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Abstract: The need for sustainable concrete with low carbon dioxide emissions and exceptional
performance has recently increased in the building industry. Many distinct types of industrial
byproducts and ecologically safe wastes have shown promise as ingredients for this kind of concrete.
Meanwhile, as industrialization and lifestyle modernization continue to rise, ceramic waste becomes
an increasingly serious threat to the natural environment. It is well known that free cement binder
that incorporates tile ceramic wastes (TCWs) can significantly improve the material’s sustainability.
We used this information to create a variety of geopolymer mortars by mixing TCWs with varied
proportions of ground blast furnace slag (GBFS) and fly ash (FA). Analytical techniques were used to
evaluate the mechanical properties and impact resistance (IR) of each designed mixture. TCWs were
substituted for binders at percentages between 50 and 70 percent, and the resultant mixes were strong
enough for real-world usage. Evidence suggests that the IR and ductility of the proposed mortars
might be greatly improved by the addition of TCWs to a geopolymer matrix. It was found that there
is a trend for both initial and failure impact energy to increase with increasing TCWs and FA content
in the matrix. The results show that the raising of TCWs from 0% to 50, 60 and 70% significantly led
to an increase in the failure impact energy from 397.3 J to 456.8, 496.6 and 595.9 J, respectively.

Keywords: geopolymer composites; tile ceramic wastes; impact resistance; sustainability

1. Introduction

The construction industry has relied heavily on Ordinary Portland Cement (OPC)
as a concrete binder since ancient times [1,2]. Despite widespread agreement that OPC
production causes serious environmental damage because it releases substantial amounts
of greenhouse gases, no viable substitute has been developed [3]. OPC production is
responsible for 6 to 7 percent of global CO2 emissions [4,5]. Geopolymers, which have
only been available for a short time, have recently been introduced as an alternative to
traditional concrete in the building industry [6–8]. Geopolymers are better than other
building materials [9,10] because they have many good qualities, such as their low cost of
production, which comes from recycling a lot of industrial waste, their ability to reduce
pollution, their long service lives, their low energy use, their high early strength, and their
low risk of catching fire [11–13].

The research shows that the proposed geopolymer concrete (GPC) structural com-
ponents are just as strong as those made from traditional reinforced concrete. However,
similar brittle behaviors to those of concrete, a quasi-brittle material, were seen in GPC
during these studies, including main-crack failure modes. Geopolymer paste and GPC are
more brittle than similarly strengthened cement paste and concrete, according to research
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by Pan et al. [14]. The inherent brittleness of GPC would impair the durability of reinforced
GPC structural components since water and chloride ions may pass through these fractures.
Overly stiff or very low-ductility concretes are generally not considered appropriate for use
in the construction industry anywhere in the world. There are several factors that go into
making concrete, but one of the most crucial is increasing its ductility [15]. Since it allows
stress dispersion and provides an early warning of impending failure [16], ductility is an
advantageous structural property of concrete. So, with its ductility improved, concrete is
better able to withstand dynamic stresses. Highway pavements, bridge decks, industrial
floors, etc., all need concrete with a high capacity for energy absorption and IR. Several
supplementary ingredients are used to improve the strength qualities of concrete and make
it suitable for the intended use [17,18].

Global tiling production rose by around 5.2 percent between 2008 and 2018, from
8.6 million m2 to 13.5 million m2 [19]. From 5 to 7 percent of the ceramic industry’s
total production is lost due to technical difficulties, according to Medina et al. [20,21].
However, these waste products have a high durability rating and are resistant to biological,
chemical, and physical forces of deterioration [22]. Consequently, finding a way to reduce
or eliminate the need for landfill disposal is a top priority for the ceramics industry [23].
Ceramic material has been shown to be very resistant to the forces of biological deterioration
in several scientific tests [1,24]. Ceramic, due to its crystalline mineral content, has turned
out to be an effective cementing additive [25,26] for strengthening concrete’s mechanical
properties. However, despite its potential new use, only a small fraction of that material
finds its way into construction [27]. Its immediate implementation in other fields, then,
would seem to be crucial. The building industry’s continued reliance on ceramic waste as a
raw material guarantees it a vital role in mitigating a wide range of environmental problems,
as without requiring major adjustments to their production or application processes, the
geopolymer industries may employ ceramic waste. Ceramic waste can be recycled rather
than dumped in landfills, saving energy, and protecting the environment. Numerous
studies have shown that if most industrial waste was correctly recycled into OPC or
OPC-free concrete, the construction sector may be more sustainable and effective [28,29].

