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Abstract: In recent years, abrasive waterjet machining has emerged as a promising machining tech-
nique for the machining of composites because of its non-thermal nature. In the present study, the
effect of machining parameters on the quality of machining has been studied and the process parame-
ters have been optimized to machine jute-fiber-reinforced polymer composites. The design of the
experiment was used to predict the combination of the input parameters for L27 experiments. Taguchi
and response surface methodology (RSM) techniques were employed to analyze the experimental
data and identify the optimum combination of process parameters to achieve as little delamination
as possible. The results indicate that an increase in the values of the parameters traverse speed and
abrasive mass flow rate leads to an increase in the damage obtained. However, an increase in the
value of the parameter stand-off distance minimizes the damage produced. To achieve minimum
delamination, the optimum combination of input parameters is obtained through Taguchi and RSM.
For the present experimental condition, to achieve minimum delamination, the parameter traverse
speed should be set at 20 mm/min, the stand-off distance should be 4 mm, and the abrasive flow
rate should be set at 0.25 kg/min. The results confirm that the optimum combination of parame-
ters obtained through both approaches is similar. This investigation results indicated a significant
improvement in the cutting quality with reduced damage, achieved through the optimized process
parameters. For the considered range of parameters, graphs are plotted such that any intermediate
values can be anticipated within the considered range without performing any further experiments.
The present work signifies the effect of fiber orientation on delamination.

Keywords: jute fiber composites; abrasive waterjet machining; DOE; RSM optimization

1. Introduction

In recent years, polymer-based composites have gained favor over traditional mate-
rials because they provide improved mechanical, physical, and thermal qualities. High
temperatures are generated during the conventional treatment of composites. Additionally,
cutting forces create a variety of problems, including tool wear, fiber extraction, delamina-
tion, and surface failure, since these materials are non-homogeneous and anisotropic [1].
Abrasive waterjet machining (AWJM) is a very accurate machining process that uses a
high-pressure waterjet along with abrasive particles as the cutting agents. AWJM is capable
of machining various materials, including composites. This machining method has become
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popular because of its non-thermal process, material versatility, high accuracy, minimum
material wastage, reduced tool wear and reduced dust. The quality of AWJM depends on
several machining parameters, such as abrasive type and size, abrasive mass flow rate, noz-
zle design, water pressure, stand-off distance, cutting speed, which is popularly known as
traverse speed, the properties of the materials to be machined, the precision and accuracy of
the CNC machine, etc. AWJM is a suitable machining or cutting method for fiber-reinforced
composites because it does not produce a heat-affected zone, generates very little residual
stress, and causes minimum tool wear [2]. In spite of these advantages, damage occurs
during the machining process. Many machining input parameters significantly affect de-
lamination. An enormous number of research works have been conducted to analyze and
minimize this damage through various approaches. H Ho-Cheng [3] attempted to study
delamination through an analytical approach. This approach includes fracture mechanics
with plate theory to describe the delamination mechanism that occurs during AWJM of
composites. The researchers found a good agreement between predicted and experimental
values during the initial stages of waterjet machining. They also developed delamination
prediction models. Shanmugam et al. [4] predicted that delamination would occur due to
water penetration into the crack tips, which is generated by the shock wave input prediction
model based on the energy-conserving approach.

