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Abstract: In this article, a novel calculation procedure using optimization techniques is proposed to
compute the torsion–shear interaction curves for reinforced concrete (RC) beams. The calculation
procedure is applied to NBR 6118 and AASHTO LRFD standards in order to evaluate their reliability.
For this, some experimental results found in the literature and related to RC beams tested under
combined torsion and shear, as well as results from the combined-action softened truss Model (CA-
STM), are used for comparison. From the obtained results, AASHTO LRFD provisions are found to
–be satisfactorily accurate. The NBR 6118 provisions are found to be consistent with the experimental
results when the angle of the concrete struts is assumed to be variable or equal to the lower bound
value of 30◦, according to model II of the standard. For an angle assumed equal to 45◦, according to
model I of the NBR 6118 standard, the predicted strengths are found to be excessively conservative.
The results demonstrate that formulating the analysis of RC beams under combined torsion and shear
as an optimization problem, as proposed in this article, constitutes an alternative and efficient option.
In addition, the generality of the proposed calculation procedure allows it to be applied to any design
standard to compute the torsion–shear interaction curves for RC beams.

Keywords: reinforced concrete; beam; torsion–shear interaction curves; optimization problem;
NBR-6118; AASTHO-LRFD

1. Introduction

Reinforced concrete (RC) members under high eccentric loadings undergo torsional
moments in addition to shear. Such interaction of internal forces is very common in
structural members, such as spandrel beams and beams curved in plan. In some cases,
interaction loading leads to primary torsion combined with shear, which can be highly
critical for design [1]. Situations in which critical cross-sections must resist primary torques
and shears is common in practice, namely in girder bridges. Figure 1 illustrates the model
of a curved continuous girder in plan with two spans. If the twists are restrained at both
ends, the cross-sections will undergo torque and shear force, even if a redistribution of the
internal forces occur.

Modelling the ultimate response of RC members under combined internal forces is
not an easy task after the cracking stage. However, since the second half of the last century,
analytical models have been proposed to predict the strength of RC members under pure
torsion and, also, under combined torsion. Some of the developed models were based on
the so-called skew-bending approach, firstly proposed in 1968 [2]. Such models considered
the equilibrium state only for the ultimate stage and were mainly calibrated for small
rectangular and solid cross-sections. Models based on the skew-bending approach were
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developed over more than two decades, and were incorporated in some important design
codes, such as the ACI code until 1995. Further developments of such models to predict the
strength of RC members under combined loading were also proposed by researchers [3,4].
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At about the same time, alternative and physically more comprehensive models for
cracked RC members were developed by several authors. Such models are based on the
space truss analogy (STA), which was firstly proposed by Rausch in the beginning of last
century to compute the strength of RC members under torsion [5]. From the 1950s and
1960s, extensive experimental and theoretical research allowed for the refinement of models
based on the STA approach. This allowed researchers to extend and calibrate the models
for both small and large cross-sections (plain or hollow), for cross-sections with arbitrary
geometry, for prestressed members, and for members under combined loading, and also
to predict the full envelope of the load–deformation response. Models based on the STA
approach were developed for RC members under torsion [6–10] and also under torsion
with combined loading, namely combined torsion and bending [11,12], combined torsion
and shear [13–16], combined torsion, bending and axial load [17], combined torsion and
axial force [18,19], as well as for more complex loading conditions [20–25]. Nowadays,
most of the design codes incorporate design rules for torsion (for both pure torsion and
combined torsion) based on STA approaches.

Recently, more advanced analytical models for RC members under torsion and com-
bined loading have also been proposed in the literature [26–30]. However, although these
models have showed to be very accurate, they are not easy to use for practical design, since
they require advanced calculation procedures.

For practice, structural engineers usually apply the clauses from structural design
standards. Most of the torsional and shear standard design rules for RC members are based
on STA approaches (planar truss for shear and spatial truss for torsion). As a consequence
of the development of such approaches over the years, the design rules for torsion and
combined torsion have been successively updated in the design standards. This has been
the case for the American specifications for bridge design (AASHTO LRFD [31]), and also
for the Brazilian standard (NBR 6118 [32]). For the latter, the clauses to compute the shear
strength are based on Mörsch’s truss model and also on empirical models, while the model
to compute the torsional strength is based on the space truss model. For the AASHTO
LRFD standard, the clauses for the shear strength are based on the modified compression
field theory (MCFT), while the clauses for the torsional strength are based on the same
model as NBR 6118.
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To design RC members under combined torsion and shear, or to check the resistance
for a given RC member, the torsion–shear interaction curves constitute a fundamental tool.
However, obtaining such curves from the equations incorporated in the design standards,
mainly based on empirical methods and mechanical models, is not an easy task due to the
complexity of the resulting equations and the difficulty of implementing them to generate
the interaction curves. In spite of this, such interaction curves have been successfully
computed in previous studies for the evaluation of design standard against experimental
results, although the difficulty to compute such curves is often evident [33–36]. Hence, new
and general calculation procedures are still needed to apply the clauses from any design
standard, in order to compute the torsion–shear interaction curves.

The aforementioned motivated the work presented in this article, in which a novel
calculation procedure is proposed to compute the torsion–shear interaction curves. The
novelty lies on the use of optimization techniques to formulate the proposed general calcu-
lation procedure. To the best of the authors’ knowledge, the calculation of interaction curves
using optimization techniques has never been proposed in the literature. The proposed
calculation procedure is applied to the NBR 6118 and AASHTO LRFD standards in order to
evaluate their reliability. For this, some experimental results found in the literature, related
with RC beams tested under combined torsion and shear, are used to compare and evaluate
the NBR 6118 and AASHTO LRFD standards. In addition, the theoretical combined-action
softened truss model (CA-STM) is also used for comparison. The proposed calculation
procedure, which can be implemented to any design standard, was found to be simple and
numerically efficient. It can be used as an alternative procedure to more complicated ones
for the analysis of RC members under combined torsion and shear.