Evidence from the past shows that engineered geopolymer composites (EGCs) might
be a useful impact-resistant material in protective constructions. EGCs are markedly lighter
and have specific environmental benefits over conventional construction materials such as
steel fibre-reinforced concrete [30,31] and ultra-high-performance concrete [32,33]. Since
the ambient temperature in many parts of Europe, Asia, and the United States may fall
below 20 degrees Celsius in the winter, additional investigation into the impact resistance
of EGCs at freezing temperatures is necessary before its utilization.

Many studies have looked at how well concrete works using recycled materials such
as supplementary cementing chemicals [34] and waste aggregates [35]. However, further
study using full-scale models is required to analyse the load-deformation response of
components, including recycled aggregates, before they may be used in structural applica-
tions. Full-size rectangular reinforced concrete beams, measuring 300 mm by 460 mm by
3000 mm in length, were tested by Arezoumandi et al. [36,37]. They found that beams
made with recycled concrete aggregate overlays had the same flexural capacity as control
beams but a lower cracking moment.

To reduce carbon dioxide emissions, scientists are looking at geopolymer materials as a
long-term replacement for OPC. However, large-scale manufacture and market introduction
are being hampered by issues related to mix design and the high molarity of alkaline
solutions. This research looks at how GBFS and FA, two TCWs found in high concentrations
in tertiary blended geopolymer materials, affect compressive strength and impact resistance,
two attributes associated with ductility. The resistance of geopolymers to GBFS and
FA replaced by TCWs and activated by low concentration alkaline solutions has been
thoroughly investigated. There is potential for expanding the use of geopolymer production
processes that rely on ambient heat curing. Thus, this study aims to produce cost-effective,
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energy-efficient, and carbon dioxide (CO2)-free geopolymer mortar (GPMs) compositions
that perform well under severe circumstances. Several factors were examined in this study.

2. Materials and Methods
2.1. Materials Characterization

For this study, we gathered ceramic tile waste, which is one kind of ceramic industrial
waste. The TCWs that were gathered were all the same thickness and had no crystalline
coating. They were first put through a jaw crusher, which reduced their size, and then a
600 µm screen, which removed any remaining debris. For six hours, a Los Angeles abrasion
machine equipped with 20 stainless steel balls of 40 mm diameter was used to treat the
ceramic waste particles that had passed through a 600 µm filter. The steps required to
obtain TCWs are shown in Figure 1. The experiment relied on the use of unprocessed,
unadulterated GBFS that were sourced from Ipoh, Malaysia. Low calcium fly ash (FA)
from the Tanjung Bin power station in Johor, Malaysia, was used to make GPMs. FA is an
aluminosilicate resource. TCWs had a light grey colour, GBFS was somewhat off-white,
and FA was completely transparent. Their external features are shown in Table 1. FA’s
specific gravity was less than that of both TCWs (2.6) and GBFS (2.9). The median particle
size of TCWs, GBFS, and FA was 35 µm, 12.8 µm, and 10 µm, respectively.
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Table 1. Chemical and physical attributes of raw materials based on XRF test.