Murat Demiral et al. [5] conducted research on the machining of CFRP composites
using both abrasive waterjet machining and pure waterjet machining. They compared the
two methods and developed a 3D finite element model for abrasive waterjet machining
using ABAQUS software (ABAQUS Standard version, https://www.3ds.com/products-
services/simulia/products/abaqus/abaqusstandard/). J. Schwartzentruber et al. [6] stud-
ied delamination during abrasive waterjet machining of a carbon fiber–epoxy laminate.
The researchers produced a numerical model to predict the effect of process parameters and
found that traverse speed, mixing tube size, and abrasive flow rate had the most significant
impact on delamination. Hom Nath Dhakal et al. [7] conducted a study on the delamination
that occurs in hybrid carbon–flax and carbon-fiber-reinforced composites when abrasive
waterjet machining was carried out and contributed to the research efforts in this area.
Azmir and Hussein Mohammad Ali Ibraheem [8,9] developed a numerical optimization
model aimed at minimizing delamination during AWJM of GFRP composites. While
machining composite materials, the quality of the machining, such as cutting-edge kerf
taper, machined surface roughness, and damage, is dependent on many input parameters
such as water pressure, nozzle geometry, stand-off distance, cutting speed, abrasive mass
flow rate, reinforced fiber orientation, etc. Therefore, a vast number of researchers have
carried out work in this field to understand the effect of each of these process parameters
on the quality of machined surfaces. S Vigneshwaran et al. [10] contributed by publishing a
review paper on AWJM of fiber-reinforced polymer composites; they have provided a lot of
information on the effects of various parameters on the delamination and surface roughness.
S. Xiao et al. [11] worked to estimate the effect of multi-pass cutting over the delamination
during AWJM of CFRP composites and noticed that due to multi-pass cutting, the delam-
ination and the kerf qualities are improved to a larger extent. Ajit Dhanawade et al. [12]
conducted AWJM experiments on carbon-fiber-reinforced polymer composites and opti-
mized the process parameters to minimize the roughness of the machined surface. They
developed a mathematical model based on experiments to reduce the surface roughness.
Ravi Kant et al. and Kechagias J. et al. [13,14] conducted AWJM on EN-31 steel and Trip
steel in order to predict the effect of process parameters on the surface roughness. Kecha-
gias applied Taguchi design for quality characterization. A review article on the AWJM of
various materials was published by Anusha Kale et al. [15]. In this publication, they gave
complete coverage regarding the impact of parameters such as transverse speed, stand-off
distance, water pressure, and abrasive flow rates on the material removal rate and surface
roughness. ANOVA was conducted to analyze the experimental results. J. Wang [16]
conducted worked on the AWJM of composite material and examined cutting performance
and erosive process during machining. Through his research, he discovered that there
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are two types of kerfs: through cuts and non-through cuts. Through cuts are obtained
when higher water pressure and low traverse speed are used, and non-through cuts are
generated when the jets are unable to cut the specimen. He also identified that, depending
on the energy level of the jet, the AWJ machined surface has two regions: the upper region
and the lower region. They claimed that delamination only occurs in non-through regions.
Researchers Prasanna et al. [17] conducted a study on the abrasive waterjet machining of
hybrid composites made with Bismaleimide. They investigated how the process param-
eters affected the kerf angle and used the Taguchi central composite design method to
plan their experiments. Their findings showed that the delamination was significantly
influenced by the abrasive mass flow rate. While machining the composite material using
the abrasive waterjet machine, if the machining parameters are fixed at the optimum level,
then the nozzle wear rate, machined surface roughness, and delamination will be at mini-
mum levels. Due to this reason, researchers like Jeykrishnan et al., K. Ravikumar et al., and
M. Manoj et al. [18–20] worked to obtain the optimum combination of process parameters
through various optimization techniques such as traditional analysis, response surface
methodology, and multi-response optimization techniques. Researchers J. Wang et al.,
E. Lemma et al., and Angelos P. Markopoulos et al. [21–23]. worked to optimize the pro-
cess parameters through the kerf–taper compensation technique, the nozzle oscillation
technique, artificial neural network modeling, etc.

In the literature, it appears that there has been little exploration into the impact of
machining parameters on delamination when using abrasive waterjet machining on jute-
fiber-reinforced polymer composites. Furthermore, it seems that the Taguchi and response
surface methodology approaches have not been utilized to optimize the waterjet machining
process for jute–epoxy composites. In this present work, an attempt has been made to
optimize the process parameters using the Taguchi and response surface methodology
approaches to optimize AWJM of jute–epoxy composites.