2. Calculation Procedure to Generate Torsion–Shear Interaction Curves
2.1. Statement of the Problem

The aim of the proposed calculation procedure is to compute the resistance of the
critical cross-section for RC beams under torsion, T, combined with shear, V. The interaction
of internal forces is characterized by the ratio T/V.

Let α be an angle, such that:

V = Vmaxr cos(α) (1)

T = Tmaxr sin(α) (2)

where Vmax is the maximum shear strength of the RC cross-section under pure shear force
(with no torsion) and Tmax is the maximum torsional strength of the cross-section under
pure torsion (with no shear). In the previous equations, T and V are the maximum acting
forces that can be resisted by the given section, according to the specific standard. An
internal force multiplier r ≤ 1 is defined as a dimensionless variable and called radius.
This variable is to be determined in order to maximize the internal forces acting in the RC
cross-section.

The problem to calculate the resistance of the RC cross-section for the torsion–shear
interaction, for a given ratio T/V, can be stated as the following optimization problem:

Maximize f (r, α) = r
subject to : S(r, α)j ≤ R(r, α)j, j = 1 . . . J (3)

In Equation (3), the optimization parameter to be maximized is a load multiplier for a
given ratio of acting forces T and V, such that the section attains its maximum resistance
according to the specific standard. Furthermore, f is the objective function to be maximized,
which in this case is the load multiplier. The J inequality constraints, in the form Acting
Force ≤ Strength, represent the various standard clauses limiting the maximum values
for the pair V and T as a function of the strength of the materials (concrete and steel
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reinforcement), the geometry of the cross-section, and the amount and detailing of the
reinforcement. These constraints are detailed later for each of the studied design standard.

Depending on the design standard employed, other design variables need to be
considered in the problem stated through Equation (3). One example of such an additional
design variable is the angle θ of the inclined concrete struts to the longitudinal axis of the
member, which is considered a variable in model II from the Brazilian standard (NBR 6118)
to compute the shear strength.

Figure 2 represents the model used to obtain the torsion–shear interaction curve.
Parameter ri represents the radii which provide the maximum values for the acting torque,
T, and shear force, V, as a function of the angles αi corresponding to the different ratios
T/V. The set of all points defined from ri are used to draw the torsion–shear interaction
curve for a given design standard.
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2.2. Optimization Procedure

To solve the problem stated in Equation (3), Mathcad software [37] was used to
generate the torsion–shear interaction curve. Quasi-Newton was used as the constrained
optimization algorithm. The steps of the proposed calculation procedure to compute the
optimal solution for a given design standard can be summarized as follows:

1. For a given reference beam, enter the following initial data:

• Geometry of the rectangular cross-section: b and h;
• Mechanical properties for steel reinforcement: fyl , fyt and Es;
• Mechanical properties for concrete: fck;
• Detailing and amount of transverse and longitudinal steel reinforcement: Av,

At, Al , s and c. Where b = width of the cross-section (m); h = height of the
cross-section (m); fyl = yielding stress for the longitudinal reinforcement (MPa);
fyt = yielding stress for the transverse reinforcement (MPa); Es = Young’s mod-
ulus for steel (MPa); fck = characteristic concrete compressive strength (MPa);
Av = area of transverse steel reinforcement, considering two legs, to resist the
acting shear force (m2); At = area of transverse steel reinforcement, considering
one leg, to resist the acting torque (m2); Al = area of one rebar of the longitudinal
reinforcement (m2); s = longitudinal spacing between stirrups (m); c = concrete
cover (m).

2. Compute the following initial parameters: x1, y1, φt, φl , d, dv, c1, As1, As2, Asl , Acp,
pc, A0h, ph, A0 and p0. Where x1 = width of the stirrups (m); y1 = height of the
stirrups (m); φt = diameter of transverse reinforcement rebar (m); φl = diameter of
longitudinal reinforcement rebar (m); d = effective depth of the cross-section (m);
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dv = effective thickness of the concrete diagonal strut (m); c1 = distance between the
axis of the longitudinal rebar in the corner and the outer face of the cross-section
(m); As1 = area of the longitudinal reinforcement in the tensile zone (m2); As2 = area
of the longitudinal reinforcement in the compressive zone (m2); Asl = total area of
longitudinal reinforcement in the cross-section (m2); Acp = area of the cross-section
(m2); pc = outer perimeter of the cross-section (m); A0h = area enclosed by the center
line of stirrups (m2); ph = perimeter of the centerline of stirrups (m); A0 = area enclosed
by the centerline of flow of shear stress (m2); p0 = perimeter of the centerline of flow
of shear stress (m).

3. Calculate the torques and shear forces, including the maximum and equivalent values
for the combined internal forces, according to the standards. As recommended for
all numerical computations, variables are normalized to stay roughly in the range
(−1, 1). Therefore, forces are scaled using the maximum allowable values according
to the specific standard.

4. Define the objective function in terms of the parameters involved to calculate the
strength for the acting internal forces. This function is defined according to Equation (3).

5. Maximize the objective function subject to design constraints, which are derived from
limits related to the crushing of concrete struts, yielding of longitudinal reinforcement,
and yielding of transverse reinforcement, among others.

Some parameters, such as the equivalent wall thickness (he), the area enclosed by the
flow of shear stress (A0), and the perimeter of the flow of shear stress (p0) are difficult to
compute according to the standard clauses and in the context of the optimization problem.
This aspect is discussed in detail later.