Material Chemical Composition

Main oxides TCWs FA GBFS

SiO2 72.6 57.20 30.8

Al2O3 12.2 28.81 10.9

CaO 0.02 5.16 51.8

Na2O 13.46 0.07 0.46

Total 98.28 91.24 93.96

SiO2:Al2O3 5.95 1.98 2.82

CaO:SiO2 <0.01 0.09 1.68

CaO:Al2O3 <0.01 0.18 4.75

NaO:SiO2 0.18 <0.01 0.01

NaO:Al2O3 1.10 <0.01 0.04

Other oxides

MgO 0.99 1.48 4.57

K2O 0.03 0.94 0.36

Fe2O3 0.56 3.67 0.64

SO3 0.01 0.10 0.06

LOI 0.13 0.12 0.22

Materials’ physical traits

Specific gravity 2.61 2.2 2.9

Surface area-BET (m2/g) 12.2 18.1 13.6

The molecular make-up of TCWs, GBFS, and FA was established with the use of X-ray
fluorescence spectroscopy (XRF) (Table 1). It proves that the chemical composition of the
TCWs, GBFS, and FA determines their unique characteristics. The major components of
TCWs, FA, and GBFS were found to be SiO2 (72.6 percent and 57.8 percent, respectively)
and CaO (51.8 percent of GBFS). When compared to the high CaO concentration of GBFS,
both TCWs and FA contained negligible amounts (0.02 and 5.2 percent, respectively). When
comparing FA, TCWs, and GBFS, Al2O3 concentrations were 12.6 percent and 10.9 percent,
respectively, with FA having the highest concentration at 28.8 percent. It is generally
known that the oxides SiO2, Al2O3, and CaO play crucial roles in the hydration process,
leading to the formation of C-(A)-S-H gels. TCW’s low Al2O3 and CaO concentrations
necessitate the addition of materials with high amounts of these elements in order to
generate high-performance alkali-activated materials. These materials include FA and
GBFS. Mortar strength and density are improved by the addition of GBFS, which provides
more calcium, and FA, which adds more aluminium, both of which affect the pozzolanic
process to produce more calcium (aluminium) silicate hydrate gels. Because their combined
proportion of SiO2 + Al2O3 + Fe3O4 is greater than 70 percent, ASTM C618-15 categorises
TCWs and FA as class F pozzolans.

The X-ray diffraction (XRD) patterns of TCWs, GBFS, and FA are shown in Figure 2. It
has been shown that quartz (SiO2) and mullite (3 Al2O3.2 SiO2) are the primary crystalline
components of TCWs and FA, respectively. By using an internal standard (corundum)
and performing an analysis based on the Rietveld method, the amorphous content was
determined (shown by the big hump in the background of the XRD pattern centred at
20–30◦). It was shown via prior research [38–40], that the FA’s responsiveness grows in
tandem with its amorphous content. Taking into consideration its 29–40◦ halo, it seems that
GBFS is mostly composed of the amorphous phase with just a small amount of magnetite.
The findings of this study agree with those of Ismail et al. [41]. SEM pictures of TCWs,
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GBFS, and FA are shown in Figure 3. The particles of TCWs were clearly irregular and
angular. The GBFS also included angular and irregular particles. Clearly, FA is made up of
round, smooth-surfaced particles.
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Purified sodium hydroxide (NH) pellets and a sodium silicate solution (NS) with the
chemical formula SiO2 (29.5 wt. percent), Na2O (14.70 wt. percent), and H2O were utilised
in this study (55.80 wt. percent). Using the pellets, we were able to create a 4 M NH solution
by dissolving them in water (Figure 4). After being refrigerated for 24 h, this was mixed
with NS solution to create a 1.02 SiO2:Na2O alkaline solution (S). All alkaline solutions
kept the NS:NH ratio below 0.75 to reduce the detrimental environmental effect of sodium
silicate (Na2SiO3). Sand from local rivers was used for the sieve analysis, as per ASTM
C33-16. All the substance passed a 2.36 mm sieve with a specific gravity of 2.6 at a bulk
density of 1614 kg/m3. In this case, a fineness modulus of 2.8 was used.
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2.2. Mix Design

