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Abstract: Various biomedical applications of biodegradable nanofibers are a hot topic, as evidenced by
the ever-increasing number of publications in this field. However, as-prepared nanofibers suffer from
poor cell adhesion, so their surface is often modified. In this work, active polymeric surface layers with
different densities of COOH groups from 5.1 to 14.4% were successfully prepared by Ar/CO2/C2H4

plasma polymerization. It has been shown that adhesion and proliferation of mesenchymal stem cells
(MSCs) seeded onto plasma-modified PCL nanofibers are controlled by the CO2:C2H4 ratio. At a high
CO2:C2H4 ratio, a well-defined network of actin microfilaments is observed in the MSCs. Nanofibers
produced at a low CO2:C2H4 ratio showed poor cell adhesion and very poor survival. There were
significantly fewer cells on the surface, they had a small spreading area, a poorly developed network
of actin filaments, and there were almost no stress fibrils. The maximum percentage of proliferating
cells was recorded at a CO2:C2H4 ratio of 35:15 compared with gaseous environments of 25:20
and 20:25 (24.1 ± 1.5; 8.4 ± 0.9, and 4.1 ± 0.4%, respectively). Interestingly, no differences were
observed between the number of cells on the untreated surface and the plasma-polymerized surface at
CO2:C2H4 = 20:25 (4.9 ± 0.6 and 4.1 ± 0.4, respectively). Thus, Ar/CO2/C2H4 plasma polymerization
can be an excellent tool for regulating the viability of MSCs by simply adjusting the CO2:C2H4 ratio.

Keywords: MSC; plasma; nanofibers; cell viability; COOH groups; XPS; surface; biodegradable
nanocomposites

1. Introduction

In the field of tissue engineering, in recent years there has been a growing interest in
porous structures consisting of biodegradable fibers, the structure of which is similar to
the extracellular matrix (ECM). This is confirmed by a significant number of publications.
As shown in Figure 1a, the number of publications containing the keywords “Cell”, and
“Adhesion” and “Nanofibers” exceeded 350 per year, although until the 2000s this topic
was not covered at all. Indeed, recent technological progress enabled the production of
nanofibrous mats on a pilot scale at a reasonable cost using innovative methods, including
electrodeless electrospinning. As a result, electrospun nanofibers have become an attractive
and affordable technical solution for tissue engineering.

An analysis of the frequency of use of various keywords when searching in the Scopus
database for the keywords “CELLS & ADHESION & NANOFIBERS” clearly shows the
most popular directions in the modern scientific literature in the field of biodegradable
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nanofibers (Figure 2a). The most relevant keywords are Electrospinning (a method for
producing electrospun nanofibers), Scaffold, Tissue Engineering, and Polycaprolactone.
Indeed, the use of nanofibers for tissue engineering has become a topical and very attractive
field due to the high potential of these materials. The use of polylactic acid (PLA) and
polycaprolactone (PCL) have gained significant interest during the last years, and various
biomedical and smart materials with outstanding properties have been reported [1,2].
Indeed, PCL possesses good mechanical properties and long-term stability from a few
months up to 3 years in vivo and it is approved by U.S. Food and Drug Administration.
Thus, recently PCL has become the material of choice for biomedical materials.
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Figure 2a highlights the main areas of research that have made a significant contri-
bution to this field. The most promising method for obtaining biodegradable nanofibers
is electrospinning from polymer solutions [3,4]. Electrospinning of nanofibers is possible
from a solution of both natural polymers (collagen, gelatin, chitosan) and synthetic ones
(PCL, polyethylene glycol, etc.). Nanofibers obtained from natural polymers demonstrate
high biocompatibility; however, obtaining stable and homogeneous nanofibers is a rather
tricky task [5]. For a long time, it was almost impossible to obtain pure collagen and
chitosan nanofibers and, therefore, fibers consisting of a mixture of polymers (for example,
chitosan/polyethylene oxide) were obtained [3,4]. In addition, collagen is expensive, and
collagen and gelatin nanofibers are often unstable in an aquatic environment. Therefore,
the development of bioactive nanofibers of synthetic polymers is an auspicious task. How-
ever, most of these polymeric nanofibers are superhydrophobic. Therefore, they must be
additionally processed to enhance adhesion and cell proliferation on their surfaces [6,7].

