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Abstract: The AC conductivity response of disordered materials follows a universal power law of
the form σ′(ω) ∝ ωn at the low frequency regime, with the power exponent values in the range
0 < n < 1. At the high frequency regime, in many experimental data of different disordered materials,
superlinear values of the power exponent n were observed. The observed superlinear values of the
power exponent are usually within 1 < n < 2, but in some cases values n > 2 were detected. The
present work is based on the definitions of electromagnetic theory as well as the Havriliak–Negami
equation and the damped harmonic oscillator equation, which are widely used for the description of
dielectric relaxation mechanisms and vibration modes in the THz frequency region, respectively. This
work focuses mainly on investigating the parameters that affect the power exponent and the range of
possible n values.

Keywords: AC conductivity; vibration modes; disordered materials; composite materials; simulation

1. Introduction

The alternating current (AC) conductivity, as described by the real part, σ′(ω), of
the complex electrical conductivity σ∗(ω) = σ′(ω) + jσ′′ (ω), presents similar behavior in
various kinds of disordered conductive materials such as polymers, composites, semicon-
ductors, ionic glasses, and ceramics. AC conductivity σ′(ω) has a universal form, given
by the relation σ′(ω) ∝ ωn, where ω denotes the angular frequency and n is a power
exponent which, at the low frequency regime, takes values 0 < n < 1 [1,2]. The previous
relation is known as the universal dynamic response (UDR). Several theoretical approaches
have been developed in order to interpret this behavior [3–9]. It has been also reported
in various theoretical approaches that the value of exponent n has a unique value close to
0.7 [10–13]. Let us note that values of n > 1 have also been reported, for different types of
disordered materials subjected to dielectric measurements at the low frequency regime,
below 10 MHz [14–23].

In a previous work it was shown that cases where the power exponent n gets values in
the range 0 < n < 1 could be directly related to the contribution of mobile charges if, in the
frequency spectrum under study, they contribute only the direct current (DC) conduction
and the slowest polarization mechanism, due to the charge motions within sort length
scales [24]. Apparent n values in the range 1 ≤ n ≤ 2, for a relatively narrow frequency
range, should be attributed to an additional molecular dipolar relaxation contribution that
takes place at higher frequencies [24]. Between two well-separated dielectric mechanisms,
with a clear shallow minimum in the imaginary part of complex permittivity ε*, the appar-
ent power exponent n can take values higher than 1 for a relatively extended frequency
range [24].

At the high frequency regime and especially in the GHz to THz frequency region, in
many experimental data of different disordered materials, values of power exponent n
equal to or higher than 1 were detected [25–29]. A nearly linear increase of σ′ at higher
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frequencies, corresponding to near constant losses (NCL), has been also reported [11,30].
However, measurements extending up to high frequencies or to low temperatures reveal
a superlinear behavior of the power exponent, n > 1 [26,27]. Usually, the observed
superlinear values of the power exponent are within 1 < n < 2, but it should be mentioned
that in glycerol and for lower temperatures the increase of the imaginary part of the complex
dielectric constant, ε′′ , follows a power law ω3 at the 400–900 GHz frequency region [31],
which implies a value of power exponent of n = 4. This is one of the higher values of
power exponent of AC conductivity which has been detected in the respective frequency
range to the best of our knowledge. On the other hand, the higher frequency range is an
interesting region for the study of promising materials for microwave applications [32,33].
The combination of different compounds which have excellent microwave properties leads
to new composite materials which have earned great technological interest in recent years,
while the addition of a second phase can significantly improve the electronic properties of
the resulting composite material [34,35].

The present work is based on the definitions of electromagnetic theory as well as
the Havriliak–Negami (HN) equation and the damped harmonic oscillator (DHO) equa-
tion, which are widely used for the description of dielectric relaxation mechanisms and
vibration modes in the THz frequency region, respectively. The purpose of the present
work is to investigate and to discuss the frequency dependent AC conductivity at higher
frequency regimes—up to lower frequencies of far infrared (FIR) spectra—in disordered
and composite materials. The power exponent, n, is a crucial parameter that characterizes
the AC conductivity response of the materials. This work focuses mainly on investigating
the parameters that affect the power exponent and the range of possible n values. This
study has been based on fitting the data and performing calculations and simulations in
polymeric and glassy systems.