Alkali-activated mortars with a high percentage of TCWs were tested for their en-
durance by preparing ten mixes using FA in place of GBFS (Table 2). Each batch contained
the same molarity of NH (4 M) and the various percentage of TCWs binder (0, 50, 60 and
70 percent) to ensure uniformity. The ratios of binder to fine aggregate in each mixture
were also identical (1.0), as were the ratios of alkaline solution to binder (0.40) and sodium
silicate to sodium hydroxide (0.75). The batch with 0 percent TCWs was chosen as the
control, and then 50 percent, 60 percent, and 70 percent (by mass ratio) of GBFS were
replaced with GBFS in subsequent combinations. The TCWs percentage was held steady at
between 50 and 70 percent by weight, the GBFS percentage was held steady at between
20 and 50 percent, and the FA percentage was kept steady at between 0 and 30 percent.
The purpose of this set of studies was to determine the impact of a high concentration
of ceramic wastes on geopolymer mortar; hence, a wide variety of ternary mixes were
tested. All factors were maintained constant except for the percentages of TCWs, GBFS,
and FA. Prior to use, NH and NS were mixed in a weighed solution and cooled to room
temperature. Before adding the FA, GBFS, and TCWs to the mortar mixer machine to make
the GPMs, the fine aggregates were added. Before adding the alkaline solution, they were
mixed for two minutes under dry conditions to ensure consistency. After an extra four
minutes of mixing, the final liquid was poured into the moulds in accordance with ASTM
C579-18. The liquid was poured into the moulds in two stages, with 15 seconds’ worth of
vibration table time in between each pour to let any trapped air escape. The GPM samples
were cured for 24 h at 27 ± 1.5 ◦C, and 75 percent relative humidity to simulate conditions
in Malaysia. In the next step, the specimens were unsealed and kept in the same conditions
up until the day of the test.
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Table 2. High volume TCWs geopolymer mix design.

Mix TCWs:GBFS:FA
Binder, kg/m3

River Sand
kg/m3

Alkaline Solution, kg/m3

TCWs GBFS FA NH NS

Control GPMs1 0:50:50 0 550 550 1100 251.24 188.76

Group A

GPMs2 50:50:0

550

550 0

1100 251.24 188.76
GPMs3 50:40:10 440 110

GPMs4 50:30:20 330 220

GPMs5 50:20:30 220 330

Group B

GPMs6 60:40:0

660

440 0

1100 251.24 188.76GPMs7 60:30:10 330 110

GPMs8 60:20:20 220 220

Group C
GPMs9 70:30:0

770
330 0

1100 251.24 188.76
GPMs10 70:20:10 220 110

2.3. Test Procedure

Moulds were cast to ASTM C579’s 50 × 50 × 50 mm cube size for more rigorous testing,
such as compressive strength. To conduct the flexural strength test, 40 × 40 × 160 mm
prisms were cut and stacked. Cylinders with dimensions of 75 mm in diameter and 150 mm
in depth were manufactured for tensile strength test. It was decided to use 100 mm in
diameter cylinder and 50 mm disk to prepare the samples for the impact resistance test. Oil
from an engine was injected into the moulds before casting to make demoulding easier.

The compressive strength test was carried out with ASTM C109 as the standard. At
each of the following four ages (1, 3, 7, and 28 days), a minimum of three specimens were
tested to determine the compressive strength of the material. ASTM C496, ASTM C78,
ASTM C469, and ASTM C140 standards were used to assess the splitting tensile strength,
flexural strength, impact resistance, and water absorption, respectively. The analytical
technique known as FTIR spectroscopy may be used to differentiate between organic and
inorganic compounds. The underlying chemical structures of GPMs were analysed using
an FTIR spectrophotometer in order to identify the vibration modes of those structures.
The FTIR spectra were collected at room temperature, and the wavenumber range covered
400 cm−1 all the way up to 4000 cm−1. In order to investigate the surface morphology of
GPMs, scanning electron microscopy (SEM) was used, and the magnification level was
optimised. A SEM examination was carried out in order to illustrate the microstructure
and diverse degrees of reactivity at various chemical compositions and combinations. To
increase the electrical conductivity of the fragments, samples were taken from specimens
that were examined at 28 days of age. These samples were then sputtered and coated with
gold for two minutes using a machine called a BAL-TEC SCD 005 sputter coater. Finally,
the fragments were tested for SEM and FTIR.