Another frequently encountered keyword is “Mesenchymal stem cells” (MSC). This
indicates a high interest in in vitro studies of MSC adhesion to the nanofibers. Indeed,
this type of cell is often used as a model systemfor testing the biocompatibility of various
materials [8].

To date, the most common methods for modifying nanofibers are (1) liquid treatment
of nanofibers (for example, soaking in a KOH solution), (2) co-spinning of biopolymers
(gelatin or collagen), (3) plasma treatment in a gas discharge in combination with (or
without) grafting growth factors, (4) plasma polymerization [9,10]. The first method is the
least promising, since liquid processing leads to the degradation of nanofibers [11]. The
disadvantages of the second method are its non-universality and too limited possibilities,
since the surface of the nanofibers does not contain active groups to which active substances
(for example, growth factors or antibiotics) could be additionally attached. The third
method, plasma treatment (treatment in a gas discharge, for example, in air, oxygen,
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or argon), is an environmentally friendly and energy efficient method. Attachment of
growth factors to plasma-treated PCL and PLA nanofibers significantly accelerated wound
healing [12].
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The use of plasma polymers to stimulate cell adhesion started in the 1980s (Figure 1b),
but their application for the modification of nanofibers is a more recent topic (Figure 2b).
Today, this field is developing rapidly (big green keyword “Nanofiber”). Note that plasma
treatment and plasma polymerization have significant differences. Since the effect of
plasma treatment decreases very quickly (within 1–2 days), various growth factors are
often grafted onto the material surface to improve bioactivity. However, it is not yet known
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exactly how long the activity of immobilized growth factors can be maintained. Plasma
polymerization, i.e., the deposition of plasma polymers under the action of a discharge in
vapors of organic monomers, is an alternative promising approach. The deposited layers of
plasma polymers are highly stable [13,14]. In addition, the concentration of active surface
groups in plasma polymers is always higher than in plasma-treated surfaces.

The blue color of the keyword “Plasma treatment” (Figure 2b) indicates that the
number of publications in this field is decreasing every year, and the green keyword
“Plasma polymer” indicates an increase in the number of publications in this field.

The combination of electrospinning and plasma polymerization technologies is an
excellent technological approach to the synthesis of promising materials for tissue engineer-
ing and wound dressings. Figure 2b shows a variety of polymeric substrates (polylactide,
polycaprolactone, polyurethane, etc.), as well as cell cultures that can be cultivated on
plasma-modified polymers. As for the type of functional groups deposited by the plasma,
it includes carboxyls [15,16], amines [13,17], epoxides [18,19], hydroxyls [20], thiols [21],
aldehydes [22], and others [23].

The range of applications of COOH-modified PCL nanofibers is quite extensive. For
example, polycaprolactone nanofibers can be used to replace bone tissue. However, this
requires preliminary mineralization of the nanofibers (for example, due to the growth of a
hydroxyapatite film) by immersing nanofibers in a synthetic physiological solution (SPS)
which contains calcium and sodium salts. The growth of hydroxyapatites can be accelerated
if the nanofibers are modified with COOH groups [1,4,24,25]. The obtained nanocomposites
can be attractive candidates for bone implants or bone replacement/regeneration materials.
In addition, PCL-coated COOH nanofibers are promising candidates for local drug delivery
to treat bone infection. For example, gentamicin-loaded nanofibers improved the healing
of bone fractures and prevented tissue inflammation [26–28].

The deposition of COOH coatings by plasma polymerization can be carried out in
various ways: using low or atmospheric pressure plasma polymerization in various gas
mixtures. Acrylic acid is the most common precursor used for the deposition of COOH
coatings [29–32]. However, acrylic acid plasma polymers are poorly stable in water [33].
More promising results were obtained using plasma polymerization of maleic anhydride
in a mixture with acetylene or vinyltrimethoxysilane [16,34–36]. These films had a high
density of carboxyl groups and low water solubility (less than 5% after 24 h in water or
phosphate buffer). Plasma polymerization in an argon/ethylene/CO2 mixture is also a
promising method, since such films are highly stable [37,38]. However, the mechanism of
plasma polymerization and the concentration of COOH groups in the films have not been
fully studied. To achieve high stability and uniform coating of nanofibers with a polymer
layer, improvement of the methodology is required.