2. Methods and Methodology
2.1. Material Preparation

The hand layup method is one of the simplest and earliest methods for creating fiber-
reinforced composites. The same procedure was used in this study to produce composite
specimens in the lab with a 45◦ fiber orientation. General-purpose epoxy resin, with the
commercial name BISPHENOL-A (BPA), manufactured by Huntsman polymers, purchased
from Renuka Enterprises, Mumbai, India, is the matrix material, and Methyl Ethyl Ketone
Peroxide is the hardener. Jute fiber mats were cropped to the necessary size to start the
preparation of composite samples. To maintain the desired amount of volume fraction,
measured quantities of fiber mat and resin are used. The volume fraction of jute fiber is
35% by weight and the epoxy volume is 65% by weight. The releasing agent was used
after cleaning the supporting steel plates. The first fiber mat with an inclination of 45◦

is spread on the plate and coated with resin. This stacking process is carried out again,
maintaining a 45◦ fiber orientation, until all of the fiber mats that were collected are stacked.
After stacking is complete, the top plate is put in place, the fiber and resin are covered in
polythene paper, and the entire assembly is then placed in a heat-pressing machine for 48 h
to remove any trapped air and to cure. After curing, the composite plate is removed and
the surplus fibers are trimmed off from all four sides. Figure 1 shows the various stages of
the hand layup process used to create the specimen.
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Figure 1. Steps followed to prepare the jute fiber reinforced polymer composite.

2.2. Machining Process

Machining was carried out on the CNC-controlled 5-axis abrasive waterjet cutting
machine (Omax Corp, Kent, WA, USA: model no. MAXIEM1515) by mounting the speci-
mens securely on cardboard with double-sided glue tape. Traverse speed (TS), standoff
distance (SOD), and abrasive mass flow rate (MFR) were the variable input parameters.
Three levels of variation were selected for each parameter. The traverse speed levels are 20,
25, and 30 mm/min, the stand-off distances were taken as 2, 3, and 4 mm, and the mass
flow rates are chosen as 0.25, 0.3, and 0.35 kg/min, respectively. The machining parameters
were selected on the basis of previous research works carried out by many researchers;
researchers have found that the considered range gives better machining properties on jute
epoxy composites [24]. Even though the machine is frequently checked and maintained, to
ensure accurate machining, prior to starting the machining process, the setup is checked
for several parameters. The nozzle and the orifice were inspected to confirm that there was
no wear or damage. The abrasive flow rate was measured and adjusted as needed. Water
pressure was measured and fixed to the considered level. The traverse speeds for various
levels were measured and adjusted according to the intended values. The stand-off distance
values were checked and set with precision. The abrasive mixing ratios were carefully
measured and adjusted to ensure proper mixing with water. To ensure the precision of
the cuts, the cutting depth was calibrated and adjusted to suit the test specimen. Once
all parameters were confirmed and adjusted to desired values, test cuts were conducted
to further confirm the precise cutting of the specimen. While machining, some safety
measures were taken, such as wearing safety goggles, face shields, hearing protection to
avoid damage from the noise, and gloves and safety protective clothing were worn to avoid
abrasive splash back. The abrasive hose was inspected and we confirmed that there was no
damage or leakage. Adequate ventilation was provided to the machining area and it was
completely shielded from human entry during machining.

In this experimental work, garnet was used as the abrasive material for waterjet
machining. Almandine, a type of garnet known for its hardness and sharp edges, was used
in this work due to its popularity and cost-effectiveness. It can cut through various materials
like metals, ceramics, and composites. The hardness of Almandine garnet falls between
7.5–8.0 on the Mohs scale. Different mesh sizes ranging from coarse 50 mesh to very fine
230 mesh are available. A mesh size 80 with garnet was used in this machining process.
Mesh 80 garnet is the most commonly used and is effectively abrasive in waterjet machining.
Garnet is generally non-toxic and non-hazardous; hence, it does not pose immediate risks
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to the environment or human health compared to several other abrasive materials. It can
be reused several times in waterjet machining processes, reducing the need for new garnets
and minimizing waste. When used in abrasive waterjet machining, garnets cleanly cut
materials without producing hazardous dust or fumes. The jet angle was maintained at
90◦ on the workpiece, and the waterjet pressure was maintained at a constant 200 MPa.
The plate was cut into 27 pieces measuring 50 mm long to measure the delaminated area
(DA) by varying the parameters. The machining setup is shown in Figure 2. The output
was measured as the delamination area in mm2. The delamination area was measured by
taking an image of each hole produced before the start of longitudinal machining.
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Figure 2. Abrasive waterjet machining of jute-fiber-reinforced polymer composite.