2. Theoretical Definitions and Relations

The complex electrical conductivity, σ∗(ω), is related to the complex dielectric constant,
ε∗(ω) = ε′(ω)− jε′′ (ω), through the relation:

σ∗(ω) = jωεoε∗(ω) (1)

If the direct current (DC) conductivity, σo, is subtracted from ε*(ω) then Equation (1) becomes:

σ∗(ω) = σo + jωεoε∗d(ω) (2)

where ε∗d(ω) represents the complex dielectric constant caused only from dielectric losses mech-
anisms.

For the description of dielectric losses mechanisms, the HN equation is used [36]:

ε∗d(ω) = ε∞ +
∆ε

(1 + (jωτ)α)
β

(3)

where ε∞ is the dielectric constant at the high frequency limit, ∆ε is the dielectric strength
and τ is a characteristic relaxation time related to a characteristic frequency ωHN via
the relation ωHNτ = 1. The characteristic frequency ωHN is connected to the loss peak
frequency ωmax via the relation ωmax = AωHN where A is a constant depending from
shape parameters α and β [36].

Consider a conductive disordered material which is characterized, in the frequency
spectra under study, only by the contribution of DC conductivity, σo, and a dielectric
dispersion. In this case, the real part of the complex conductivity as extracted from
Equations (2) and (3), is given by the relation:

σ′(ω) = σo + εoωε
′′
d(ω) (4)



J. Compos. Sci. 2022, 6, 200 3 of 10

In the case σo ≥ εoωε
′′
d(ω) at frequencies ω ≤ ωHN , then at ω > ωHN as ω increases

Equation (5) is written [24]:

σ′(ω) ∼= σo + εoωHN
αβ∆ε sin(αβπ/2)ω1−αβ (5)

Equation (5) expresses what usually is observed and describes the majority of AC
conductivity response in disordered materials. The power exponent n = 1-αβ takes values
in the range 0 < n < 1. DC charge mobility, in disordered materials, always results
in a polarization process, which is due to the charge motions within short length scales
according to the Random Barrier model [10]. This polarization mechanism obeys the Barton,
Nakajima and Namikawa (BNN) relation and it is usually masked by DC conductivity
effects or it appears as a shoulder [37]. Thus, the faster components of the polarization
mechanism form the value of high frequencies slope of AC conductivity and are related to
the short-range charges motion.

In the case σo < εoωε
′′
d(ω) at frequencies ω ≤ ωHN , for several orders of frequency

magnitude, then Equation (4) in the frequency range ω ≤ ωHN is written as [24]:

σ′(ω) ∼= σo + εoωHN
−α∆εβ sin(απ/2)ω1+α (6)

This situation could take place only if the HN dispersion characterizes molecular
dipolar relaxations [24]. The power exponent of AC conductivity is equal to 1 + α and it
should take values in the range 1 < n ≤ 2, for a restricted frequency range. Thus, in the
previous situation the slower components of the molecular dipolar dispersion form the
value of the high frequencies slope of AC conductivity. Also, it should be mentioned that in
the case of the existence of two dispersions, the suitable coupling of HN parameter values
can lead to an apparent NCL in a relatively extended frequency range, giving rise to a
power exponent value close to 1 [24].

The DHO equation is widely used to describe the dielectric response of the higher
frequency vibration modes. In this case, the complex dielectric constant is given by the
following equation [38]:

εV
∗(ω) = ε∞ +

A
ω02 −ω2 + jωγ

(7)

where ε∞ is the high frequency dielectric constant, ωo is the resonance frequency, A is the
oscillator strength and γ is the damping constant.

