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Abstract: The radiation curing paradigm of opaque WS2 nanoparticle (NP)-based epoxy/acrylate
nanocomposites was studied and found to exhibit both a reduction in viscosity and an enhanced
degree of curing when incorporating WS2 NPs. The objective of this study was to investigate the
mechanical, thermal, and physical properties of a radiation-induced and cured epoxy/acrylate
blend containing 0.3 to 1.0 wt.% WS2 NPs. Experimental results indicate that the tensile toughness
increased by 22% upon optimizing the NP content compared to that of WS2-free formulations. Tensile
fractured surfaces with different WS2 NP contents were analyzed with a scanning electron microscope
and an atomic force microscope and showed distinctive morphology depending on the WS2 NP
content, supporting the results of the tensile test. The energy required to break shear adhesion
specimens demonstrated an increase of up to 60% compared to that of the neat resin. The glass
transition temperature determined by dynamic mechanical analysis presented similar or higher
values upon WS2 NP incorporation. Furthermore, up to 80% improvement in impact strength was
demonstrated when WS2 NPs were dispersed in the epoxy/acrylate blend. It was concluded that the
surface chemistry and dispersion level of the WS2 NPs are the major variables affecting the macro
properties of cationically radiation-cured resins and their adhesion properties. This study is the first
to demonstrate the possibility for radiation-induced curing of opaque NPs based on WS2 that serve as
both a reinforcement nanoparticle at low concentrations and an enhancement of the degree of curing.

Keywords: cationically polymerized epoxy; acrylate; nanocomposites; tungsten disulfide fullerenes;
radiation-induced curing

1. Introduction

Epoxy resins are widely used in a variety of industries due to their inherently good
mechanical properties and high adhesion Characteristics. Cationic curing (CC) of epoxies
based on the starting action of photo-initiators offers advantages compared to thermal
curing of epoxies, such as low energy for curing, rapid curing times, elimination of solvents,
and polymerization upon demand. CC epoxy cures through a ring-opening mechanism
(ROP) [1–7] that can be initiated by radical or cationic moieties [8,9] generated by photo-
cleavage of photo-initiators (PI). The photocleavage products generate a cationic moiety,
which initiates the ROP of the epoxy. The CC process is highly selective [8,10] as a re-
sult of the absorbance selectivity of the PI. The mechanisms of the curing by the PI were
depicted in the 1970s [11,12]. Due to inherent advantages of CC many studies were ded-
icated to augmenting the data base of monomers and PI [1,5,7,10,13–16], leading to its
use in adhesives, coatings, dental materials, and 3D printing [17–20]. To enhance their
toughness, nanoparticles (NPs) were incorporated into the CC epoxy resins. Reinforcing
thermally cured epoxies by NPs has been studied in the past [19–23]. Conversely, CC of
epoxy nanocomposites (NCs) is a relatively recent development compared to thermally
cured epoxies [2,3,19,20,24–27]. Toughening by NPs is realized by modifying the fracture

J. Compos. Sci. 2023, 7, 42. https://doi.org/10.3390/jcs7010042 https://www.mdpi.com/journal/jcs

https://doi.org/10.3390/jcs7010042
https://doi.org/10.3390/jcs7010042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcs
https://www.mdpi.com
https://orcid.org/0000-0003-4071-0325
https://orcid.org/0000-0003-1547-9125
https://doi.org/10.3390/jcs7010042
https://www.mdpi.com/journal/jcs
https://www.mdpi.com/article/10.3390/jcs7010042?type=check_update&version=2


J. Compos. Sci. 2023, 7, 42 2 of 15

mechanisms [28] by the dispersed NPs. Toughening is analyzed by thermal and mechanical
analyses as well as electron microscopy and atomic force microscopy [28–30]. Toughening
of epoxy-based CCNCs has been studied via impact or tensile properties [24,25] in addition
to the tribological properties [31]. It should be emphasized that the dispersion quality of the
NPs affects the mechanical and thermal properties, including the toughness of the result-
ing NCs [29,30,32]. Dispersion of the NPs is usually accomplished by high-shear mixing,
three-roll milling, sonication, and more [33]. In several studies, combinations of dispersion
techniques were employed in order to achieve maximum dispersion quality. According to
different reports, modification of the NPs surface chemistry may also affect the NCs final
properties and long shelf life [2]. Some reports showed that improved compatibility of the
NPs achieved through surface modification led to an improved dispersion quality but to
inferior mechanical properties of the NCs. In several reports, in-situ preparation of the
NPs during the resin-curing process led to their enhanced dispersion in the matrix [2,3].
Improvement of the mechanical properties by dispersing NPs has been well researched,
but significant challenges still remain, specifically for radiation-cured NCs.