2.3. Measurement of Delamination

The damage caused during machining was measured in terms of the damaged area.
In the present experimentation, a through hole was drilled before starting the longitudinal
machining, as shown in Figure 3. The area around the hole that was damaged due to
machining was measured and considered as the delaminated area. In order to measure
the delaminated area accurately, ImageJ software (ImageJ version 1.53t) was used. Some
samples of the delamination area, measured using ImageJ software, are presented in
Figure 3.
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Figure 3. Estimation of delamination area using ImageJ software.

3. Results and Analysis

Using the design of experiment method, the necessary number of experiments was
determined. The final parameter combination for each experiment was determined using
the Taguchi L27 array. The considered range for each input variable is presented in Table 1
and the L27 experiments list and the estimated delamination (average of two values) details
are presented in Table 2.
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Table 1. Input variables and their levels.

Sl. No. Traverse Speed (TS)
mm/min

Standoff Distance
(SOD) mm

Abrasive Mass Flow Rate
(MFR) kg/min

1 20 2 0.25

2 25 3 0.30

3 30 4 0.35

Table 2. Taguchi L27 array used for experimentation.

Exp. No. TS (mm/min) SOD (mm) MFR (Kg/min) DA (mm2)

1 20 2 25 50.120

2 25 2 25 61.880

3 30 2 25 51.253

4 20 3 25 43.990

5 25 3 25 65.158

6 30 3 25 46.458

7 20 4 25 65.001

8 25 4 25 51.661

9 30 4 25 65.440

10 20 2 30 99.859

11 25 2 30 87.468

12 30 2 30 80.480

13 20 3 30 75.090

14 25 3 30 89.232

15 30 3 30 99.104

16 20 4 30 77.860

17 25 4 30 66.252

18 30 4 30 82.327

19 20 2 35 123.260

20 25 2 35 115.664

21 30 2 35 124.496

22 20 3 35 105.450

23 25 3 35 129.006

24 30 3 35 109.627

25 20 4 35 96.446

26 25 4 35 110.236

27 30 4 35 112.225

3.1. Regression Equation for the Delamination

The regression equation for delamination was obtained and is provided in Equation (1).
While obtaining this regression equation, an assumption was made that the relationship
between the independent variable and the dependent variable is linear (Linearity As-
sumption). With the help of a regression equation, we can mathematically estimate the
delamination value for the various levels of the input parameters. The regression table is
presented in Table 3. As per the table, the parameter abrasive mass flow rate exhibits a
highly significant effect on the delamination.
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Table 3. Regression table for DA versus TS, SOD, and MFR.

Predictor Coef SE Coef T P

Constant −88.88 18.91 −4.70 0.000

Speed 0.3815 0.4498 0.85 0.405

SOD −3.724 2.249 −1.66 0.111

MFR 5.8383 0.4498 12.98 0.000
S = 9.54136, R-Sq = 88.2%, R-Sq (adj) = 86.7%.

Regression Analysis: DA versus TS, SOD, MFR.
The regression equation is:

DA = −88.9 + 0.381 TS − 3.72 SOD + 5.84 MFR (1)

The normal probability plot shows that there are negligible outlier points, but most of
them are collinear which confirms the suitability of the model.

The distribution of the result from the neutral line is shown on the residual v/s
observation order plot. The graphic shows that the distribution is about equal on both
sides of the line. Thus, it is demonstrated that the experiments carried out are appropriate
for the problem under consideration. Figure 4 displays the residual plot and the normal
probability plot.
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Figure 4. Normal probability plot and residual plot.