The drop-weight test was used for the purposes of measuring the impact resistance
of GPMs as well as their capacity to absorb energy during a collision. In line with the
recommendations of ACI Committee 544, three cylindrical specimens measuring 100 mm
in diameter and 50 mm in height were tested after 28 days for each mix design. As shown
in Figure 5, the impact resistance test consisted of repeatedly subjecting the specimen to
impact loads (a hammer ball with a diameter of 64 mm and a weight of 4.5 kg), which
were delivered from a height of 457 mm. It was then ascertained how many blows were
necessary to provide the requisite amount of damage (occurrence of the first crack and
failure cracks). The specimen underwent a series of strikes from the hammer ball, and the
number of blows (N1) that resulted in the first visible fracture was counted. The number of
blows (N2) that caused the opening of cracks at the point at which the concrete components
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started to crush was also recorded and labelled as the point of ultimate failure. This was
the point at which the structure had completely failed.
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The following equation calculated the impact energy at the initial crack, Ui (where the
subscript i denotes the type of energy absorbed, initial failure):

Ui = N1mgh (1)

Similarly, the impact energy at the ultimate crack, Uu was calculated by the
following equation:

Uu = N2mgh (2)

where, N1 and N2 are the numbers of blows at the initial and ultimate crack stage, m is the
mass of the hammer (4.5 kg), g is gravity acceleration (9.81 m/s2), and h is the releasing
height of the drop hammer (457 mm).

3. Results
3.1. Compressive Strength

Figure 6 depicts the evolution of GPMs compressive strength as a function of high
volume TCWs concentration. For all GPMs mixtures, it was found that the compressive
strength trend to increase with increasing curing age from 1 to 3 to 7 to 28 days. Compared
to the control sample, the compressive strength trend was to decrease with increasing level
of replacement GBFS by TCWs and FA. As the TCWs concentration grew from 50 percent
to 70 percent after 28 days, the compressive strength of the GPMs fell from 70 MPa to
35 MPa. This drop was connected to the unfavourable consequences of having a low
calcium content and a high silica concentration [42–44] in the geopolymer matrix. This
resulted in fewer C-(A)-S-H gels, which weakened the GPMs, because TCWs has a higher
silica content (more than 70 percent) and a larger particle size (35 µm) than GBFS. On
account of this, the development of strength in GPM specimens generated with a high
TCWs level was negatively impacted. Figure 6 shows how the compressive strength of
GPMs is affected when high volumes of TCWs with FA are used in place of GBFS. A rise
in FA concentration has resulted in an increase in silica and alkali, which in turn have a
deleterious influence on the amount of calcium (Table 1). Consequently, the fall in GBFS
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concentration from 50 (GPMs1) to 20 percent (GPMs10) after 28 days of age resulted in
a decrease in compressive strength from 80 to 25 MPa. After 28 days of hydration, the
compressive strength of all GPM mixtures was higher than it had been after just 7 days.
This was in comparison to the initial compressive strength. The low calcium content,
which played a key role in the weakening of GPMs, was linked to the existence of low
amounts of C-(A)-S-H gels. This was determined to be the case because of the low calcium
content. Similar results were reported by Rashad [45], who found that an increase in
the concentration of FA in a geopolymer matrix resulted in a decrease in the matrix’s
compressive strength. The decline in compressive strength may be traced back to several
different causes. The first factor was the difference in chemical composition that existed
between TCWs, GBFS, and FA. This difference had a significant impact on the alkali
activation of binders [46]. The second problem was that the reaction rate of TCWs and
FA was much slower than that of partially dissolved GBFS. The third component was
associated with the reduction in compactness and density of the geopolymer matrix that
occurred as a result of an increase in the TCWs and FA content. The fourth factor was
connected to the low sodium hydroxide concentration (4 M), and the compressive strength
mostly depended on the calcium oxide content to compensate for the low sodium oxide
content. This was because the calcium oxide content was higher than the sodium oxide
content. Since this was the case, the GPMs were improved by making more C-S-H and
C-A-S-H gels in addition to the N-A-S-H gel.
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3.2. Flexural Strength