This work was designed in such a way as to gain new knowledge and highly de-
manded results on the development of nanofibrous biodegradable composites consisting
of PCL nanofibers and Ar/CO2/C2H4 plasma polymers. After careful analyzing of emerg-
ing trends, we selected the most promising approaches, chose the most commonly used
cell type, and utilized an environment-friendly surface modification technology. We then
carefully investigated the influence of plasma gas mixtures on the chemical compositions
of plasma layers and the influence of surface composition on cell behavior.

2. Materials and Methods
2.1. Electrospinning PCL Nanofibers

Nanofibers were prepared by electrospinning a 9 wt% solution of PCL (80,000 g/mol).
Sample processing can be found elsewhere [39]. Briefly, the granulated PCL was dissolved
in acetic acid (99%) and formic acid (98%). All compounds were purchased from Sigma
Aldrich (Darmstadt, Germany). The weight ratio of acetic acid (AA) to formic acid (FA)
was 2:1. The PCL solutions in AA and FA were stirred at 25 ◦C for 24 h and then sub-
jected to electrospinning with 20 cm long wired electrodes using a Nanospider™ NSLAB
500 machine (ELMARCO, Liberec, Czech Republic). The applied voltage was 50 kV. The
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distance between the electrodes was set to 100 mm. The as-prepared and non-treated PCL
nanofibers are referred to in the text as PCL-ref.

2.2. Plasma COOH Coating

The Ar/CO2/C2H4 plasma polymerization methodology is described in detail else-
where [37,40]. Briefly, the COOH plasma polymer layers were deposited onto Si wafers and
PCL nanofibers using a UVN-2M vacuum system equipped with rotary and oil diffusion
pumps. The residual pressure in the reactor was below 10−3 Pa. The plasma was ignited
using a radio frequency (RF) Cito 1310-ACNA-N37A-FF power supply (Comet, Flamatt,
Switzerland) connected to an RFPG-128 disk generator (Beams and Plasmas, Russia) in-
stalled in the vacuum chamber. Duty cycle and RF power were set to 5% and 500 W,
respectively. CO2 (99.995%), Ar (99.998%), and C2H4 (99.95%) were fed into the vacuum
chamber. The gas flow of Ar was set to 50 sccm, while the flows of CO2 and C2H4 varied
in the ranges from 20 to 40 and from 5 to 25 sccm, respectively. They were controlled
using a 647C Multi-Gas Controller (MKST, Newport, RI, USA). The chamber pressure was
measured with a VMB-14 unit (Tokamak Company, Dubna, Russia) and D395-90-000 BOC
Edwards controllers. The distance between the RF-electrode and the substrate was set to
8 cm. The deposition time was set to 15 min. The samples with CO2:C2H4 ratios of 40:5,
35:10, 35:15, 25:20, and 20:25 were prepared and investigated. They are denoted according
to the CO2:C2H4 flows ratio.

2.3. Characterization of Samples

The samples morphology was examined by scanning electron microscopy (SEM).
SEM analysis was carried out with a JSMF 7600 microscope (JEOL Ltd., Tokyo, Japan)
equipped with an energy-dispersive X-ray spectrometer. To compensate for surface charge,
the samples were coated with a ~5 nm thick Pt layer. The average NFs diameter was
determined using the ImageJ software based on 100 measurements.

The sample chemical characterization was performed by X-ray photoelectron spec-
troscopy (XPS), energy-dispersive X-ray spectroscopy (EDXS), and Fourier-transformed in-
frared (FTIR) spectroscopy. The XPS analysis was carried out using a PHI5500VersaProbeII
instrument (PHI) equipped with a monochromatic Al Kα X-ray source (hν = 1486.6 eV)
at a pass energy of 23.5 eV and X-ray power of 50 W. The spectra were fitted using the
CasaXPS software after subtracting the Shirley-type background. The maximum lateral
resolution of analyzed area was 0.7 mm. The binding energies (BEs) for all carbon and
oxygen environments were taken from the literature [26,41–43]. The BE scale was calibrated
by setting the CHx component at 285 eV. FTIR spectra (100 scans) in the spectral range from
370 to 4000 cm−1 were recorded in increments of 4 cm−1 on a Vertex 80v FTIR spectrometer
(Bruker, Billerica, MA, USA) with a parallel beam transmittance accessory. The spectra
were collected at room temperature (20–25 ◦C). The maximum lateral dimension of the
analyzed area was 0.7 mm.