3.2. Main Effect Plots for Data Means and Signal-to-Noise Ratio

The gradient line on the main effect plot depicts the influence of that parameter on
the result. The more the line is inclined, the higher the influence on the output parameter.
In this particular experiment, the parameter abrasive mass flow rate is showing a steeper
slope. The delamination is thus most affected by this particular input parameter when
compared to other input factors. Delamination increases more drastically with even a little
variation in abrasive mass flow rate. Following the mass flow rate, the standoff distance
shows a moderate shift, indicating a moderate impact on the delamination. The parameter
traverse speed indicates the least effect by showing the smaller slope. Consequently, a
wider range of settings for this parameter is possible. Figure 5 shows the main effect plot
for the signal-to-noise (S/N) and data means.
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Figure 5. Main effect plots for data means and SN ratio.

3.3. Interaction Plots for Data Means and Signal-to-Noise Ratio

Figure 6 shows an interaction plot for data means and S/N ratio. The figures show
that the parameters traverse speed and standoff distance do interact to some extent. Hence,
there are some combined effects of these parameters on delamination. The total effect
will be greater when there is more interaction between the two parameters. Between the
parameters of the traverse speed and standoff distance, and traverse speed and abrasive
mass flow rate a very small interaction is noticed. There is no evidence of interaction of
mass flow rate with traverse speed and stand-off distance.
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3.4. Analysis of Variance and Response Tables

Table 4 displays the current experiment’s ANOVA table. The ANOVA is carried at
95% confidence level (α value). The table makes it evident that the abrasive mass flow
rate has the greatest influence on delamination. Therefore, even minor changes to this
particular input parameter cause a sharp increase in delamination. As a result, extreme
caution should be used when modifying this value. The standoff distance is the factor
that significantly influences delamination following the abrasive mass flow rate. Hence,
the impact of this on the output is moderate. As a result, this parameter can be altered
somewhat to suit our needs. Traverse speed is the parameter that has a negligible impact
on the delamination. Therefore, even significant modifications in this parameter have little
or no impact on the delamination. Therefore, within the range, this parameter can be fixed
at any value.
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Table 4. Analysis of variance for DF, using adjusted SS for tests.

Source DA Seq SS Adj SS Adj MS F P

TS 1 65.5 65.5 65.5 0.72 0.405

SOD 1 249.6 249.6 249.6 2.74 0.111

MFR 1 15,338.7 15,338.7 15,338.7 168.49 0.000

Error 23 2093.9 2093.9 91.0

Total 26 17,747.7
S = 9.54136, R-Sq = 88.20%, R-Sq (adj) = 86.66%.

Table 5 displays the Taguchi response table for the data means. The data presented in
this table are identical to those in an ANOVA. The parameter with the highest ranking as
determined by the order in which the input parameters were given is the abrasive mass
flow rate, which indicates that it has the most impact on delamination. In parallel with the
abrasive mass flow rate, the standoff distance and traverse speed are also considered.

Table 5. Taguchi response table for data means.

Level TS SOD MFR

1 81.90 88.28 55.66

2 86.28 84.79 84.19

3 85.71 80.83 114.05

Delta 4.39 7.45 58.38

Rank 3 2 1

Delamination is the main defect that occurs during the machining of composite ma-
terials by any method. While machining using AWJ, this will occur on both the top and
bottom sides of the composites. Previous works reported that, in AWJM, the delamination
is commenced by the shock waves produced by the waterjet. Hence, the delamination
on the top is always greater than that on the bottom side. As the abrasives approach the
upper surface of the composites, they possess high cutting energy. However, as the jet
propagates towards the downside, these abrasive particles continuously lose their cutting
energy. Experimental studies have proven that delamination is a phenomenon that cannot
be avoided when using AWJ to start a cut at a position within a workpiece, and such a
phenomenon occurs mainly in the initial cutting stage. It does not seem to pose a major
problem as the cutting continues if the process parameters are selected properly. Hence, in
the present experimentation, the delamination initiated on the hole generated before the
commencement of cutting is measured. The delamination measured here is the damage
caused to the hole when the cutting is initiated; therefore, it is measured in the unit of the
damaged area.