The challenges of radiation-curing NCs are complex due to the requirement that the
irradiation penetrate through the entire volume of the resin film. In the case of a commercial
PI this is accomplished through the tuning of the PI concentration and thickness of the
photocured film. However, in the case of using NPs for the photocuring, the challenges are
appreciably greater. First, the NPs should be as low-agglomerated as possible, or else the
film will become optically non-uniform with abundant optical hotspots and consequently
non-uniform polymerization of the film. Furthermore, the strong light absorption and
scattering by the individual NPs requires that their concentration and film thickness must
be carefully tuned. In fact, the selected concentration may not be the optimal one for
simultaneously executing the photocuring process and achieving the reinforcement effect
of the matrix. Also, keeping viscosity of the resin with the NPs in acceptable levels for
molding/shaping of the final products is yet another challenge. Finally, minimizing the
content of NPs in order to resolve the above-mentioned shortcomings may result in poor
physical properties of the nanocomposite.

Once realizing how to overcome these challenges, significant property improvements
could be achieved by either introducing pristine or surface-treated NPs. Previously pub-
lished papers on tungsten disulfide (WS2)-based NCs reported a significant impact im-
provement accompanied by a higher Tg [28,32,34,35]. Owing to their small size, strong light
absorption, and high free carrier mobility, WS2 NPs are potent oxidizing agents with respect
to different photochemical reactions [36]. Since radiation-cured resins are of importance, it
was perceived that the opaque WS2 NPs can have a detrimental effect on their photocuring.
Given their known favorable influence on the mechanical and thermal stability of different
polymers, the masking effects of the WS2 NPs were studied, and unexpectedly, it was
found that WS2 fullerenes enhanced the degree of conversion (DC) when incorporated at
optimized levels in radiation-induced polymerization of epoxy/acrylate formulations (36).
This finding is the first to be reported for opaque WS2 in radiation-induced cured polymer
systems. These results led to the present study aimed at investigating the tensile toughness,
impact, and adhesion properties of WS2 NCs based on epoxy/acrylate CCNCs.

2. Materials and Samples Preparation
2.1. Materials

Epoxy resin (EPV 3420TX) was supplied by Polymer G, designated as PGE. EPV
3420TX without thermal additive was also supplied by Polymer G and will be designated
as PGEnTA. The resins were composed of aliphatic epoxy (45–50 wt.%), methyl acrylate
(8–10 wt.%), epoxy acrylate (15–18 wt.%), polyester polyol (15–18 wt.%), and fumed silica
NPs (4–6 wt.%). A special tri-photo-initiator blend (3–5 wt.%) was used, consisting of
sulfonium-based cationic PI, radical PI, and thermal cationic initiator. The latter was
removed for the PGEnTA resins. As can be seen, the resin is a hybrid epoxy/acrylate grade.
The acrylate portion was designed for rapid initial curing and the addition of fumed silica
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NPs was aimed to control the viscosity acrylate resin. These resins were designed to cure
in 395 nm wavelength irradiation by LED.

Inorganic fullerenes (IF), which are composed of hollow multi-layer nanoparticles
and abbreviated as IF-WS2 NPs, were obtained from two suppliers, WS2 NPs: WS2-TO
(prepared at the Weizmann Institute of Science in Israel). These NPs were synthesized and
used in Part A of this study [36]. The NPs have an average diameter of 80 nm with close to
a spherical shape and a hollow core. WS2-C was purchased (M K Impex Corp, Canada).
Sequential scanning electron microscopy (SEM) and powder X-ray diffraction (XRD) analy-
ses revealed that these NPs had an oval shape with many irregularities (defects) and the
interlayer spacing was 6.22 Å. The average particle size specified by the manufacturer is
90 nm (MKN-WS2-090).