3. Results and Discussion

Usually, at the lower frequency regime, the main contributions to the total losses are
the conduction losses due to the free charge carriers and the rotational type losses due
to dipoles or dipole-like processes. At higher frequencies, in the range of few THz, the
contributions from vibration modes usually take place [38–44]. These modes are expected
to affect the lower frequency regime [26,29]. The DHO equation is widely used to describe
the dielectric response of vibration modes of various materials [38,41–44]. The imaginary
part of the DHO equation is given by the relation:

ε
′′
V =

ωγA

(ωo2 −ω2)2 + ω2γ2
(8)

At ω << ωo the frequency dependence of dielectric losses is ε
′′
V ∝ ω, and the AC

conductivity behaves as σ′V(ω) ∝ ω2, based on Equation (2). Therefore, the predominance
of the vibration mode term εoωε

′′
V(ω) against the other low frequency contributions tends

to form a slope close to 2 at the extra high frequency range of GHz, in log σ′ − log ω plots.
In order to determine the effect of vibrational modes in the AC conductivity response up to
FIR frequency range, simulations have been made based on the following relation:

σ′(ω) = kσo + lεoωIm[HN] + mεoωIm[DHO] (9)
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where k, l, m = 0 or 1, while Im [HN] and Im [DHO] denote the imaginary part of
Equations (3) and (7) respectively.

Figure 1 describes the AC conductivity response, where the DC conductivity, one
dielectric relaxation at the low frequency regime, and one vibration mode were included
(for details see Figure 1 caption). As shown in Figure 1, the high frequency slope remains
constant at a value of n = 1-αβ = 0.67 for the curve (a) that corresponds to the case k = l = 1
and m = 0 where the vibration mode is absent. For the case k = l = m = 1, the dielectric effect
from one vibrational mode is also included in Figure 1 (curve (b)). Typical values close
to those of the literature were used for the parameters of Equation (9) [41–43]. Deviation
from the value of n = 0.67 begins to occur for frequencies higher than 1 GHz in curve (b),
for the particular parameter values. In what follows, the lower frequencies of FIR range,
300–600 GHz, was selected as the reference range for the calculation of the power exponent
n of AC conductivity. The slope at the GHz region gradually increases and reaches a value
of 1.92 at the frequency range of 300–600 GHz, well below the resonance peak at 2.5 THz.
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= 1, β = 0.32, Δε = 4.63, fHN = ωΗΝ/2π = 637 (Hz), γ/2π = 2 × 1012 (Hz), A/(2π)2 = 1 × 1024 (Hz2) and 
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Figure 1. Simulation curves according to Equation (9) with parameter values: σo = 3.48 × 10−7 S/m,
α = 1, β = 0.32, ∆ε = 4.63, fHN =ωHN/2π = 637 (Hz), γ/2π = 2 × 1012 (Hz), A/(2π)2 = 1 × 1024 (Hz2)
and ωo/2π = 2.5 × 1012 (Hz). (a) Simulation curve of Equation (16) with k = l = 1 and m = 0.
(b) Simulation curve of (16) with k = l = m = 1. (c) Simulation curve of Equation (9) with k = 0 and
l = m = 1.

Table 1 shows the power exponent of AC conductivity value at the frequency range
300–600 GHz, for various parameters values of Equation (7), according to Equation (9).
The power exponent n presents superlinear behavior with values ranging from 1.23 up
to 2, as shown in the same table. For the same value of ωo, the increase of A (or γ) leads
to an increased value of power exponent in the respective frequency range. Also, for
the same values of parameters γ and A, as the characteristic frequency ωo increases, the
power exponent decreases in the respective frequency range. The simulation curves of
Equation (9), which include the contribution of one vibration mode as described from the
DHO equation, give superlinear values of the power exponent at the lower frequencies
of the FIR range. The power exponent values depend on the correlation of the dynamic
characteristics of the vibration modes. It should be noted here that, theoretically, the
existence of one Debye relaxation or Cole–Davidson dispersion (α = 1) at THz frequency
region could have a similar effect on the power exponent in the GHz frequency range.
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Table 1. The power exponent of AC conductivity at frequency range 300–600 GHz for various
parameters values of Equation (8), according to Equation (9). The values of the rest parameters of
Equation (9) were keeping constant as those of Figure 1.