Figure 7 presents the data that pertains to the flexural strength of GPMs that include
a significant quantity of TCWs. At early age (1 day), it was found the flexural strength
value dropped from 4.68 MPa to 3.84 MPa with inclusion 50% of TCWs as FA replacement.
Likewise, with increasing TCWs content to 60 and 70% as GBFS replacement, the flexural
strength trend to decrease to 2.34 and 1.56 MPa, respectively. Likewise, the results of tested
specimens after 3 and 7 days show a drop in strength values with increasing TCWs and
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FA in geopolymer matrix. At 28 days, we looked at how the TCWs content affected the
flexural strength of the material. At 28 days of curing age, the increasing TCWs from
50 percent to 60 and 70 percent significantly effect flexural strength values and led to a drop
in the strength from 10.12 MPa to 9.26 and 4.62 MPa, respectively. The effect of FA content,
as a GBFS replacement, on the flexural strength of high volume TCWs geopolymer are
presented in Figure 7. The power was lessened across the board when the FA concentration
in each TCWs level increased. This documented lowest flexural strength of 3.17 MPa
was achieved by GPMs10 at 28 days of age, which consisted of 70 percent TCWs and
20 percent GBFS. According to the findings, the flexural strength increased with increasing
slag content, which is in line with the findings of previous studies [7,47,48]. It was reported
by Van et al. [49] that the addition of more calcined source materials led to increased strength
by improving the microstructure of GPMs matrix. Thus, the increase in compressive
strength of GPMs specimens by inclusion of GBFS is attributed to the formation of more
compact microstructure of the binder [50].
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3.3. Splitting Tensile Strength

The tensile strength of GPMs that have been loaded with a significant amount of
TCWs is shown in Figure 8. When the specimens were 28 days old, measurements were
taken to establish their strength values. The tensile strength findings after 28 days were
found to be influenced by the rising TCWs concentration. The results showed a lower
strength (2.68 MPa) with a high TCWs content (70 percent) in comparison to 5.32 MPa for
50 percent TCWs content and 5.84 MPa for the control sample. The findings also showed
that the TCWs content had an influence on the tensile strength findings. At the end of the
testing period of 28 days, the findings for splitting tensile strength came in at 5.32 MPa,
5.27 MPa, and 2.68 MPa, respectively, for TCWs concentrations of 50 percent, 60 percent,
and 70 percent to replace GBFS. A rise in TCWs caused a calcium concentration drop,
which in turn slowed the rate of the chemical reactions needed to produce C-S-H gel [28,42].
Figure 8, with 50, 60, and 70 percent TCWs content, indicate the influence of high volume
TCWs on the splitting tensile strength of the GPMs when the FA was replaced by the GBFS.
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It was revealed that the amount of FA in GPMs has a link that is opposite to the material’s
tensile strength. Its potency waned in direct proportion to the increasing supply of FA.
The GPMs 10 material had the lowest value of splitting tensile among all the materials in
this batch. It included 70 percent TCWs, 20 percent GBFS, and 10 percent FA, and it had a
strength of 1.92 MPa after 28 days. Phoo-ngernkham [42] discovered that the additional
C–S–H and C–A–S–H gels coexisted with the N–A–S–H gel of fly-ash-based GPMs. This
discovery explains the drop in strength that was seen in conjunction with an increase in
TCWs and FA content and a decrease in GBFS content.
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3.4. Statistical Analysis

The correlations between compressive strength, flexural and splitting tensile strength
are presented in Figure 9. In this figure, a direct relationship was found between the com-
pressive strength, flexural strength and splitting tensile strength values. Linear regression
methods were applied to correlate the experimental data following Equations (3) and (4),
with R2 values of 0.94 and 0.98 respectively. These values signified high confidence for
the relationships. In Figure 10, the statistical results derived from experimental data are
presented; and these results indicated that a raise in TCWs and FA content increased the
interval difference between the minimum and maximum values of strengths of geopolymer
specimens. The frequency histogram of compressive strength of geopolymer specimens is
depicted in Figure 10a. These results showed that the compressive strength of specimens
was normally distributed and fit well with the superimposed normal distribution curve.
For the flexural and splitting tensile strengths, it was found the similar trend to compres-
sive strength and the frequency histogram displayed a normal distribution, as shown in
Figure 10b,c, respectively.