The NPs were used as received and analyzed by a variety of methods, as summarized
in Table 1.

Table 1. Intrinsic properties of fullerene-like nanoparticles.

Comparison Criteria WS2-TO WS2-C

Geometry (d-space-interlayer layer spacing
according to XRD) Spherical (2θ = 14.1◦; 6.26 Å) Oval (2θ = 14.2◦; 6.22 Å)

Diameter 80 nm 90 nm
Moisture Content 6.7% weight loss 1.5% weight loss

pH value 4.9 7.2
Oxygen/Tungsten ratio by XPS 0.55 0.83

2.2. Dispersion and Distribution Techniques

Two distinct procedures were utilized to study the dispersion and distribution of the
WS2, comprising sonification/vortex and masterbatch preparation. Results were evaluated
by optical microscope (Coolpix MDC Lens by Nikon Japan). The optical microscope
resolution can identify NPs of 0.8 µm in size.

2.3. Sonication/Vortex Multistage Dispersion Technique

The NPs were initially ground by mortar and pestle and then added to the resin
in the desired quantity. A multistage combination was used employing a high-intensity
horn sonicator (Q700, Qsonica L.L.C, Newtown, CT, USA). Sonication resulted in good
dispersion. The distribution was accomplished by intensive vortex mixing (Wizard IR
Infrared Vortex Mixer, VELP Scientifica, Usmate, Italy) for a duration of 2 min at 3000 RPM.
Ice-cooling was employed during the multi-stage dispersion procedure in order to keep
the viscosity as high as possible under the high shearing rates used for the dispersion of
the NPs. Ice-cooling was also exercised for preventing pre-curing of the resins during
dispersion. Several repetitive stages were applied to enhance the dispersion quality.

Dispersion and distribution techniques were described in an earlier report [36].

2.4. Curing System

Curing was conducted with 395-nm wavelength LED irradiation. Curing of all the
samples, excluding the shear specimens, was conducted in a transparent silicone mold
(SORTA-Clear 40, Smooth-On, PA, USA) with a 2-mm-thick transparent silicone cover.
Schematic illustration of this system is given elsewhere [36]. The distance of the mold from
the LED was ~40 mm. The LED radiation intensity was up to 7 W/cm2.

2.5. DMA Characterization

The as-received resins contained 4–6% fumed silica. The weight fractions of WS2 NPs
incorporated in the resin were: 0, 0.3, 0.5, 0.75, and 1.0 wt.%. The samples for the dynamic
mechanical analysis (DMA) were 25 × 6 × 0.3–0.4 mm in size and were cured for 240 s. The
parameters of the DMA procedure were as follows: 1 Hz, 5 µm amplitude, and temperature



J. Compos. Sci. 2023, 7, 42 4 of 15

ramp of 3 ◦C/min in a temperature range of 0 ◦C to 140 ◦C. (DMA Q800, TA Instruments,
New Castle, DE, USA).

2.6. Tensile Tests

Special cavities were manufactured for the preparation of dog-bone samples having a
thickness of 0.3–0.4 mm. The content of the NPs in the nanocomposites was the same as
those prepared for the DMA analysis. The curing cycle was 300 s. A total of 5–8 samples
from each resin type and NP concentration were prepared and characterized using a uni-
versal testing machine (Instron 4481, Grove City, PA, USA) at a loading rate of 1 mm/min.
Only PGE with WS2-TO was tested.

2.7. Impact Test

Samples with a thickness of 0.5 mm were prepared using the same procedure as
described above and having the same NP content. Samples were tested according to
modified IZOD ASTM D-256 with 0.5 J pendulum (Resil 5,5, Ceast, Turin, Italy). Two
impact samples were measured for each formulation of the PGE and 4–5 samples for each
of the PGEnTA formulations.