The sample wettability was assessed by measuring the water contact angle (WCA).
The measurements were carried out on an Easy Drop Kruss (KR
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2.4. Cell Tests

Human MSCs (4–6 passages) were taken from the culture bank of Research Institute of
Clinical and Experimental Lymphology (RICEL), a branch of the Institute of Cytology and
Genetics, Siberian Branch of the Russian Academy of Sciences, which were extracted from
the bone marrow as described elsewhere (the study was approved by the Ethics Committee
of the RICEL-branch of ICG SBRAS (No 115 from 24 December 2015) [44]. Cells were
cultured in DMEM/F12 Medium (Sigma Aldrich, Paisley, UK) and supplemented with 10%
fetal bovine serum (FBS, Gibco, Carlsbad, CA, USA) under standard culture conditions
(humidified atmosphere, 5% CO2 and 95% air, at 37 ◦C). Cells were seeded on round-shaped
(5 mm diameter) scaffolds at a concentration of 20 × 103 cells in a volume of 20 µL. Cell
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adhesion after 2 h was assessed by cell area after phalloidin staining of cell actin filaments
(short-time adhesion). Hoechst staining of cell nuclei was used to count cells and identify
apoptotic cells by nuclear morphology. Cell proliferative activity was assessed using the
Click-iT™ EdU Cell Proliferation Kit for Imaging (ThermoFisher Scientific, Eugene, OR,
USA) according to the manufacturer’s protocol recommendations.

An IN Cell Analyzer 2200 (GE Healthcare, Amersham, UK) was used to perform
automatic imaging of six fields per well at 200 (for cell counting and determination of
the average cells size, the entire surface of round-shaped (5 mm diameter) scaffolds was
photographed, in 3 repeats) and 600 magnification (for better visualization of the shape
of cells and the nature of the formation of active filaments) in fluorescence channels.
The resulting images were used to analyze cell number and cell area using the IN Cell
Investigator software (GE Healthcare, Amersham, UK).

3. Results
3.1. The Morphology and Wettability of Ar/CO2/C2H4Plasma Polymerized Layers

The SEM micrograph of sample PCL-ref (Figure 3a) revealed a homogenous structure
of randomly oriented PCL nanofibers with an average diameter of 228 ± 37 nm. The
deposition of Ar/CO2/C2H4 plasma polymer layers led to only a slight increase in fiber
diameters (Figure 3b–d). The mean diameter nanofibers coated by the Ar/CO2/C2H4
layers deposited at CO2:C2H4 ratios of 35:15, 25:20, and 20:25 was 294 ± 98, 249 ± 48, and
312 ± 123 nm, respectively. After deposition of the polymer layer, the morphology of the
nanofibers and their smooth surface were preserved.
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The PCL-ref showed a WCA of 117 ± 1.3◦, which corresponds to a hydrophobic surface.
The deposition of Ar/CO2/C2H4 plasma polymerized layers led to significant changes
in surface wettability. The deposition of plasma polymerized layers at low CO2:C2H4
ratio led to a very slight decrease in WCA from 117 ± 1.3◦ to 103.5 ± 9.2◦ (Figure 4). An
increase in CO2:C2H4 from 0.8 to 1.25 allowed one to reduce the WCA to 44.0 ± 4.6◦, and
further increase in this ratio led to super hydrophilic surfaces with a WCA of 7.4◦. It is
most likely that these large WCA variations are associated with the surface chemistry of
the deposited layers.
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3.2. The Control of Surface Chemistry by Adjustment of Precursor’s Ratio
3.2.1. FT-IR Results