γ/2π (THz) A/(2π)2 (THz2) ωo/2π (THz) n

2 3 2.5 2.00
2 1 2.5 1.92
2 3 5.0 1.46
1 3 5.0 1.23
1 1 2.5 1.82

Finally, it is useful to mention here a special case which usually characterizes the low
temperature response: the absence of DC conductivity contribution which corresponds to
the case k = 0 and l = m = 1 of Equation (9). In this case, there is a significant difference at
the lower frequency range in log σ′ − log ω plots as shown in Figure 1 (curve (c)). The slope
in the lowest frequency range is shaped by the low frequency regime of HN mechanism. At
this frequency region it is ε

′′
d ∝ ωα, and hence σ′(ω) ∝ ω1+α instead of the DC conductivity

plateau. In our case α = 1 and hence σ′(ω) ∝ ω2 (Figure 1, curve (c)).
The existence of an additional HN mechanism at the intermediate frequencies (MHz–

GHz) of Figure 1, can lead to a differentiation of the frequency dependence of the AC
conductivity. In this case, a remarkable effect on the slope of AC conductivity is expected.
Figure 2 shows the broad-band AC conductivity spectra of poly(p-phenylenediamine)
(PPDA) in which measurements in microwave (MW) and FIR frequencies are included [45].
In order to fit the data of Figure 2, Equation (9) is used with k = m = 1 and two HN terms.
According to the best fit, all data from lowest up to highest frequencies are described very
well as shown in Figure 2. In the same figure, a simulation curve without taking into
account the intermediate HN mechanism is presented. It is obvious that the existence of an
intermediate HN mechanism has a remarkable influence on the GHz frequency range as
shown in Figure 2.
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Figure 2. Experimental data of the AC conductivity as a function of frequency of poly(p-
phenylenediamine) (PPDA) (Data were taken from literature [45]). The blue line is the best fit-
ting according to Equation (9) with k = m = 1 and two HN terms, by keeping constant the DC
conductivity value, σo = 2.3 × 10−6 S/m. The fitting parameters’ values are: α1 = 1, β1 = 0.42,
∆ε1 = 114.5, fHN1 =ωHN1/2π = 49.0 (Hz), a2 = 1, β2 = 0.28, ∆ε2 = 2.1, fHN2 =ωHN2/2π = 410 (MHz),
γ/2π = 2.0 × 1012 (Hz), A/(2π)2 = 4.5 × 1024 (Hz2) and ωo/2π = 3.9 × 1012 (Hz). The red line is a
simulation curve according to Equation (9) with the previous parameter values and without the
second HN contribution.
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Let us see now the influence of vibrational modes on the MW frequency range in glass
material. Glass-forming systems are a special class of materials with specific characteristics
in their dynamic response. In these materials a loss peak shows up at some THz that
can be identified with the so-called boson peak. A variety of explanations of the boson
peak has been proposed, such as the soft potential model [46,47], phonon localization
models [48,49] and a model of coupled harmonic oscillators with a distribution of force
constants [50]. Also, the occurrence of the boson peak has been modeled within the mode-
coupling theory (MCT) [51]. Between the α-peak at lower frequencies and the boson peak,
obviously a minimum in ε′′ must exist, as found in a variety of dielectric spectroscopy
measurements. The experimental results indeed provide evidence for a fast process in
this region, as the spectral response near the minimum cannot be explained assuming a
simple superposition of α-peak, including excess wing contribution, and boson peak. This
frequency region was mainly stimulated by the MCT, which predicts that a fast process
will lead to significant additional contributions in this minimum region [52–55]. In the
frequency range ~1–300 GHz, the fast relaxation makes a noticeable contribution to the
dynamic response of glass-forming materials [56]. Figure 3 shows the AC conductivity
as a function of frequency of a lithium silicate glass at room temperature, which includes
measurements in MW and FIR frequencies [29]. The slope in the MW range from 1–3 GHz
is equal to 1.26. A sum of three terms, εoωiIm[DHO]i, were used for the best fitting of the
FIR data, which include the contribution of three vibration modes. In the same figure the
MW data after the subtraction of vibration modes contribution are also presented. The
slope of AC conductivity, in free FIR contribution data, is equal to 1.15 at the same MW
frequency range, a value which remains higher than unity. The only way to explain this
superlinear value of the power exponent of AC conductivity is the contribution of a low
frequency regime of a dielectric losses mechanism which present peak in ε′′ at frequencies
higher than 3 GHz. The existence of a well-defined shallow minimum in ε′′ gives rise to the
appearance of a superlinear value of n at the lower GHz frequency range [24], without the
FIR vibrational contribution. Therefore, the superlinear value of the power exponent of AC
conductivity in free FIR contribution data of Figure 3 should be attributed to the influence
of the fast relaxation.