3. Characterization
3.1. DMA Characterization

The as-received resins contained 4–6% fumed silica. The weight fractions of WS2
NPs incorporated in the resin were: 0, 0.3, 0.5, 0.75, and 1.0 wt.%. The samples for the
dynamic mechanical analysis (DMA) were 25 × 6 × 0.3–0.4 mm in size and were cured for
240 s. The parameters of the DMA procedure were as follows: 1 Hz, 5-µm-amplitude, and
temperature ramp of 3 ◦C/min in a temperature range of 0 ◦C to 140 ◦C. (DMA Q800, TA
Instruments, New Castle, DE, USA).

3.2. Tensile Tests

Special cavities were manufactured for the preparation of dog-bone samples having a
thickness of 0.3–0.4 mm. The content of the NPs in the nanocomposites was the same as
those prepared for the DMA analysis. The curing cycle was 300 s. A total of 5–8 samples
from each resin type and NP concentration were prepared and characterized using a uni-
versal testing machine (Instron 4481, Grove City, PA, USA) at a loading rate of 1 mm/min.
Only PGE with WS2-TO was tested.

3.3. Impact Test

Samples with a thickness of 0.5 mm were prepared using the same procedure as
described above and having the same NP content. Samples were tested according to
modified IZOD ASTM D-256 with 0.5 J pendulum (Resil 5,5, Ceast, Turin, Italy). Five
impact samples were measured for each formulation of the PGE and 4–5 samples for each
of the PGEnTA formulations.

3.4. Single-Lap Shear

A 0.1–0.2 mm thickness of nanocomposite resin layer was applied and cured between
two pre-cleaned (by EtOH and acetone) glass fiber-reinforced (GFR) epoxy plates (FR4).
The FR4 thickness was 2 mm. This GFR material does not absorb radiation at 395 nm:
hence, curing of the studied resins at this wavelength is applicable. The overlap length
was 12.6–13 mm. The GFR plate width was 25 mm. Samples were placed ~30 mm from
the LED source and cured for 18 min. The long curing cycle time was dictated by the
absorbance of the relatively thick GFR plates. Measurement of the samples was conducted
~30 min after curing. Loading of the specimens was conducted according to ASTM D1002
using a loading rate of 5 mm/min. The test was employed on a universal testing machine
(Instron 4481, Grove City, PA, USA).
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3.5. SEM Analysis

The tensile test surfaces were coated with gold (SC7620, Quorum Technologies Ltd.,
Lewes, United Kingdom) to prevent electron charging of the specimens. The samples
were analyzed by SEM (scanning electron microscope) (JSM-IT200, Jeol, Akishima, Japan).
Energy-dispersive X-ray analysis (EDX) was performed, as well. The accelerating voltage
ranged from 10 to 20 kV. To increase the accuracy of the EDX results, the voltage was raised
from 10 to 20 KV.

3.6. AFM Analysis

The fractured surface of the tensile specimens was characterized with an atomic force
microscope (AFM) (Bruker-Innova AFM with RESP 20 probe) in contact mode.

3.7. Spectrophotometry

The absorbance spectrum was measured with a UV-visible spectrophotometer from
440 nm to 360 nm (UV-1650PC, Shimadzu, Kyoto, Japan).

4. Results and Discussions
4.1. DMA

The DMA was used to determine the glass transition temperature (Tg). The Tg was
evaluated using the loss-modulus or tan-delta representations. It was observed that a single
Tg was obtained, though the resin and was composed of epoxy and acrylates. High DC of
the epoxy constituent leads to higher crosslinked density, which in turn, results in higher
Tg. It should be emphasized that the presence of the NPs may also affect the Tg due to
possible interactions between the molecular network and the NPs. Figure 1 describes the
Tg variations for the different resins, WS2 sources, and concentrations. As can be seen
in Figure 1, the Tgs determined according to tan-delta measurements exhibited the same
tendency as the Tgs obtained from the loss modulus analysis.
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Figure 1. DMA analysis of neat resin and resins with NP content of 0.5 wt.% and 1 wt.%.

As can be observed from these graphs, the PGE-based resin had a lower Tg than
the PGEnTA-based resin. This may be attributed to the thermal activation of the thermal
initiator by the heating effect of the radiation. As a result, vitrification of the PGE took place
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sooner, limiting the maximum crosslinking density achievable in such a curing process.
Upon increasing the WS2 concentration to 1 wt.%, in PGEnTA, both WS2 sources showed
an increase in Tg. The most significant increase (by 11 ◦C) in Tg was noticed for WS2-C.