According to the FTIR spectra presented in Figure 5, the Ar/CO2/C2H4 plasma
polymerized layers exhibited the features of hydrocarbons and carboxylic acid/ester groups.
The peak at 1730 cm−1 is assigned to C=O stretching of the carboxylic acid or ester groups.
The peaks located at 2885, 2935, and 2975 cm−1 are attributed to C-H2 asymmetric stretching,
C-H3 asymmetric stretching, and CH2/CH3 symmetric stretching, respectively. The peaks
at 1450 and 1380 cm−1 are attributed to H-C-H bending vibrations. Although all the above-
mentioned features are clearly visible for all FT-IR spectra regardless of plasma conditions,
some trends related to the CO2:C2H4 ratio are also evident. The intensity of the CH2 and
CH3 peaks decreases with an increase in the CO2:C2H4 ratio, while the C=O peak gains its
intensity. To demonstrate the effect of CO2:C2H4 ratio on different incorporation of C(O)O
and C-H groups, we plotted the ratio of the integrated intensities (area under the peaks) of
the C-H (ICH) and C=O (IC=O) peaks as a function of the CO2:C2H4 ratio (Figure 6). The
results for layer deposited at 40:5 ratio was not used due to very noisy spectra. There is
a clear trend towards an increase in IC=O/ICH, with increasing QCO2/QC2H4 over a wide
range of CO2:C2H4 ratios. This trend was further confirmed by XPS analysis.
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3.2.2. XPS Results

XPS analyses performed on both Si wafers and PCL nanofibers revealed that all
samples were composed of only carbon and oxygen. As shown in Table 1, carbon and
oxygen concentrations correlate with the CO2:C2H4 ratio, and the oxygen percentage
increases with QCO2/QC2H4. This is not surprising, since an increase in plasma CO2
concentration increases the content of oxygenated species. To understand how the carbon
environment correlates with the CO2:C2H4 ratio, the XPS C1s curve was fitted.
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Table 1. Composition of samples (in at. %) derived from the XPS analysis.

CO2:C2H4Ratio O C

25:20 (Si wafer) 9.7 90.3
20:25 (Si wafer) 22.5 77.5
35:15 (Si wafer) 27.7 72.3
35:10 (Si wafer) 30.8 69.2

20:25 (PCL) 24.6 75.4
35:15 (PCL) 27.5 72.5

PCL-ref 26.1 73.9

All samples were deconvoluted using five components: hydrocarbons CHx
(BE = 285.0 eV, used for BE scale calibration, FWHM = 1.4 ± 0.1), carbon neighbored
to carboxylic acid or ester group C*-C(O)O (BE = 285.5 ± 0.05 eV, FWHM = 1.3 ± 0.15),
carbon singly bonded to oxygen C-O(BE = 286.55 ± 0.05 eV, FWHM = 1.4 ± 0.15), carbon
doubly bonded to oxygen C=O/O-C-O (BE = 287.9 ± 0.1 eV, FWHM = 1.4 ± 0.1), and ester
carbon or carboxylic group C(O)O (BE = 289.0 ± 0.05 eV, FWHM = 1.35 ± 0.05). The curve
fitting and concentrations of all components are shown in Figure 7.
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The layer deposited at lowest CO2:C2H4 ratio (20:25) shows a C1s spectrum with a
dominating CHx contribution (62.4%) and a very low C(O)O concentration. An increase in
the CO2:C2H4 ratio from 20:25 to 25:20 led to a significant decrease in the CHx component,
and it further decreased for the layers deposited at 35:15 (46.1%) and 35:10 (39.9%). The
C(O)O component increased almost 3 times, changing the ratio from 20:25 to 35:10. The



J. Compos. Sci. 2022, 6, 193 10 of 18

dependence of C(O)O concentration on CO2:C2H4 is plotted in Figure 6. It is similar to
that observed for the IC=O/ICH ratio as a function of CO2:C2H4. Therefore, both FTIR
and XPS revealed similar influence of the plasma gas composition on the layer chemistry.
The observed difference in the surface chemistry also correlated with the WCA results.
Indeed, the layer deposited at 20:25 exhibited a high WCA due to the predominance of
hydrocarbon environment. An increase in the concentration of oxygenated species in the
plasma allowed one to deposit a layer with higher concentrations of C(O)O and other
oxygenated components, which led to a significant decrease in the water contact angle.
Thus, by simply adjusting the CO2:C2H4 ratio, we were able to synthesize layers with
similar morphologies but very different surface chemistries and wettability.