Post-Processing

The objective function to be maximized in the aforementioned Step 5 is a function of
the angle α which relates each maximum radius with the acting shear force and torque.
The solution vector R obtained in Step 5 can be declared in the maximization calculation
procedure according to Equation (3) as follows:

R(α) = Maximize( f , r) (4)

The angle α is defined as a function of the requested number of points, n, required to
generate the torsion–shear interaction curve according to the model presented in Figure 2.
Knowing that this angle ranges between 0◦ and 90◦, a reference angle θ1 is defined
as follows:

θ1 =
1
n

π

2
(5)

From Equation (5), it can be stated that when n = 1, θ1 is equal to π/2, and, conse-
quently, the acting torque is maximum. For a very large n, the angle is approximately equal
to zero and the acting shear force is maximum. Thus, angle α can be defined as follows:

α = iθ1 f or i = 1 . . . n (6)

Finally, the solution vectors for the acting shear force concomitant with the acting
torque in the RC cross-section can be defined from Equations (1) and (2) as follows:

V = r(iθ1) cos(iθ1)Vmax (7)

T = r(iθ1) sin(iθ1)Tmax (8)

2.3. Constraints from NBR 6118

The constraints related to NBR 6118 [32] clauses for the design and analysis of RC mem-
bers under combined torsion and shear can be derived from the following requirements:
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First, the angle of the concrete struts, θ, according to the clauses to calculate the shear
strength using model II from NBR 6118 (Clause 17.4.2.3), varies between a minimum, θmin,
and a maximum, θmax, value of 30◦ and 45◦, respectively, as follows:

θmin ≤ θ ≤ θmax (9)

Second, Clause 17.5.1.4.1 imposes some limits to compute the equivalent wall thickness,
he, according to the following [32]:{

2c1 ≤ he ≤ A
u , for A

u ≥ 2c1
he =

A
u ≤ bw − 2c1, for A

u < 2c1
(10)

where A = area of the solid cross-section; u = perimeter of the solid cross-section; c1 = distance
between the center of the rebar in the corner and the outer face of the member; bw = width
of the cross-section.

In the first case stated in Equation (10), for A/u ≥ 2c1, he can vary between the
minimum 2c1 and the maximum A/u values. For the second case, for A/u < 2c1, he is
well-defined, and both the lower and upper bounds can be stated from its value. Thus,
regardless of the case, the following constraint for the thickness he can be stated:

he,min ≤ he ≤ he,max (11)

Third, two additional constraints are derived for the distance between the middle
plane of the equivalent walls and the outer face of the cross-section, c0. As c0 is a function
of he, the first constraint arises from this dependency and can be written as follows:

c0,min ≤ c0 ≤ c0,max (12)

To avoid convergence problems during the optimization procedure, parameter c0 is
imposed to be higher than or equal to half the equivalent wall thickness, he. This constraint
is conservative, because the smaller he, the smaller c0, and the higher the solicitation in the
cross-section. The second constraint for c0 is defined as follows:

0.5he ≤ c0 (13)

The area enclosed by the shear flow, Ae, and the perimeter of the shear flow, ue, can be
calculated as a function of the equivalent wall thickness, he, or from the distance between
the middle plane of the equivalent wall and the outer face of the cross-section, c0. For the
latter, the following equation can be written:{

Ae(c0) = (b− 2c0)(h− 2c0)
ue(c0) = pc − 8c0

(14)

Fourth, Clause 17.4.2.3 establishes the following limits for the design values of the
acting shear force:

• The acting shear force in the cross-section, V, must not exceed the design shear strength
corresponding to the crushing of the concrete diagonal struts, VRd2, as follows [32]:

V(r, α) ≤ VRd2(θ) (15)

VRd2 = 0.54αv2 fckbwd sin θ cos θ (16)

αv2 =

(
1− fck

250

)
, fck in MPa (17)
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• The acting shear force in the cross-section, V, must not exceed the design shear strength
corresponding to the failure due to diagonal tension, VRd3, as follows [32]:

V(r, α) ≤ VRd3(r, α, θ) (18)

VRd3 = Vc + Vsw (19)

where Vc = Vc1 for simple bending and for bending combined with tensile axial
force (with the neutral axis located in the cross-section). Vc1 is defined as Vc1 = Vc0
when VSd ≤ Vc0, and Vc1 = 0 when VSd = VRd2 (linear interpolation can be used for
intermediate values). Vc0 is defined as follows [32]:

Vc0 = 0.6 fctk,infbwd (20)

fctk,inf = 0.21 f 2/3
ck , fck in MPa (21)

Vsw =
Asw fywd0.9d

s
cot θ (22)

where Vc0 = shear strength contributed by the concrete for simple bending and for
bending combined with tensile axial force (with the neutral axis located in the cross-
section); fctk,inf = inferior characteristic tensile strength of concrete; Vsw = shear strength
contributed by the transverse reinforcement; Asw = area of transverse reinforcement;
fywd = design yielding stress of the transverse reinforcement.

Fifth, to compute the torsional strength, Clause 17.5 provides three additional con-
straints which can be deduced as follows:

• The acting torque in the cross-section, T, must not exceed the limit corresponding to
the strength of the concrete diagonal struts, TRd2 [32], as follows:

T(r, α) ≤ TRd2(θ, he, c0) (23)

TRd2 = 0.5αv2 fck Aehe sin(2θ) (24)

αv2 =

(
1− fck

250

)
, fck in MPa (25)

• The acting torque in the cross-section, T, must not exceed the limit corresponding to
the strength of the stirrups, TRd3 [32], as follows:

T(r, α) ≤ TRd3(θ, c0) (26)

TRd3 =
A90 fywd2Ae

s
cot θ (27)

where A90 represents the area of one leg of the transverse reinforcement build with
stirrups normal to the longitudinal axis (90◦).