From the experimentation results, it is clear that the amount of abrasive mass flow
rate has a major effect on the delamination and as the abrasive mass flow rate increases,
the delamination increases. The reason for this may be that, when the number of abrasive
particles increases beyond the optimum value, the particles begin to impact each other
during the flow due to the large number of particles present per unit volume. This impact
changes the movement of the abrasive particles, and the movement becomes turbulent.
This turbulence leads to more deviation of the cutting jet which increases the damaged area.
When the standoff distance escalates, the velocity as well as cutting energy of the abrasive
material are reduced by the time the jet reaches the bottom surface. Hence, less impact
force is applied to the lower side layers of the composites which leads to a cutting rather
than a piercing or shearing action. Hence, as the standoff distance increases, the pushdown
delamination decreases in the machining of composite material. But there is an optimum
value for this; beyond this value, it starts increasing due to the larger jet diversion. As the
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cutting speed increases, the cutting area per unit time increases, which leads to less cutting
action and increases the penetration of the abrasive materials through the composites.
Hence, as the cutting speed increases, there is an increment in the delamination.

3.5. Optimization through Optimization Plot

Plotting the optimization plot will yield the optimal set of process parameters for any
output parameter. The optimization plot obtained from the response surface methodology
is the one that will provide the combination of various levels of each parameter within the
considered limit. Figure 7 shows the plot that was created for the current experiment to
minimize damage during the machining process. According to the plot, one should use the
following combination to achieve the least amount of delamination. The standoff distance
should be at level 3 (4 mm), the traverse speed should at level 1 (20 mm/min), and the
abrasive mass flow rate should be at level 1 (0.25 kg/min).
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3.6. Optimization Using Contour Plots

When the other parameters are held constant, contour plots display the levels of
response parameter variation with the variation of two parameters. Figures 8–10 show
contour charts for various combinations of parameters. When the parameter abrasive mass
flow rate is held constant, the variable levels of delamination with regard to changes in
traverse speed and standoff distance are shown on the graph in Figure 8. We can choose the
set of two values from the graph that results in less delamination. For instance, according
to the graph, if higher standoff distance and a slower traverse speed are maintained, then
the amount of delamination produced will be reduced when the constant abrasive mass
flow rate is set at 0.25 kg/min. As a result, level 3 for stand-off distance and level 1 for
traverse speed must be chosen.
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Similarly to Figure 8, Figure 9 shows reduced delamination at a lower abrasive mass
flow rate and low speeds with the third parameter stand-off distance remaining constant at
3 mm. Therefore, we must choose traverse speed and abrasive mass flow rate at level 1.
Similarly to Figure 9, Figure 10 depicts decreased delamination at level 1 traverse speed
and level 3 standoff distance.

If the levels obtained from different graphs to achieve the lower delamination are
combined, it would be TS = 20 mm/min, SOD = 4 mm, and MFR = 0.25 kg/min.

3.7. Prediction of Intermediate Values of DA

For the current experiment, graphs are plotted using optimization plots to anticipate
the intermediate values of the delamination within the considered limits for the input
parameters. Examples of these graphs are shown in Figures 11 and 12. By entering the
intermediate values of input parameters in the optimization plot, intermediate values of
DA are acquired. Plots are created after sufficient data have been gathered.

These plots have the benefit of allowing us to retrieve any intermediate values without
using any software. Figure 11 shows the change of DA for the full range of input parameters
for the 0.25 kg/min mass flow rate. When the traverse speed is held constant at 25 mm/min,
we may obtain the DA from Figure 12 for any intermediate value of the input parameters.
In a similar way, by keeping the input parameters at various levels, we may produce the
graphs and obtain the DA value.
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3.8. Prediction of Fiber Orientation Influence on Delamination

In order to predict the effect of reinforced fiber orientation on delamination, the same
set of experiments was conducted on two different specimens reinforced with jute fibers in
different orientations. For the first sample, the orientation was held at 45◦ to the cutting
direction, and for the second sample, the orientation was fixed at 90◦ to the cutting direction.
The results obtained for each experiment are given in Table 6 and the same is presented
in graph format in Figure 13. The figure confirms that except for very few cases, the
delamination is always greater for 90◦ orientation than for 45◦ orientation, which signifies
the effect of fiber orientation on delamination.
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Table 6. DA values obtained for 45◦ and 90◦ fiber orientation.