It is worth noting that the elemental and functional compositions of the Ar/CO2/C2H4
plasma polymer layers deposited onto Si wafers and PCL nanofibers were very similar
(Table 1). To conform the successful surface functionalization of PCL nanofibers, the C1s
XPS spectra of PCL-ref and Ar/CO2/C2H4 plasma polymerized layer deposited with a
CO2:C2H4 ratio of 35:15 iscompared in Figure 8.
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Figure 8. XPS C1s spectra of PCL-ref (a) and plasma polymerized Ar/CO2/C2H4 layer deposited at
CO2:C2H4 ratio of 35:15 onto PCL nanofibers (b).

To confirm that a layer deposited onto PCL nanofibers would have the same functional
composition as on Si and would uniformly coat the nanofibrous morphology, we performed
XPS analyses on PCL-ref and PCL nanofibers coated with a plasma layer. The XPS C1s
spectrum of PCL-ref was fitted with a sum of three components, namely hydrocarbons
CHx (BE = 285 eV), ether group C-O (BE = 286.4 eV), and ester group C(O)O (BE = 289.0 eV)
(Figure 5a). The full width at the half maximum (FWHM) of C-O was set to 1.35 eV, while
the FWHMs of CHx and C(O)O components were 1.1 and 0.95 eV, respectively.

The C1s XPS spectrum of plasma polymerized layer obtained at CO2:C2H4 = 35:15
was fitted with the sum of five components: hydrocarbons CHx (BE = 285.0 eV, used
for BE scale calibration), carbon neighbored to carboxylic acid or ester group C*-C(O)O
(BE = 285.5 ± 0.05 eV), carbon singly bonded to oxygen C-O (BE = 286.55 ± 0.05 eV),
carbon doubly bonded to oxygen C=O/O-C-O (BE = 288.0 ± 0.05 eV), and carbon of ester
or carboxylic group C(O)O (BE = 289.2 ± 0.03 eV). The concentrations of all components
are reported in Figure 8.

3.3. Biological Tests of Plasma Polymers with Varying COOH Density

Surface modification is an effective tool for improving the interaction between cells
and biomaterial. To assess the effect of surface modifications on the functional activity of
cells, first of all, the adhesion of MSCs to the studied surfaces was determined. The actin
cytoskeleton plays an important role in the regulation of cellular activity. The dynamic reg-
ulation of cytoskeletal synthesis, remodeling, and function is critical to many physiological
processes and is integral to successful regeneration. In the presented work, the dynamics



J. Compos. Sci. 2022, 6, 193 11 of 18

of the actin cytoskeleton, the formation of lamellipodia and actin-rich filopodia, as well
as actin-rich areas at the site of cell contact with the surface and the cells’ spreading area,
were evaluated.

The spreading area of the cells was estimated 2 h after their seeding on the nanofibers
by Phalloidin staining of actin filaments. The results obtained indicate that the cell area
was maximal on the PCL-ref sample (Figure 9). However, it was noted that there are
many pieces of cell membranes on the untreated fiber (white arrows on the photo), which
indicates weak cell adhesion, followed by their detachment from the surface.We suggest
that these cells, trying to attach to the hydrophobic surface, grope for suitable sites, which
leads to the formation of lamellipodia and actin-rich filopodia (Figure 10).
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Figure 9. The average areas of MSCs (A) and number of adherent cells (B) measured on different
samples: PCL-ref (untreated nanofibers), nanofibers coated by Ar/CO2/C2H4 plasma polymers
at a CO2:C2H4ratios of 35:15, 25:20, and 20:25. The adhesion of cells was assessed by cell area by
phalloidin staining of cell actin filamentsafter 20 min (short-time adhesion). Hoechst staining of the
cell nucleus determined the number of cells. ** p ≤ 0.1, * p ≤ 0.5.
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Further, the number of cells and their proliferative activity were evaluated after
culturing them on the studied surfaces for 72 h. It was shown that the initial defective
contact of the seeded cells with the PCL-ref surface affected their subsequent survival and
proliferation. After 72 h, cells survived only in cell islands, apparently due to the secretion
of growth factors and adhesion molecules by the cells themselves (Figure 11). In turn, cells
seeded on the PCL nanofibers coated by plasma layers at CO2:C2H4 ratios of 35:15 and
25:20 were characterized by a smaller spreading area; there are actin rich areas detected
upon contact of the processes of the cellular cytoplasm with the surface. This may indicate
the formation of good adhesive contacts, andthey were evenly distributed over the entire
sample surface (Figure 10). Samples with a high CO2:C2H4 ratio showed a network of
well-defined actin microfilaments. Part of the cells had an elongated shape and stress fibrils
of most cells began to spread after only 2 h (Figure 10).
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Figure 11. Proliferation and viability of human MSCs on the surface of PCL-ref and nanofibers coated
with Ar/CO2/C2H4 plasma polymer at a CO2/C2H4 = 35:15. The cell nucleus is stained with DNA
binding fluorescent dye Hoechst 33342 (blue), the proliferating cells are stained with EdUAlexa
Fluor™ 488 (green). All images are shown at ×20 magnification.