• The acting torque in the cross-section, T, must not exceed the limit corresponding to
the strength of the longitudinal reinforcement, TRd4 [32], as follows:

T(r, α) ≤ TRd4(θ, c0) (28)

TRd4 =
Asl2Ae fywd

ue
tgθ (29)

Sixth, according to Clause 17.7.2, the total transverse reinforcement can be determined
by adding the transverse reinforcement required to resist the design shear force, VSd, with
the transverse reinforcement required to resist the design torque, TSd. Thus, the equation
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to compute the transverse reinforcement for the combined torsion and shear loading is
the following:

Aw+90

s
=

Aw

s
+

2A90

s
(30)

Substituting the areas of transverse reinforcement per unit length for the shear force,
from Equation (22), and for the torque, from Equation (27), into Equation (30), gives
the following:

Aw+90

s
=

Vsw

fywd0.9d cot θ
+

T
fywd Ae cot θ

(31)

Considering Vsw = max{V −Vc, 0}, Equation (31) can be rewritten as follows:

Aw+90

s
=

max{V −Vc, 0}
fywd0.9d cot θ

+
T

fywd Ae cot θ
(32)

From Equation (23), the following constraint can be stated as follows:

V(r, α)−Vc(r, α, θ)

fyt0.9d cot θ
+

T(r, α)

fyt Ae(c0) cot θ
≤ Av+t

s
(33)

The first term in the left-hand side of Equation (33) represents the required transverse
reinforcement per unit length to resist the acting shear. The numerator of this term rep-
resents the contribution of the stirrups for the shear strength, Vs. Therefore, this quantity
cannot be negative, since a negative value would mean that the concrete contribution for
shear, Vc, is sufficient to resist the full acting shear force and that all existing transverse
reinforcement in the cross-section is only required for the torsional strength. This leads to a
new constraint related with the transverse reinforcement, as follows:

0 ≤ Avsn (34)

Avsn =
V(r, α)−Vc(r, α, θ)

fyt0.9d cot θ
(35)

Seventh, according to Clause 17.7.2.2, the crushing of the concrete diagonal strut must
be checked using the following requirement [32]:

VSd
VRd2

+
TSd
TRd2

≤ 1 (36)

Hence, the following new following constraint can be stated:

V(r, α)

VRd2(θ)
+

T(r, α)

TRd2(θ, he, c0)
≤ 1 (37)

Eighth and finally, the last constraint is deduced from the cut-off point rule of the
tensile force diagram, as stated in Clause 17.4.2.2 [32], as follows:

cot θ

(
T(r, α)ue(c0)

4Ae(c0)
+

V(r, α)

2

)
≤ Fs (38)

The first term of the sum inside the parentheses in Equation (38) is derived from the
equation to compute the torque as a function of the longitudinal reinforcement, according
to Equation (29), and considering half of the perimeter enclosed by the shear flow in the
tensile zone, ue/2. Fs represents the strength force of the longitudinal reinforcement in the
tensile zone of the cross-section.
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2.4. General Formulation for the Optimization Problem According to NBR 6118

In its general form, the optimization problem related with the analysis of RC cross-
sections under combined torsion and shear, according to NBR 6118 [32], can be stated in a
canonical way as follows:

(P)



Maximize f (r, α, θ, he, c0, Avsn) = r
Subject to :

θmin ≤ θ ≤ θmax
he,min ≤ he ≤ he,max
c0,min ≤ c0 ≤ c0,max

0.5he ≤ c0
V(r, α) ≤ VRd2(θ)

V(r, α) ≤ VRd3(r, α, θ)
T(r, α) ≤ TRd2(θ, he, c0)

T(r, α) ≤ TRd3(θ, c0)
T(r, α) ≤ TRd4(θ, c0)
V(r,α)−Vc(r,α,θ)

fyt0.9d cot θ ≤ Avsn

0 ≤ Avsn

Avsn +
T(r,α)

fyt Ae(c0) cot θ
≤ Av+t

s

V(r,α)
VRd2(θ)

+ T(r,α)
TRd2(θ,he ,c0)

≤ 1

cot θ
(

T(r,α)ue(c0)
4Ae(c0)

+ V(r,α)
2

)
≤ Fs

(39)

The general Mathcad code for the optimization calculation procedure can be found in
Appendix A.

2.5. Constraints from AASHTO LRFD

For the sake of clarity, and according to AASHTO LRFD [31], the following strengths
for RC members are defined:

• Rn = Nominal resistance (strength) is defined as the resistance of a component or
connection to force effects, as indicated by the dimensions specified in the contract doc-
uments and by permissible stresses, deformations, or specified strength of materials;

• Rr = Factored (design) resistance is defined as the nominal resistance multiplied by a
resistance factor, i.e., Rr = φRn. The resistance factor, φ, is defined to be a statistically-
based multiplier applied to nominal resistance accounting primarily for variability
of material properties, structural dimensions and workmanship, and uncertainty in
the prediction of resistance, but also related to the statistics of the loads through the
calibration process;

• Ru = Ultimate resistance (strength) is the limit related to the strength and stability
during the design life.

The specific definitions for the resisting internal forces according to AASHTO LRFD
are used in this section.