Run Order TS
mm/min

SOD
mm

MFR
kg/min

DA for 45◦

(mm2)
DA for 90◦

(mm2)

1 20 2 0.30 75.090 127.660

2 25 4 0.35 110.236 154.010

3 25 2 0.35 115.664 115.833

4 25 4 0.30 66.252 138.520

5 25 3 0.30 89.232 73.957

6 30 3 0.30 99.104 72.660

7 25 4 0.25 51.661 88.220

8 25 3 0.35 129.006 140.560

9 25 2 0.30 61.880 72.060

10 20 3 0.25 43.990 56.192

11 25 3 0.25 65.158 46.709

12 20 2 0.25 50.120 66.737

13 20 3 0.30 99.859 125.678

14 30 3 0.35 109.627 93.921

15 30 2 0.30 80.480 121.293

16 20 3 0.35 105.450 122.060

17 30 3 0.25 46.458 68.470

18 30 4 0.25 65.440 51.032

19 20 4 0.25 65.001 66.596

20 20 2 0.35 123.260 103.322

21 20 4 0.30 77.860 97.725

22 25 2 0.25 87.468 84.074

23 30 4 0.35 112.225 123.928

24 30 4 0.30 82.327 112.040

25 30 2 0.25 51.253 56.395

26 30 2 0.35 124.496 77.843

27 20 4 0.35 96.446 105.950

Jute–epoxy composites have increasingly wide applications in the aerospace industry
to produce aircraft cabin panels and aircraft interior components. In the automotive field,
they are being used to manufacture door panels and various structural components. In
this way, these jute–epoxy composites are finding applications in various fields such as the
marine industry, the sporting goods industry, the electronics industry, the furniture and
home decoration industry, etc. Optimized abrasive waterjet machining can be used in all
these fields to cut and shape the composites precisely.

The optimization methods followed in this work can be further extended to optimize
the process parameters to minimize the roughness of the machined surfaces to enhance the
machining properties. This principle of optimization can be implemented to optimize the
process parameters by varying parameters like water pressure and varying reinforced fiber
volume fraction of the composite.
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4. Conclusions

The obtained results clearly demonstrate that abrasive waterjet machining is an appro-
priate method for machining jute–epoxy fiber composites.

From the results, it is also proven that the delamination phenomenon in the machining
of composite materials was unavoidable in the present experimental conditions. When
considering input parameters, it is evident that the parameter of abrasive mass flow rate
(MFR) has the greatest influence on the delamination process. Following this, the stand-off
distance (SOD) parameter has a moderate effect on the output parameter. The traverse
speed (S) parameter has the least influence.

From the output of the work, it is evident that minimum delamination values will be
achieved when the input parameters are fixed as follows:

• Traverse speed (TS) of 20 mm/min;
• Stand-off distance (SOD) of 4 mm;
• Abrasive mass flow rate (MFR) of 0.25 kg/min.

Under the selected conditions, the obtained value of DA is 52.605 mm2.
Since composites are very anisotropic in nature, standardizing the experiment pro-

cedure is not feasible. Hence, an optimum combination of process parameters obtained
to minimize the delamination is only for the present machining condition. The optimum
combination of parameters obtained from the Taguchi and response surface methodology
techniques is similar. The results also confirm that the reinforced fiber orientation has a
significant effect on delamination.

Further research work can be taken up to find out the exact relationship between
delamination and fiber orientation. Future work can carryout to predict the fiber best which
obtains minimum delamination.
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