Y1 = 0.0771 X (3)

Y2 = 0.1322 X (4)
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3.5. Scanning Electronic Image Analysis

The SEM images of GPMs having a high concentration of TCWs are seen in Figure 11.
After 28 days, four specimens were assessed, each of which had either 0, 60, 70 percent
TCWs instead of GBFS and 20% FA as GBFS replacement in 60% TCWs matrix. On the
surface of the GPMs that were discovered to contain 0 percent TCWs (Figure 12a), there
were trace amounts of non-reacted and partially reacted particles. When the TCWs content
was increased to 60 and 70 percent, the amount of non-reacted content and partially
reacted particles increased (Figure 11b,d, respectively), as compared to the sample that was
obtained with 0 percent TCWs (Figure 11a). The rise in TCWs resulted in the production
of a morphology with a highly porous structure and a higher quantity of unreacted silica.
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This influenced the development of GPM compressive strength, which decreased from
70% MPa to 35 MPa as a result. Figure 11c is a collection of SEM photos that illustrate the
impact of replacing 80 percent of the GBFS in synthesised GPMs with by 60% TCWs and
20% FA. These images demonstrate how the surface morphology of the GPMs is altered.
Due to the increase in FA concentration from 0 to 20 percent, the surface morphology of the
particles has deteriorated, and there is now a greater number of unreacted and partially
reacted particles. It has been established that a drop in the concentration of GBFS and an
increase in the amount of FA result in a decrease in the C-S-H gel product and the creation
of more partially reacted gel, such as mullite, as well as unreacted particles, such as quartz.
This change in the C-S-H gel product caused the compressive strength to decrease from
68 MPa to 47 MPa.
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3.6. FTIR Analysis

According to the findings on compressive strength, a rise in the TCWs content inside
the geopolymer matrix as a replacement for GBFS resulted in a significant reduction in the
specimens’ compressive strength. The progressive decline in strength was caused by the
dissolution of CaO and Al2O3 as the GBFS level fell [51]. This was the cause of the gradual
decrease. It has been discovered that silicate polymerization may be reduced by lowering
the total quantity of dissolved aluminium [51–53]. The characterisation of the bonding
vibrations in the FTIR spectrum that are responsible for the formation of compressive
strength in GPMs is summarised in Figure 12, which can be found here. This hypothesis
was proven correct by the appearance of a larger Si–O–Al FTIR spectral band in Figure 13.
It was revealed that the band frequency goes up when the TCWs concentration goes up
while the GBFS level goes down. When the concentration of TCWs went from 0 percent
to 70 percent, respectively, there was a corresponding rise in the frequency of the bands,
which went from 942.6 cm−1 to 994.2 cm−1. This rise in the frequency of FTIR vibration
that was detected might be related to the loss of Al in the GPMs network, which would
result in a weaker 3D structure.
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Figure 13. Impact energy of high volume TCWs based geopolymers.

3.7. Evaluation of Impact Energy Capacity

During this experiment, several different concentrations of TCWs were used in order
to manufacture GPMs with varying degrees of ductility. The number of blows that were
required to generate the first fracture (N1) and failure (N2) of the geopolymer specimen
was counted in order to calculate the IR of geopolymers that included 50, 60, or 70 percent
TCWs. This was done so that the IR could be calculated. The results of testing performed
on geopolymer specimens are shown in Table 3 and include the first fracture, the final crack,
the impact energy, and the number of blows required to eventually fail. First, the IR of the
samples that were tested was improved by replacing a portion of the GBFS with TCWs
(50 percent). The inclusion of TCWs resulted in an increase of 11.7 percent and 14.9 percent,
respectively, in the IR measured at the first and final cracks. As the percentage of binders
that were replaced with TCWs went up, the IR of initial and final cracking went up for all
the samples that were made with TCWs.
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Table 3. Impact resistance of all studied geopolymer specimens at the age of 28 days.