The constraints related to AASHTO LRFD clauses for the design and analysis of
RC members under combined torsion and shear can be derived from the following
requirements:

First, the limit for the acting shear force in RC cross-sections according to Clause
5.8.3.3-2, is given by the following [31]:

Vu = 0.25 fckbdv (40)

Clause 5.8.3.6 requires that the ultimate shear, Vu, defined for the case with no torque,
must be replaced by the equivalent shear due to combined torsion and shear to calculate
the longitudinal deformation in the tensile zone. From this, it can be deduced that the
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equivalent shear force in the RC cross-section must not exceed the limit established for the
acting shear force, as follows:

Veq(r, α) ≤ Vu (41)

For solid cross-sections, the following equation applies [31]:

Vu,eq =

√
V2

u +

(
0.9phTu

2A0

)2
(42)

where Tu and ds represent the ultimate torque and the effective depth of the RC cross-
section, respectively. The other parameters were defined earlier. Equation (41) checks the
crushing of the concrete diagonal struts due to combined torsion and shear.

Second, regarding the yielding strength of the transverse reinforcement for the case
of combined torsion and shear, Clause 5.8.3.6 provides the constraints based on the
same concepts stated by Equation (30). According to Clauses 5.8.3.3-4 and 5.8.3.6.2-1,
Equations (43) and (44) for the shear and torsional strengths resisted by the stirrups, re-
spectively, can be stated as follows [31]:

Vs =
Av ftydv

s
cot θ (43)

Tn =
2A0 At fty cot θ

s
(44)

where Tn is the nominal resistance of the torque with no shear force. The other parameters
were defined earlier.

Substituting in Equation (30), the areas of transverse reinforcement per unit length for
shear from Equation (43), and for torsion from Equation (44), the following equation can
be written:

Av+t

s
=

Vs

fytdv cot θ
+

T
fyt A0 cot θ

(45)

Considering Vs = V −Vc, Equation (45) is rewritten as follows:

V(r, α)−Vc(r, α)

fytdv cot(θ(r, α))
+

T(r, α)

fyt A0 cot(θ(r, α))
≤ Av+t

s
(46)

The shear strength resisted by the stirrups, As = V − Ac, cannot be negative, so the
following constraint holds:

0 ≤ Avsn (47)

Avsn =
V(r, α)−Vc(r, α)

fytdv cot(θ(r, α))
(48)

The shear strength resisted by the concrete is stated in Clause 5.8.3.3-3 as follows [31]:

Vc = 0.083β
√

fckbdv (49)

Factor β is defined as the capacity of the concrete struts to transfer tensile and shear
forces. Considering that the amount of reinforcement for shear existing in the RC cross-
section is higher than the minimum amount required in Clause 5.8.3.4.2-1, this factor is
calculated as follows [31]:

β = 4.8
(1+750εs)

for Av ≥ Av,min (50)

The previous equation also incorporates the influence of the longitudinal deformation
for the contribution of the concrete struts, εs. This parameter is defined in Clause 5.8.3.4.2-4
as the longitudinal deformation in the centroid of the longitudinal reinforcement located in
the tensile zone of the RC cross-section. According to Bentz and Collins [38], the ultimate



J. Compos. Sci. 2022, 6, 175 11 of 31

shear strength in RC members is influenced by several factors, namely section geometry,
acting internal forces, and reinforcement ratios, among others. To account for all these
effects, a single parameter is incorporated, which is the longitudinal deformation εs. The
higher this deformation is, the higher the crack width and, therefore, the smaller the
aggregate interlock effect and the smaller value for Vc. The reduction in the shear strength
as the longitudinal deformation increases can be called the “deformation effect”. In RC
members, this deformation can be calculated as follows [31]:

εs =

((
|Mu |

dv
+ 0.5Nu + |Vu|

))
Es As

(51)

where Mu = ultimate bending moment; Nu = ultimate axial force; Vu = ultimate shear force;
As = area of longitudinal reinforcement in the tensile zone.

The angle of the concrete struts to the longitudinal axis, θ, is also influenced by the
geometric factors, the acting internal forces, and the reinforcement ratios. Consequently,
the angle θ can be determined as a function of the longitudinal deformation in the tensile
zone, εs, according to Clause 5.8.3.4.2-3 as follows [31]:

θ = 29◦ + 3500εs (52)

Third, for RC members with solid cross-sections, the longitudinal reinforcement in the
tensile zone must satisfy the following relationship according to Clause 5.8.3.6.3-1 [31]:

As fy ≥
|Mu|
φ f dv

+
0.5Nu

φc
+ cot θ

√(∣∣∣∣Vu

φv

∣∣∣∣− 0.5Vs

)2
+

(
0.45phTu

2A0φv

)2
(53)

Equation (53) can be used to check the yielding of the longitudinal reinforcement in
the tensile zone of the RC cross-sections under combined torsion and shear.

In this study, only solid cross-sections are considered to exemplify the application of
the optimization calculation procedure, in view of the available experimental data found in
the literature. Therefore, the following constraint is imposed:

cot(θ(r, α))

√
(V(r, α)− 0.5Avsn fytdv cot(θ(r, α)))2 +

(
0.45Ph

T(r, α)

2A0

)2

≤ Fs (54)

dv ≥ max(0.9d, 0.72h) (55)

where Fs = As fy = strength of the longitudinal reinforcement in the tensile zone; fy = yielding
stress of the longitudinal reinforcement; φ f , φv, φc = resistance factors defined in Clause 5.5.4.2.
It should be noted that the shear strength provided by the stirrups, Vs, in Equation (53),
was replaced by the corresponding value from Equation (48).