Nanofibers obtained at a low CO2:C2H4 ratio of 20:25 exhibited poor cell adhesion and
low cell survival. There were significantly fewer cells on the surface and they had a small
spreading area and actin filament networks, while stress fibrils were almost not observed
(Figure 10). The estimated values of the cell area are summarized in Figure 9a.

Analysis of the number of adherent cells showed that the sample obtained at
CO2:C2H4 = 35:15 contained the largest number of live, well-adhered cells (Figure 9b).
It was noted that the number of cells on the PCL-ref 2 h after seeding was comparable to
samples CO2:C2H4 ratio of 20:25, however, Hoechst staining of the nuclei showed hyper
condensation of chromatin, a decrease in size and a violation of the shape of nuclei, which
indicates apoptotic cell death. This fact is confirmed by the low total number of cells on the
PCL-ref sample after 3 days of cultivation (Figure 12).
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Figure 12. (A) The percentage of proliferating cells (calculated as the ratio of EdU-positive cells to
the total number of Hoechst-positive) and (B) Cell count on different samples: PCL-ref (untreated
nanofibers), nanofibers coated by Ar/CO2/C2H4 plasma polymers at a CO2:C2H4 ratios of 35:15,
25:20, and 20:25. ** p ≤ 0.1, * p ≤ 0.5.

The maximum percentage of proliferating cells was recorded at a CO2:C2H4 ratio of
35:15 compared to 25:20 and 20:25 (24.1 ± 1.5, 8.4 ± 0.9, and 4.1 ± 0.4%, respectively).
Interestingly, no differences were found between the number of cells on the untreated
surface and with the polymer layer obtained at a CO2:C2H4 ratios of 20:25 (4.9 ± 0.6 and
4.1 ± 0.4, respectively).

4. Discussion

Studies of cellular activity and response to various surface modifications of materials
are a necessary element of fundamental research in the development of biomedical products.
Biocompatibility refers to the ability of nanomaterials (scaffolds) to maintain appropriate
cellular activities, including stimulation of molecular and mechanical signaling systems.
Surface properties affect morphology, adhesion, proliferation, migration, differentiation,
gene expression, and cell metabolism [41]. In general, cells can sense surface topography
and align with filopodia. Cytoskeletal actin bundles govern filopodia, which become
stable when they encounter favorable surface features. The cell adhesion depends not
on only on the surface topography, but more importantly on the surface chemistry, as
was shown in numerous research publications [9,45–48]. However, here, we have shown
how tremendous changes in cell adhesion and proliferation can be modulated simply by
adjusting the concentration of the same surface groups.

If we summarize all our data on the surface properties of Ar/CO2/C2H4 plasma poly-
mer layers (IC=O/ICH intensity ratios or concentration of C(O)O contribution), we can see a
very clear dependence of the influence of chemical group concentrations on cell adhesion
and proliferation. Figure 13 summarizes the number of cells and the percentage of prolif-
erative cells, and we clearly see the positive effect of COOH-rich layers (Ar/CO2/C2H4
plasma polymers) on both parameters. A slight decrease for layers with a low COOH
densities may be due to the transition from hydrophobic to hydrophilic surface, which
leads to loss of protein adhesion due to loss of hydrophobicity. At the same time, poor
concentration of COOH groups is not enough to compensate for this effect thanks to COOH
(layer)-NH2 (protein) interactions.
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Thus, we have demonstrated that a larger number of cells adhere to the hydrophobic
PCL-ref surface and their area is much larger than on more hydrophilic surfaces. After
initial adhesion, lamellopodia are formed, moving the cells to the right place. Actin then
accumulates within the cell, and filopodial tips form from the nascent focal adhesion points.
On surfaces with low adhesive activity, cells cannot find a suitable place for adhesion. This
effect was observed earlier [49], and this is a feature of MSCs. It has been shown that for
cell proliferation on a hydrophobic surface, intercellular interactions are necessary, while
on a superhydrophilic surface, cells adhere and proliferate immediately after seeding [50].
In our earlier studies, we showed that no such effect was found on fibroblasts [51].

