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Abstract: Polymers have been proven to be an interesting class of adsorbents applied in water
treatment. Biopolymers are of special interest due to their unique properties such as biocompatibility,
biodegradability, and reusability. This work reports a composite formed by a chitosan biopolymer
and activated charcoal using sodium citrate as a crosslinking agent. The chitosan–citrate-activated
charcoal composite (CCA) was characterized using FT–IR, SEM, EDAX, XRD, TGA–DTA and BET
surface area analysis. The material was found to be microporous in nature with a surface area of
165.83 m2/g that led to high adsorption capacities toward both the targeted pollutants. In an aqueous
phase, the dye adsorption studies were carried out with reactive orange 16 (R-16) dye, while in
a gaseous phase, CO2 adsorption capacity was evaluated. Under optimum solution conditions,
maximum R-16 dye removal capacity was found to be 34.62 mg g−1, while in the gas phase the
CO2 adsorption capacity was found to be 13.15 cm3g−1. Intrinsic microporosity of CCA resulted in
an enhanced capture capacity for R-16 dye and carbon dioxide in the respective phases. Material
sustainability studies were carried out to evaluate various sustainability parameters.

Keywords: sodium-citrate-crosslinked chitosan; reactive orange dye; water treatment; CO2

sequestration; adsorption efficiency; sustainability studies

1. Introduction

Natural polymers based on plant and non-plants sources have been in focus as adsor-
bents for the majority of contaminants in order to provide a clean and safe environment.
Natural polymers cleanse wastewater for its sustainable recirculation into the environment
due to their inherent structure, composition, and diverse functionality along with important
characteristic properties such as non-toxicity, low-cost, renewability, biodegradability, and
biocompatibility [1]. A variety of natural polymers such as starch [2], pectin [3], chitin,
chitosan [4], bacteria, algae, fungi [5], and ghatti gum [6] have been employed for decontam-
ination of water. Nonetheless, in many cases, natural polymers are not sufficient to remove
the dyes from highly complex dye-containing wastewater, and so these polymers should
be subjected to a modification process, involving chemical or physical treatment, in order
to enhance their efficiency in removing dyes from complex wastewater [7]. Composites of
biopolymers have dominant properties such as improved durability, processing capability,
high functionality, and a large surface area, which increase the removal of contaminants
or pollutants from the environment via adsorption [8]. Recently, composites of natural
polymers have come into focus as adsorbents for the majority of contaminants. These natu-
ral polymers include cellulose [9], chitosan [10], sodium alginate [11], and other natural
products [12] due to their abundance, non-toxicity, biodegradability, low cost, etc.
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Chitosan is widely used as an adsorbent for contaminant removal in wastewater
due to its distinct advantages of non-toxicity, cost-effectiveness, biodegradability, and
super-high adsorption capacity [13]. However, due to its high solubility and swelling
index in acidic media, and low surface area and mechanical strength, chitosan, on its
own, is not a successful material for water treatment technology. Therefore, chemical
modification through composition and/or a crosslinking process is an alternative way
to increase mechanical resistance, reduce hydrophobicity and stabilize chitosan in acidic
environments. A lot of research has been conducted on dye adsorption using chitosan in
its native form [10] and on chitosan combinations such as chitosan/carbon composites [14],
chitosan–vanadate films [15], cellulose/chitosan composites [16], surface-modified chi-
tosan [17], chitosan-based cryogels [18], and β-cyclodextrin–chitosan-based cross-linked
adsorbents [19]. Blending of chitosan with other organic moieties and introducing magnetic
properties to the composites have resulted in high selectivity and adsorption efficiency
towards target pollutants [20]. Advanced applications of natural-fiber-reinforced chitosan,
chitosan blends and their nanocomposites have also been reviewed in the recent litera-
ture [21].