2.6. General Formulation for the Optimization Problem According to AASHTO LRFD

In the same way as presented in Section 2.4 for the NBR 6118 standard, the optimization
problem related with the analysis of RC cross-sections under torque combined with shear,
according to AASHTO LRFD [31], can be stated in a canonical way as follows:

(P)



Maximize f (r, α, Avsn) = r
Subject to :
Veq(r, α) ≤ Vu

V(r,α)−Vc(r,α)
fytdv cot(θ(r,α)) ≤ Avsn

0 ≤ Avsn

Avsn +
T(r,α)

fyt A0 cot(θ(r,α)) ≤
Av+t

s

cot(θ(r, α))

√
(V(r, α)− 0.5Avsn fytdv cot(θ(r, α)))2 +

(
0, 45Ph

T(r,α)
2A0

)2
≤ Fs

(56)
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The general Mathcad code for the optimization calculation procedure can be found in
Appendix A.

3. Results and Discussion

Two sets of reference RC beams with solid cross-sections and tested under combined
torsion and shear, with effective symmetrical longitudinal reinforcement, were chosen
from the literature [33,36]. To evaluate the efficiency and analyze the reliability of the
proposed optimization calculation procedure applied with design standards, compar-
ative analyses are carried out between the experimental results, the optimized results
according to NBR 6118 and AASHTO LRFD standards, and the theoretical results from
the CA-STM model (combined-action softened truss model) with an efficient calculation
procedure [23,39,40]. For this analysis, all load and resistance factors (γ, φ) are considered
equal to unity. To assist in the comparative analyses, the following equation is used to
compute the relative error, Er, between experimental and calculated values:

Er =
|Experimental value− Calculated value|

Experimental value
(57)

3.1. Combined Action—Softened Truss Model

The CA-STM allows us to predict the full response of RC members under combined
internal forces. The model idealizes the member as the association of four cracked concrete
panels, as illustrated in Figure 3, which are modeled with the softened truss model. In
addition, the model incorporates compatibility conditions for the association of the panels.
Further details about the CA-STM, as well as the implementation techniques for the efficient
calculation procedure, can be found in the literature [23,39,40]. In this study, the CA-STM is
used to compute the strength of the reference RC beams under combined torsion and shear,
for comparison with the results from the proposed optimization calculation procedure
according to NBR 6118 and AASHTO LRFD standards.
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3.2. Results for Reference RC Beams from Series 1 and 2

The reference RC beams from Series 1 (Series RC2) were tested by Rahal and Collins [33]
under combined torsion and shear in the failure zone and with different torsion-to-shear
ratios. This series includes four specimens with equal geometry (a rectangular cross-section
with 34 cm width and 64 cm height), and amounts and detailing of longitudinal and trans-
verse reinforcement. The characteristic concrete compressive strength, fck, ranges from
38 MPa to 54 MPa. The yielding stresses of the transverse, fyt, and longitudinal, fyl , rein-
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forcements are equal to 466 MPa and 480 MPa, respectively. The cross-section incorporates
stirrups with rebars No.10 (100 mm2) and 12.5 cm longitudinal spacing, and rebars No.25
(500 mm2) for the longitudinal reinforcement (10 rebars in the bottom face and 5 rebars in
the top face). The properties of the beams from Series RC2 which are needed to compute
the torsion–shear interaction curve according to the proposed calculation procedure, and
which constitute the initial parameters for the Mathcad code, can be found in Appendix B.
More details about the specimens and the testing procedure can be found in [33].

The cross-section in the failure zone of the RC specimens was designed for shear,
i.e., the failure of the critical cross-section occurs after the yielding of the transverse rein-
forcement, before the yielding of the longitudinal reinforcement. In addition, the testing
procedure was such that the bending moment is null in the failure zone. Hence, according
to Rahal and Collins [33], the calculation of the maximum internal forces at failure, based
on the design standards, can be performed by considering the cross-section as effectively
symmetrical as far as the longitudinal reinforcement is concerned (five rebars in the bottom
face and five rebars in the top face).

Figure 4 presents the interaction curves obtained from the proposed optimization
procedure using the clauses from the NBR 6118 and AASHTO LRFD standards. The
experimental results and the results obtained with the CA-STM model by Silva in 2015 [39]
for each reference beam are also presented. Since the concrete compressive strength varied
among the beams, the corresponding value is presented next to each experimental point.
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Figure 4. Interaction torque–shear curves for RC beams from Series 1.

In Figure 4, the “ •” symbols represent the experimental results for each beam. The
dashed line “− −” represents the interaction curve optimized from the NBR 6118 pro-
visions, considering the angle of the concrete struts (θ) variable according to model II
to compute the shear strength of the cross-section. The dotted line “· · ·” represents the
interaction curve optimized according to model II from NBR 6118, considering θ = 30◦. The
dash-dotted line “− · −” represents the interaction curve optimized from model I with
θ = 45◦. The continuous line represents the interaction curve computed from optimization
procedures according to AASHTO LRFD provisions. Finally, the points with squared
symbols represents the theoretical results from the CA-STM.
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The horizontal plateau in each torsion–shear interaction curve represents the constant
value for the maximum torque without the influence of the shear force, i.e., when the acting
shear is less than or equal to the shear resisted by concrete, Vc. In this case, the transverse
reinforcement is only accounted for the torsional moment.

Table 1 summarizes, for each beam from Series 1, the maximum torques and shear
forces computed from both the optimization calculation procedure according to the stan-
dards and the CA-STM model. Tables 2 and 3 presents the percentage relative errors
calculated from Equation (57) between the experimental maximum torques and shears, and
the ones calculated from the optimization calculation procedure according to the standards,
as well as the ones calculated from the CA-STM.

Table 1. Results for RC beams from Series 1.