Apparently, since MSCs are the precursors of many cell types, their ability to migrate
and survive under various conditions differs from differentiated cells (fibroblasts). It has
been noted that cells on such hydrophobic surfaces survive exclusively in islets, where they
apparently synthesize the components of the extracellular matrix themselves. However,
on more hydrophilic surfaces, cells grow evenly. It should be noted that surface signals
can cause cells to take on forms corresponding to certain cytoskeletal organizations, which
may play an intracellularly role in transduction or enhance some signaling pathways that
others do not. These differences may determine the fate of stem cells. Recently, some
work has focused on controlling the fate of stem cells through materials design. Therefore,
in the future, it is possible to study the effect of various plasma treatment modes on the
differentiation potential of MSCs. The difference in the nature of adhesion of different types
of cells is also confirmed by other authors [52].

It is generally accepted that cellular responses to a biomaterial are mediated not
only by direct contact, but also by an interfacial layer formed on the material surface
upon contact with the physiological environment. This interfacial layer is the result of
competitive adsorption of proteins from the milieu onto the material surface and depends
on the adsorption of proteins as a first step. The protein layer determines the type and
extent of subsequent responses [45]. Protein binding may be permanent or temporary, and
under certain conditions proteins may be reversibly or irreversibly denatured due to the
formation of multiple surface bonds. This situation leads to the breaking of internal bonds
within proteins, which leads to denaturation [53]. Perhaps this can explain the fact that,
at the maximum number of COOH groups in our study, poor cell adhesion and survival
were observed.
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5. Conclusions

Ensuring good cell adhesion and proliferation to the surface of biodegradable polymers
is a challenge. Addressing this important problem, we analyzed the scientific literature
and chose the most effective surface treatment method, polymer, and cell types. The most
important obtained results can be summarized as follows.

Plasma polymerization in an Ar/CO2/C2H4 atmosphere has been successfully applied
to synthesize active surface layers with different densities of COOH groups by controlling
the CO2:C2H4 ratio. This method made it possible to deposit a polymer layer with different
percentages of C(O)O groups from 5.1 to 14.4%. The water contact angle of polymer layers
deposited on PCL nanofibers varies from ~100 to 9◦. The adhesion and proliferation of
MSCs seeded onto plasma-modified PCL nanofibers was controlled by the composition
and wettability of the deposited plasma-polymerized layers. In a sample prepared at a
high CO2:C2H4 ratio, MSCs show a network of well-defined actin microfilaments. Some of
the cells have an elongated shape, and the stress fibrils of most cells begin to spread and
form actin rings after 2 h. Nanofibers with a polymer layer obtained at a low CO2:C2H4
ratio (20:25) demonstrate poor cell adhesion and very poor survival. There are much fewer
cells on the surface; they have a small spreading area and an undeveloped network of
actin filaments, while stress fibrils are almost not observed. The maximum percentage
of proliferating cells was recorded for a sample obtained at a CO2:C2H4 ratio of 35:15
compared to other environments, 25:20 and 20:25 (24.1 ± 1.5, 8.4 ± 0.9, and 4.1 ± 0.4%,
respectively). Interestingly, no differences are observed between the number of MSCs
on the untreated surface and the polymer film deposited at a CO2:C2H4 ratio of 20:25
(4.9 ± 0.6 and 4.1 ± 0.4, respectively). Thus, plasma polymerization in an Ar/CO2/C2H4
atmosphere can be considered as an excellent tool for regulating the viability of MSCs by
simply adjusting the CO2:C2H4 ratio.
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