Finally, it is important to point out that in some cases, depending on the DHO pa-
rameters correlation, it is possible to detect a power exponent of AC conductivity values
higher than 2 below the resonance frequency ωo. As mentioned previously, at ω << ωo
the frequency dependence of dielectric losses is ε

′′
V ∝ ω, and so the AC conductivity be-

haves as σ′V(ω) ∝ ω2. For frequency regions just below ωo, in some cases the dielectric
losses of vibration modes could have a frequency dependence ε

′′
V ∝ ωp, where p > 1, and

therefore the AC conductivity could behave as σ′V(ω) ∝ ω1+p according to Equation (2),
with a power exponent n value higher than 2. As an example, a simulation was carried out
based on the fitting parameters values of the higher frequency vibration mode of Figure 3.
Figure 4 shows the contribution of this vibration mode to dielectric losses as a function of
frequency, as well as the derivative of the function log ε′′ (log f ) which represents the slope
p. From frequency 1.77 THz (logf = 12.25) up to peak frequency 13.5 THz (logf = 13.13),
almost one order of magnitude, the slope gradually increases and take values in the range
between 1 and 6.3. Therefore, in the extended frequency region, just belowωo, the power
exponent of AC conductivity can take values higher than 2 in some cases, depending
on the correlation of DHO parameters values, γ and A. This finding could explain the
experimental data in glycerol [31] where the frequency dependence of ε′′ follows a power
lawω3 at 400–900 GHz leading to σ′V ∝ ω4.
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Figure 3. Real part of AC conductivity as a function of frequency of a lithium silicate glass. The
blue open symbols represent experimental data points of FIR (circles) and MW (squares) frequencies
(Data were taken from literature [29]). The blue solid squares represent MW data after the subtrac-
tion of FIR contribution. The red line is the best fitting of a sum of three terms εoωiIm[DHO]i.
The fitting parameters’ values are: γ1/2π = 1.12 × 1013 (Hz), A1/(2π)2 = 3.20 × 1025 (Hz2),
ωo1/2π = 1.94 × 1012 (Hz), γ2/2π = 9.71 × 1012 (Hz), A2/(2π)2 = 1.98 × 1026 (Hz2),
ωo2/2π = 9.89 × 1012 (Hz), γ3/2π = 3.79 × 1012 (Hz), A3/(2π)2 = 2.84 × 1026 (Hz2) and
ωo3/2π = 1.37 × 1013 (Hz).

Figure 4. The blue line (left axis) shows the frequency dependence of the imaginary part of com-
plex dielectric constant according Equation (9) with parameter values γ/2π = 3.79 × 1012 (Hz),
A/(2π)2 = 2.84 × 1026 (Hz2) and ωo/2π = 1.37 × 1013 (Hz) (higher frequencies vibration mode of
Figure 3). The red line (right axis) shows the corresponding slope of log ε′′ (log f ) curve.
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4. Conclusions

In the present work, the AC conductivity response at the high frequency regime is
investigated. The existence of vibrational modes, in the THz region, has a decisive influence
in the power exponent of AC conductivity values in the lower frequencies of the FIR range.
The vibrational modes contribution, as described from the DHO equation, results in the
gradual increase of the power exponent which leads to superlinear values, while at the
lower frequencies of FIR, well below the resonance frequency ωo, could approach values
up to 2. In these cases, the power exponent values depend on the dynamic characteristics
of the vibration modes and especially on the correlation of DHO parameter values. For a
relative extended frequency region, just below resonance frequency ωo, values of the power
exponent of AC conductivity higher than 2 cannot be excluded.
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