Based on the DMA results, a higher toughness may be expected for PGE with 0.5 and
1 wt.% WS2-TO. For PGEnTA NCs, higher toughness may be anticipated for 0.5 wt.% of
WS2-C NCs but at 1 wt.% loading a higher toughness is envisaged for WS2-TO.

4.2. Tensile Properties

Tensile properties were measured only for PGE with 0.3 to 1.0 wt.% WS2-TO. The
toughness was determined from the area under the stress–strain curves. As can be seen in
Figure 2, an increase of 22% in toughness was accomplished by incorporation of 0.5 wt.%
of WS2. Above this, optimal concentration the toughness decreased. This may be attributed
to agglomeration, which led to even lower toughness in the case of 1.0 wt. % of WS2,
compared to the neat resin.
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Figure 2. Results of tensile toughness test of PGE with various contents of WS2-TO.

4.3. Adhesion Strength

The adhesion strength of the various compositions was investigated using lap-shear-
type specimens based on glass-reinforced polymer (GRP F-4). Experimental results have
shown that all the specimens failed in the FRP adherent interface, as can be seen in Figure 3
(for PGE with 0.5 wt.% WS2-TO).

Hence, it was concluded that since the resin showed stronger adhesion to the GRP
substrate, the adhesion strength of the NCs adhesives could not be determined accurately
with these substrates. Nonetheless, strain-to-failure and energy-to-break were determined
for the formulations studied. Results of the single-lap shear specimens can be observed in
Figures 4 and 5.
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As evident from the results, PGEnTA attributes were higher than those of PGE sam-
ples for all formulations, excluding the strength values for the neat samples. A possible
explanation for this observation is the slower curing kinetics of PGEnTA compared to the
fast curing of PGE, which may lead to higher crosslink densities and greater uniformity
of the resin film. PGEnTA-based NC adhesives exhibited a higher level of failure for WS2-
C-containing formulations compared to WS2-TO ones. PGE-based compositions showed
100% cohesive failure in the adherents. Results indicate that there was no clear difference
between 0.3, 0.5, and 0.75 wt.%-containing WS2-C resins; all three compositions displayed
superior properties compared to neat and 1% NP-containing samples. Higher variability
in the results were present in NCs based on PGEnTA with WS2-C compared to PGEnTA
with WS2-TO samples. This may be the result of mixed cohesive and adhesive failure
mechanisms. Finally, PGEnTA containing WS2-TO at 0.3 wt.% and 0.5 wt.% concentrations
showed a clear superiority in adhesion strength.

The energy at break demonstrated a 20% increase for PGE-based compositions
(Figure 5). In the case of PGEnTA, a 40% increase for WS2-C and 60% increase for WS2-TO
NPs were obtained (see Figures 5 and 6). As can be observed, the energy-to-break decreased
at 1.0 wt.% of the WS2.
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Figure 6. Single-lap shear of PGEnTA with various contents of WS2-C.

4.4. Impact Properties

As can be seen in Figure 7, PGEnTA exhibited 25% lower impact resistance than PGE.
This may be attributed to the thermal additive (TA) effect on the crosslinking density of the
various compositions, which led to increased strength of PGEnTA over PGE, resulting also
in reduced toughness.

Distinctively, as the WS2-TO content was increased above 0.5 wt.% a significant
decrease in the impact strength of the PGE formulations could be perceived, in contrast
to a moderate decrease in the case of PGEnTA-based NCs. PGEnTA-based NCs exhibited
higher impact strength for higher NP content, in addition to higher Tg, compared to PGE
based-NCs. In both resin systems, the impact strength decreased as the concentration of
the WS2 NPs approached 1.0 wt. %, as was the case for the toughness and energy-to-break
(Figures 2 and 4–6).