Experimental NBR 6118
M-I

NBR 6118
θ = 30 ◦

NBR 6118
M-II

AASHTO
LRFD CA-STM

Beam V
(MN)

T
(MN.m)

V
(MN)

T
(MN.m)

V
(MN)

T
(MN.m)

V
(MN)

T
(MN.m)

V
(MN)

T
(MN.m)

V
(MN)

T
(MN.m)

RC2-1 0.535 0.083 0.387 0.06 0.518 0.081 0.518 0.081 0.476 0.074 0.536 0.08
RC2-2 0.796 0 0.678 0 0.837 0 0.837 0 0.76 0 0.796 0
RC2-3 0.111 0.135 0.062 0.075 0.108 0.129 0.108 0.129 0.103 0.123 0.112 0.142
RC2-4 0.715 0.058 0.494 0.039 0.64 0.051 0.64 0.051 0.595 0.048 0.716 0.05

Table 2. Relative errors (%) for the maximum torques for RC beams from Series 1.

Beam NBR 6118
M-I

NBR 6118
θ = 30◦

NBR 6118
M-II

AASHTO
LRFD CA-STM

RC2-1 27.7 2.4 2.4 10.8 3.6
RC2-2 - - - - -
RC2-3 44.4 4.4 4.4 8.9 −5.2
RC2-4 32.8 12.1 12.1 17.2 13.8

Table 3. Relative errors (%) for the maximum shear force for RC beams from Series 1.

Beam NBR 6118
M-I

NBR 6118
θ = 30◦

NBR 6118
M-II

AASHTO
LRFD CA-STM

RC2-1 27.7 3.2 3.2 11 −0.2
RC2-2 14.8 −5.2 −5.2 4.5 0
RC2-3 44.1 2.7 2.7 7.2 −0.9
RC2-4 30.9 10.5 10.5 16.8 −0.1

The reference RC beams from Series 2 were tested under torsion combined with shear
by Klus in 1968 [36], with different torsion to shear ratios. Series 2 include 8 specimens (in
fact, there are 10, but 2 pairs of specimens are equal) with equal geometry (a rectangular
cross-section with 20 cm width and 30 cm height), and amounts and detailing of longitudi-
nal and transverse reinforcement. The characteristic concrete compressive strength, fck, is
21.5 MPa. The yielding stresses of the transverse, fyt, and longitudinal, fyl , reinforcements
are equal to 265 Mpa and 429 Mpa, respectively. The cross-section incorporates stirrups
with rebars ∅8 mm with 10 cm longitudinal spacing as transverse reinforcement, and rebars
∅22 mm for the longitudinal reinforcement (three rebars for both the bottom and top face).
The properties of beams from Series RC2, which are needed for the proposed calculation
procedure, can be found in Appendix B. More details about the specimens and the testing
procedure can be found in [36].

A research group from the University of Kansas [34] processed the data tests from [36]
and computed the strengths of the beams. Figure 5 reproduces some of the obtained
experimental results from [34] with interest for this study. As in Figure 4, Figure 5 also
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presents the results obtained in this study, those from the proposed optimization procedure
according to NBR 6118 and AASHTO LRFD standards, and also those from the CA-STM.
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Figure 5. Interaction torque–shear curves for RC beams from Series 2.

Table 4 summarizes, for each beam from Series 2, the maximum torques and shear
forces computed from both the optimization calculation procedure according to the stan-
dards and the CA-STM model. Tables 5 and 6 presents the percentage relative errors
calculated from Equation (57) between the experimental maximum torques and shears, and
the ones calculated from the optimization calculation procedure according to the standards,
as well as the ones calculated from the CA-STM.

Table 4. Results for RC beams from Series 2.

Experimental NBR 6118
M-I

NBR 6118
θ = 30◦

NBR 6118
M-II

AASHTO
LRFD CA-STM

Beam V
(MN)

T
(MN.m)

V
(MN)

T
(MN.m)

V
(MN)

T
(MN.m)

V
(MN)

T
(MN.m)

V
(MN)

T
(MN.m)

V
(MN)

T
(MN.m)

1 0 0.0142 0 0.0071 0 0.0121 0 0.0121 0 0.0138 0 0.0149
2 0.03 0.0125 0.018 0.0071 0.03 0.0119 0.03 0.012 0.035 0.0138 0.031 0.0131
3 0.063 0.0115 0.039 0.0071 0.057 0.0104 0.059 0.0106 0.067 0.012 - -
4 0.093 0.0088 0.062 0.0058 0.082 0.0077 0.082 0.0077 0.094 0.0088 0.094 0.0073
5 0.101 0.0073 0.07 0.005 0.091 0.0065 0.091 0.0065 0.104 0.0075 0.101 0.0062
6 0.118 0.0058 0.079 0.0038 0.101 0.005 0.101 0.005 0.116 0.0057 0.118 0.0047
7 0.132 0.0033 0.093 0.0023 0.116 0.0029 0.116 0.0029 0.132 0.0033 - -
8 0.157 0 0.11 0 0.134 0 0.134 0 0.149 0 - -

Table 5. Relative errors (%) for the maximum torques for RC beams from Series 2.

Beam NBR 6118
M-I

NBR 6118
θ = 30◦

NBR 6118
M-II

AASHTO
LRFD CA-STM

1 50 14.8 14.8 2.8 −4.9
2 43.2 4.8 4 −10.4 −4.8
3 38.3 9.6 7.8 −4.3 -
4 34.1 12.5 12.5 0 17.0
5 31.5 11 11 −2.7 15.1
6 34.5 13.8 13.8 1.7 19
7 30.3 12.1 12.1 0 -
8 - - - - -
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Table 6. Relative errors (%) for the maximum shear force for RC beams from Series 2.

