Hi is the anisotropy field
and Ms is the saturation magnetization. The parameter αK indicates the effect of the nonideal
surface micrograph of grains on the crystal anisotropy. The parameter αex considers the
effect of the exchange coupling between neighboring FePt nanograins related to the δM
measured type. The effective demagnetization factor Neff is caused by enhanced stray
fields at the corners and edges of the magnetic grains. We believe that the microstructure
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(αex) and anisotropy field (Hi) parameters should act as the effective roles related to the
coercivity variation with the addition of MgO into FePt in this composite case. Our claimed
FePt–MgO (001) nanogranular film with large coercivity (5.1 kOe) satisfies the requirements
for the future application of high-density magnetic storage devices.
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Figure 7 shows the surface micrograph and magnetic domain structures of the FePt
films (a,c) without and (b,d) with MgO additive nanolayers, which were directly deposited
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on MgO substrates and measured with the AFM and MFM modes. The surface micrograph
of the pure FePt film shows the continuous film micrograph, which is consistent with
FE-SEM and TEM images as shown in Figures 1 and 2. It indicates that the interconnected
films formed by connected-together grains, and generated adjacent magnetic domains
in the pure FePt films as shown in Figure 7a. While adding the MgO nanolayers, the
grain micrograph in the AFM image changes from the continuous film interconnection
to a nanogranular structure, which is much smaller than that observed in pure FePt film
as shown in Figure 7b. The addition of the MgO nanolayers should have prevented the
interconnection FePt network from being formed. It indicates that the continuous lateral
growth of the FePt film is disrupted by the addition of the MgO nanolayers and leads to
the generation of the nanogranular structure. The ac-demagnetized MFM signal image was
performed from the same area that was measured by the AFM equipment. Compared to
the domains obtained in the MFM images as shown in Figure 7c,d, the magnetic domain
size is much greater than the grain interconnection obtained in the AFM image. In addition,
the mazelike domain was observed in pure FePt film, and the domain size was reduced
with the enhancing of the MgO content.
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At the same time, most of the boundary between the grains in the AFM still existed
and were observed in the MFM image. This suggests that most of the grains in the FePt–
MgO film are noninteraction single domains. The noninteraction nanogranular films are
very close to the Stoner–Wohlfarth domain type [72]. Thus, the magnetization reversal
mechanism could be controlled and adjusted from the domain-wall motion in pure FePt
film to a nanogranular single domain rotation mechanism for our claimed FePt–MgO case
as shown in Figure 4. The coercivity of the FePt–MgO composite case may be attributed to
the non-interconnection mechanism of the single domains, although the coercivity value
is still smaller than that of the theoretical calculation from the Stoner–Wohlfarth type.
The magnetic hard FePt-based films with high magnetocrystalline anisotropy have been
attracting much attention for application in modern magnetic devices since their critical
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magnetic grain size for the superparamagnetic limit can be reduced to the nanometer scale.
It is well known that a finer magnetic cluster diameter is favorable for the ultra-high-density
magnetic storage media.

Figure 8 shows the in-plane XRD patterns for FePt film structures (a) without and
(b) with MgO additive nanolayers, respectively. Figure 8c,d is the related slow θ–2θ scan
curves of the FePt(002) peak in Figure 8a,b, respectively. In addition to the mainly (002)
peak, L10-ordered (001) superlattice peaks of the FePt phase were clearly observed for both
films. The unlabeled sharp peaks are owing to the MgO substrate. Only (00n) diffraction
peaks in Figure 8 were observed in the whole diffraction patterns (θ–2θ scan) with a wide
scanning range, evidencing that all FePt films without and with MgO additive nanolayers
have been strongly textured to the (001) planes, and also supporting that the stacked
ultrathin film structures were epitaxially deposited on the MgO substrate. The intensities of
the (002) fundamental and (001) superlattice peaks of the FePt were reduced for FePt films
with MgO additive nanolayers, evidencing the ordering degree of FePt–MgO composite
structured film is influenced by the MgO additive nanolayers. The FePt peaks are relatively
wide for the FePt films with MgO additive nanolayers compared with the pure FePt. On
the other hand, the full width at half maximum (FWHM) of the slow scan peaks of FePt
(002) for FePt with the MgO additive nanolayers is greater than that of pure FePt without
MgO, as shown in Figure 8c,d, showing that the lattice deformation of the FePt films is
caused by inhomogeneous solidification of MgO owing to immiscibility of MgO in the
FePt crystal lattice. These results imply that MgO atoms tend to diffuse into the FePt alloy
via the grain boundary to slightly widen the peak curve of FePt (002). According to the
obtained results mentioned above, which describe that the grain size of the FePt binary
alloy is reduced with the addition of MgO into the FePt phase, this fact is consistent with
the FE-SEM, TEM, and AFM observations.

The disorder–order transformation is dominantly varied by the growth process of
L10-ordered grains that have been reported [73]. The activation energy not only for grain
growth but also for disorder–order transformation plays the important role of the driving
force in the FePt alloy. Hence, the grain growth will be suppressed by the L10-ordering
process. In addition, it has been reported that the ordering process of Fe-based thin films
could be adjusted by atom diffusion [74–77]. The above results indicate that MgO could
partially penetrate into the FePt films, leading to the lattice deformation of FePt structures
consistent with the widening curves of the FePt (002) peak. In this present work, the effects
of additive MgO nanolayers on the magnetic behavior and corresponding magnetization
reversal mechanism into FePt films were displayed and compared, without any fabrication
condition in our claimed FePt–MgO composite structure being varied except for the pure
FePt stacked ultrathin film structures without and with addition of MgO nanolayers.

X-ray reflectivity patterns for the FePt films without and with MgO additive nanolayers
are shown in Figure 9a,b, respectively. It is clearly observed that the amplitude intensities
of the oscillation fringes (Kiessig fringes) of FePt added with MgO nanolayers are getting
lower than those without MgO nanolayers. This also implies that MgO mainly diffuses
into the FePt films along the grain boundaries, and the microstructure refining effect could
be obtained via our claimed additive method of MgO nanolayers into the FePt alloy films.

FePt composited films fabricated at room temperature are a disordered (A1) phase with
a low cubic magnetocrystalline anisotropy. The formation of the ordered (L10) phase usually
needs high-temperature treatment (beyond 500 ◦C). Our work claims a multilayer method
with the addition of MgO nanolayers into FePt stacked ultrathin films is different from the
method of co-sputtering or the co-evaporation technique, and better in obtaining the c-axis
to be highly oriented and perpendicular to the film plane at the reduced temperature of
380 ◦C, which is suitable for future applications in high-density perpendicular magnetic
recording media.
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4. Conclusions

In this article, a straightforward and simple method is claimed, which showed that
addition of MgO nanolayers into FePt stacked ultrathin films could weaken the intergrain
exchange coupling and, thus, provide enough coercivity (5.1 kOe) and satisfy the require-
ments for the modern media devices at the reduced deposition temperature of 380 ◦C. The
angular dependence of the coercivity measurement indicated that with addition of MgO
nanolayers into the FePt stacked ultrathin films, the magnetization reversal mechanism
was observed to adjust from the domain-wall motion type to be closer to the rotation
type that dominated in the FePt–MgO composite films. Thus, the FePt composited film
with addition of MgO nanolayers is effective to act as magnetic nucleation sites in the
FePt films, weaken the intergrain coupling strength, and reduce media noise, which will
be a great advance to develop FePt-based heat-assisted magnetic recording (HAMR) me-
dia with enhanced signal-to-noise ratio in the development of modern applications of
ultra-high-density perpendicular spin electronic nanodevices.
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