As can be seen in Figures 7 and 8, the best impact results were obtained for 0.5%
content for both WS2 sources. Significant impact improvement of 75% for PGEnTA and
60% for PGE were achieved at optimal concentration of the WS2 NPs.
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4.5. Effect of NP Content on the Mechanical Properties

From the results obtained in tensile, impact, and shear tests, it can be concluded that
overall, the optimal results and improvements of 22%, 75%, and 60%, respectively, were
reached with 0.5 wt.% of WS2-TO. Thus, one can conclude that the addition of WS2-TO
(IF-WS2 NPs) to the resin has beneficial effect, not only on the curing kinetics [36], but
also on the mechanical properties of the NCs. Adding WS2-C led to improvements of 69%
and 40% in the impact and shear, respectively. Surface chemistry analysis suggests that
the higher oxygen content of the WS2-C inhibits the positive effect of NPs reached by the
WS2-TO and could be the reason for the overall superiority of the WS2-TO in improving the
behavior of the photocured epoxy resin. The WS2-TO exhibits larger interfacial interaction
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between the NPs and the resin, since its higher sulfur content leads, at the surface (smaller
average size), to more readily bonding with the resin matrix, as discussed previously [36].

The mechanical properties of the NCs are compromised upon increasing the content
of the NPs beyond this threshold, even below the values of the neat sample, as was evident
for impact results of 0.75 wt.% and 1.0 wt.% of WS2- TO in PGE (Figure 7). This shows
the complex nature of higher loadings of the WS2-IF, which favorably affects the curing
kinetics [36], but impairs the mechanical properties. Indeed, agglomeration of the NPs is
often observed beyond 0.5 wt.% loading of the IF NPs.

4.6. Analysis of the NC Surfaces Fractured by Impact and Tensile

SEM analysis was carried out in order to study the fracture mechanisms and the
mechanical properties of the radiation-cured nanocomposites (RCNCs) based on cationic
curing of the epoxy and radiation curing of the acrylate using the tri-initiator system.
Figure 9 shows the basic difference between neat and RCNCs systems, based on PGE.
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Figure 9. SEM micrographs of neat PGE (left) and PGE with 0.3% WS2-TO (right).

While the neat system displays a brittle fracture, the NC surface demonstrates rough-
ness and a ductile type of fracture. These observations support the fundamental mecha-
nism that affects the enhancement of the mechanical properties and especially the energy
absorption-related properties, such as impact energy-at-break, for both shear and tensile
loading.

Figure 10 depicts the detailed morphology of the NP-reinforced specimens following
tensile testing.
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Figure 10. SEM micrographs of tensile-fractured surface of neat PGE (left), 0.5 wt.% of WS2-TO in
PGE (center), and 1 wt.% of WS2-TO in PGE (right). Circled areas show a typical crater morphology
found in the fractured surface.
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As can be noticed in Figure 10, craters with nodular morphology were formed during
loading-to-failure in all the samples. However, the craters differed in size and boundary
lines. It should be emphasized that in the middle of each crater a nanoparticle or an
agglomerate of such NPs is situated. This is also the case for compositions that contain
only silica NPs. Analysis of the results indicate that enhanced mechanical properties were
obtained when larger craters and sharper outlined borderlines were observed. The WS2
NP- containing formulations (in addition to the nano-silica) revealed larger craters and
hence enhanced properties. It may be postulated that the nodular boundaries could be
induced during failure by crack deflection, which nucleated at the NPs. The larger craters
were obtained at WS2 concentration of 0.5 wt.%. Increasing the concentration to 1.0 wt.%
led to reduced crater size and reduced properties. The size of the crater is the result of the
energy expended in forming the crater. Hence, larger craters indicate higher level of energy
dissipation. EDX analysis was carried out in order to evaluate the elemental composition
of the NPs at the centers of the nodules. WS2 was found in the center of the nodules in
0.5 wt.% and 1.0 wt.% WS2, as can be observed in Figure 11. In the case of neat resins,
craters were also noticed.
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Figure 11. EDX result of 0.5 wt.% WS2-TO in PGE.

An AFM study was carried out to supplement the SEM investigations. The AFM
analysis was conducted in contact mode, scanning an area of 50 × 50 µm.

As evident from Figure 12, the fractured surface of the resin containing silica NPs
exhibited small sporadic nodules alongside needle-like asperities. The 0.5 wt.% WS2-
containing NCs exhibited a rough surface, with a high density of large and small craters
having clear borders. The 1.0 wt.% WS2 NC morphology was a combination of the neat
and 0.5 wt.% WS2 samples.