Mix
Impact Resistance

N2-N1

Impact Energy (J)
PINPB
(Blows)First

Crack (N1)
Failure

(N2) First Crack Failure

GPMs1 17 20 3 337.71 397.31 17.65

GPMs2 19 23 4 377.44 456.89 21.05

GPMs3 20 24 4 397.31 476.76 20

GPMs4 21 26 5 417.17 516.49 23.81

GPMs5 23 28 5 456.89 556.22 21.74

GPMs6 20 25 5 397.31 496.63 25

GPMs7 21 25 4 417.17 496.63 19.05

GPMs8 23 27 4 456.89 536.36 17.39

GPMs9 24 30 6 476.76 595.95 25

GPMs10 27 32 5 536.36 635.68 18.52

Table 3 illustrates how the presence of TCWs acts as a substitute for fine particles
and how this affects the IR of geopolymer specimens. The resistance of the specimens to
early cracks and failure was increased by 46.8 percent and 49.9 percent, respectively, by
increasing the content of fine TCWs from 50 percent to 70 percent. The percentage of TCWs
in the material rose from 50 percent to 70 percent and GBFS was replaced by 10 percent of
FA, which resulted in an increase in early cracking and failure of 57 percent and 60 percent,
respectively. Based on the results presented in Figure 13, the GBFS could be replaced with
a mix of TCWs and FA to make the surface as impact resistant as possible.

The value of N2-N1 in Figure 14 for changed geopolymer design mixes demonstrates
the effect of varying TCWs concentrations on the post-peak resistance (PPR) of geopoly-
mer. This effect can be seen when the design mixes are altered. When compared to the
sample used as a control, the incorporation of TCWs into the concrete mixes that were
recommended resulted in a significant increase in the PPR of the specimens that were
tested. When compared to the control sample and the other geopolymer specimens, the
geopolymer with the highest PPR was the one that had 70% of TCWs as a binder.
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Figure 15 depicts the relationship between the level of TCWs included, and the impact
energy capacity at the failure crack. In this diagram, direct correlation was observed
between the TCWs content and failure impact energy; as the content of TCWs increased,
the impact resistance of geopolymer specimens significantly enhanced. As presented
in Equation (5), the linear regression method was applied to correlate the experimental
data of geopolymer specimens, with R2 value of 0.62. This signified good confidence for
the relationships.

Y = 2.7342 X + 374.31 (5)
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Figure 15. Relationship between TCWs content and impact energy capacity at failure stage.

Figure 16 presents an illustration of the failure processes that might occur in geopoly-
mer specimens that have been generated with significant amounts of TCWs. The findings
suggest that specimens with a high concentration of TCWs exhibited scant cracking due
to the bridging effect of the TCWs, which gathered more energy and prevented the pre-
cipitous collapse of the specimens. The impact energy was absorbed by TCWs rather than
being transferred to the surrounding GBFS, which resulted in a significant increase in the
IR capacity and a delay in the onset and propagation of cracks in the mortar. This was
achieved by delaying the onset of cracking in the mortar. When rubber particles are added
to reinforced structures, the impact resistance of those structures goes up substantially
when those structures are subjected to both impact and dynamic stresses.
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4. Conclusions

The influence of a high concentration of TCWs on the properties of ternary GPMs was
investigated, specifically in terms of compressive, flexural and splitting tensile strengths,
microstructures, and impact resistance. The following are some of the inferences that may
be drawn from the results of the experiment:

The growth of TCW-based GPMs’ compressive strength was influenced by the addition
of GBFS and FA, which contributed to the material. The strength improvement was
diminished when the concentration of GBFS dropped from fifty percent to twenty percent.
However, the GPMs that were created by substituting 50 percent TCWs for GBFS achieved
a sufficiently high compressive strength of 45.9 MPa, which would allow this product to be
used and employed in a variety of applications within the construction sector.

TCWs were used as a partial replacement for GBFS, FA, and this resulted in a marked
improvement in the ductility performance by increasing the impact resistance.

On account of the increased TCWs, the improved geopolymer mortar was able to
absorb stresses in an effective manner, resulting in a high IR.

The prepared GPMs gave a superior product in terms of mechanical and durability
qualities, which is likely to be of interest to many manufacturers of mortar and concrete. In
addition to the environmental advantages, these features made the product better. This
suggested replacement for traditional cement mortars and concrete has a wide range
of applications and has the potential to assist businesses operating in the sustainable
construction sector in accomplishing their sustainability objectives.

The effect of high volume TCWs on the drying shrinkage and structural applications
of geopolymer concrete need in-depth investigation.
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