Beam NBR 6118
M-I

NBR 6118
θ = 30◦

NBR 6118
M-II

AASHTO
LRFD CA-STM

1 - - - - -
2 40 0 0 −16.7 −3.3
3 38.1 9.5 6.3 −6.3 -
4 33.3 11.8 11.8 −1.1 −1.1
5 30.7 9.9 9.9 −3 0
6 33.1 14.4 14.4 1.7 0
7 29.5 12.1 12.1 0 -
8 29.9 14.6 14.6 5.1 -

The values calculated from the optimization calculation procedure for the variable
angle of the concrete struts, θ, according to NBR 6118 and AASHTO LRFD standards,
are presented in Table 7 for the reference beams from Series 1 and 2. In addition, Table 7
also presents the calculated values from the NBR 6118 standard for the equivalent wall
thickness, he, and for the distance from the middle plane of the equivalent wall to the outer
face of the cross-section, c0.

Table 7. Key parameters.

NBR 6118
θ (◦)

NBR 6118
he (m)

NBR 6118
c0 (m)

AASHTO LRFD
θ (◦)

Series 1 30 0.111 0.07 34–35
Series 2 30–32 0.06 0.04 32–33

The results in Table 7 allow us to state the effectiveness of the proposed optimization
calculation procedure to determine the angle of the cracks, which can be considered equal
to the angle of the concrete struts θ, and which can vary during the optimization calculation
procedure within the limits established by the standards. In addition, Table 3 also shows
the effectiveness of the optimization calculation procedure to compute the equivalent wall
thickness based on the NBR 6118 clauses, which is not an easy task for designers.

3.3. Discussion of the Results

From Figure 4 (dashed “− −” and dotted “· · ·” curves) and Tables 1–3, it can be
concluded that, for the beams from Series 1, the interaction curves from both models
coincide according to the NBR 6118 standard, with θ variable (model II) and considering
θ = 30◦. Furthermore, such models are the most satisfactory when compared with the
experimental results, with percentage relative errors inferior to about 12%. Most of the
predictions, both for the maximum torque and shear force, are slightly conservative. The
model from the AASHTO LRFD standard (the continuous curve in Figure 4) is more
conservative, with percentage relative errors inferior to about 17%, and consistent with the
experimental results.

From Figure 5 and Tables 4–6, the interaction curve computed with the model accord-
ing to the AASHTO LRFD standard (the continuous curve) is now the one with better
agreement with most of the experimental results, with percentage relative errors inferior to
about 6% for most of them. However, for Beam 2 the prediction is somewhat unconserva-
tive. Both the maximum torque and shear are overestimated with percentage relative errors
of about 10% and 17%, respectively. The interaction curves from both models according
to NBR 6118 standard, with θ variable (model II) and considering θ = 30◦ (dashed “− −”
and dotted “· · ·” curves, respectively), almost coincide. The corresponding predictions are
slightly conservative, with percentage relative errors less than about 15%, and consistent
with the experimental results.

The aforementioned results show that the NBR 6118 standard, considering a constant
angle of θ = 30◦, can be considered suitable for design. As indicated in Table 7, for the
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beams from Series 2, the optimized values for the maximum torque and shear required a
small variation of the angle around 30◦. This explains why the interaction curves from both
models according to the NBR 6118 standard, with θ variable (model II) and considering
θ = 30◦, do not fully coincide in Figure 4.

Figure 4 and 5, and Tables 1–6 show that model I from the NBR 6118 standard with
θ = 45◦ (dash-dotted lines “− · −”) provides very conservative values for both the maxi-
mum torque and shear force when compared with the experimental results, with percentage
relative errors up to 44% and 50% for the beams from Series 1 and 2, respectively.

Finally, the results show that the predictions from the CA-STM model are reasonably
consistent for both the beams from Series 1 and 2. The results also show that the maximum
torque seems to be slightly less conservative as the shear force increases.

4. Conclusions

With the aim to evaluate the NBR 6118 and AASHTO LRFD standards to compute
the strength of RC beams under combined torsion and shear, an optimization calculation
procedure was proposed to compute the torsion–shear interaction curve of the RC cross-
section. Based on the obtained results, the following conclusions can be drawn:

• The proposed calculation procedure based on optimization techniques allows re-
searchers to easily compute the torsion–shear interaction curves of RC cross-sections
based on design standards. The proposed calculation procedure is discussed as part
of this paper.

• Model I with an angle for the concrete struts θ = 45◦, according to NBR 6118 standard
to compute the shear strength, was found to be very conservative for RC members
under combined torsion and shear;

• Model II with an angle for the concrete struts θ = 30◦, according to NBR 6118 stan-
dard to compute the shear strength, was found to be reliable for RC members under
combined torsion and shear;

• Good results were also found when considering a variable angle for the concrete
struts according to the NBR 6118 standard. For this model, the proposed optimization
calculation procedure appeared to be very suitable to calculate the resistance of the RC
cross-section for the combined acting forces. It allows us to easily solve the difficulty
in determining some key parameters involved in the calculation procedure, such as
the equivalent wall thickness, he, and the distance from the middle plan of the wall
to the outer face of the cross-section, c0. This was confirmed during the optimization
calculation procedure, since it was observed that c0 is not always equal to half of the
wall thickness he (Table 7);

• The AASHTO LRFD standard is simpler for the analysis of RC cross-sections under
combined torsion and shear, although considered more complete, when compared
with the NBR 6118 standard. This is because AASHTO LRFD considers the influence
off several factors through the longitudinal deformation, εs. The results obtained
according to this standard were found to be consistent with the experimental results;

• The CA-STM model was also found to be consistent in computing the resistance of
RC cross-sections under combined torsion and shear. It was also found that, with
this model, the theoretical value for the torsional strength seems to become slightly
conservative as the acting shear strength increases. However, CA-STM is somewhat
of a complex model to be suitable for design work. The optimization calculation
procedure proposed in this study is more suitable for the practice.
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