Table 2 summarizes the measured roughness of the fractured surfaces shown in
Figure 12. Here, Rq is the root mean square roughness, Ra is the average roughness, and
Rmax is the maximum roughness depth, all within the area of 50 µm × 50 µm measured.

As evident from Table 2, the higher the statistical roughness parameters, the higher
were the tensile toughness, impact strength, and energy-to-failure in shear. The mechanical
properties as well as the statistical roughness parameters attained their maximum at
0.5 wt.% of WS2.

The specific crater dimensions, i.e., length, depth, and border height, were further
analyzed by AFM and showed significant differences between the samples, as can be seen
in Figure 13 for the 0.5 wt.% of WS2-containing sample.
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Table 2. Surface roughness of a neat PGE (without WS2), PGE with 0.5 wt.% WS2-TO, and PGE with
1 wt.% WS2-TO.

Sample Rq Ra Rmax

PGE with silica NPs 0.55 µm 0.43 µm 3.87 µm
PGE with 0.5 wt.%

WS2-TO 0.90 µm 0.65 µm 7.93 µm

PGE with 1 wt.%
WS2-TO 0.76 µm 0.60 µm 5.28 µm
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AFM system.

The same analysis was done for neat PGE and PGE with 1.0 wt.% WS2-TO. The results
are summarized in Table 3.
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Table 3. Nodule morphology of PGE without WS2, PGE with 0.5 wt.% WS2-TO, and PGE with 1 wt.%
WS2-TO.

Sample Nodule Length Nodule Depth Nodule Border
Height

PGE with only silica NPs 430–630 nm 6.5–11.5 µm 200–350 nm
PGE with 0.5 wt.% WS2-TO 1350–1800 nm 20 µm 1100–1300 nm
PGE with 1 wt.% WS2-TO 900 nm 9 µm Not Defined

Since the craters are formed during the fracture process as a result of crack deflection,
the larger the crater the more energy is being dissipated during fracture, leading to en-
hancements in energy-related properties such as impact, tensile, and shear energy-to-break.
As can be distinguished in Table 3, the mechanical properties show an optimal value at
0.5 wt.% of WS2 NPs, beyond which they are adversely affected by agglomeration and
craters’ overlap. As stated above, nodules can also be generated by the silica NPs present
in the neat resin.

Compared to a previously published paper on the fracture mechanism-induced mor-
phology [31] of WS2 NPs, no cavitation was observed. This may lead to the assumption that
proper surface treatment of the WS2 may result in even higher toughness results, provided
cavitation could be achieved.

5. Conclusions

IF-WS2 NPs have a significant potential for nanocomposites based on cationic polymer-
ized epoxies/radiation-cured acrylates. Careful deliberation on the effect of the NPs on the
photocuring process and the overall physical properties of the nanocomposite is provided
in the introduction. Taking account of these mutual effects simultaneously has been shown
to lead to an enhanced photocuring process of the resin matrix (part A) simultaneously with
large improvements in the mechanical properties of the resin film studied herein. The main
effect of the WS2 NPs is the substantial increase in the energy absorption during impact
loading, which leads to 80% and 60% increase in the shear adhesion strength. SEM and
AFM of fractured surfaces indicate that distinctive morphology was developed depending
on the level of loading with the WS2 NPs, supporting the mechanical test results. The
glass transition temperatures (Tgs) were similar or higher upon WS2 NP incorporation. It
was found that the surface chemistry and dispersion techniques of the WS2 NPs are the
major variables affecting the bulk properties of cationically cured resins and their adhesion
properties. Furthermore, the failure mechanism is affected by the compatibility of the WS2
NPs and the resin. It could be concluded that by better understanding the effect of the WS2
NPs on the photo/cationically cured systems, better and more tunable system design could
be achieved for the unique radiation-cured epoxy/acrylate containing WS2 NPs. This study
is the first to demonstrate the possibility for radiation-induced curing of opaque NPs based
on WS2 (Part A) that serve as both a reinforcement nanoparticle at low concentrations and
an enhancement of the degree of curing.
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