Equally, continuous emission of carbon dioxide, owed to anthropogenic activities, is
the prime cause of damaging the ozone layer leading to global warming and to critical
environmental concerns [22] along with serious human health hazards [23]. With an am-
bitious objective of reducing CO2 emission, the Paris Agreement has been emerged as an
international climate protocol [24]. For this reason, carbon capture arose as a prominent
strategy aiming towards the reduction in emission of CO2. Various technologies for car-
bon dioxide capture that have been employed include absorption [25], cryogenics [26],
cycles of carbonation−calcination [27], the use of membranes [28], and adsorption [29].
Among all CO2 removal technologies, adsorption technologies have shown great potential
because of their reversibility and versatility [30]. Many biopolymer-based adsorbents
have been developed for this purpose. Materials such as nanocrystalline cellulose-based
composites [31], chitosan-based composites [32], aerocellulose-derived activated carbon
monoliths [33], microcrystalline cellulose-based composites [34], nanofibrillated cellulose–
polyethylenimine foams [35], chitin acetate/DMSO binary systems [36], chitosan-derived
activated carbons [37], and chitosan–polybenzoxazine nanocomposites [38] have been used
as adsorbents. The acidic character of the CO2 molecule led to the development of basic
solid sorbents through physical impregnation as well as chemical grafting of an amine
compound onto a solid surface [39]. Chitosan, a biopolymer with an amino functionality,
has been utilized as precursor for the synthesis of adsorbents for CO2 capture [40]. Chitosan
is obtained from the N-deacetylation of chitin, one of the most abundant polymers in the
nature, which may be extracted from the carapace and exoskeleton of crustaceans [41]. The
presence of free amino groups in the structure of chitosan can provide basic sites for the
adsorption of CO2, similar to other amino-based adsorbents.

Our research group has reported various chitosan- and cellulose-based materials
for the removal of organic dyes from water bodies. These include a chitosan–alginate
composite [42], a tetrabutyl ammonium impregnated chitosan [43], a chitosan–bentonite
composite [44], a chitosan–Mohr’s salt composite [45], and a cellulose–tin composite [46].
Furthermore, recently, we have reported an ice-templated imidazole polymeric material for
capture of CO2 [47].

The aim of this work is to synthesize an environmentally benign material that can be
used as a water-treatment agent as well as improve air quality without using any drastic
conditions and chemicals. To the best of our knowledge, this work is the first ever attempt
to derive a material at room temperature that has all the following merits: the adsorption
properties of charcoal, the biocompatibility of chitosan, and mechanical stability provided
by a citrate crosslinker. R-16 has been selected as a representative dye for this work. Such a
material can be a boon to environmental scientists for multi-toxicant decontamination.
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2. Materials and Methods

All the chemicals and reagents used were of analytical grade. Chitosan with a degree
of deacetylation of >90% was purchased from Sisco Research Laboratory, Mumbai, India.
Acetic acid and 25% ammonia solution were obtained from SD Fine Chemicals Ltd., Mum-
bai, India. Activated charcoal, sodium citrate, and reactive orange 16 dye were acquired
from Loba Chemie, Mumbai, India. All chemicals were used without further purification
and deionized distilled water was used throughout the studies.

Chitosan solution was prepared by dissolving 5 g chitosan in 500 mL of 2% acetic acid
with stirring for 60 min. After the complete dissolution of chitosan in acetic acid, 2.5 g
activated charcoal was added in small instalments and the solution was kept on gentle
stirring for 30 min. The resultant solution was dripped into a beaker containing 1000 mL
of 6% ammonia solution with the help of a syringe, leading to the formation of spherical
beads. The fresh beads were rinsed with distilled water several times for removal of all
traces of ammonia. The beads were suspended in 250 mL of 1% sodium citrate solution
and stirred slowly at 40 ◦C for 2 h for the crosslinking process. The resulting CCA beads
were washed with distilled water several times and dried overnight in a hot air oven at
50 ◦C. The beads were crushed using a pestle and mortar and sieved with a 100 micron
mesh before being used in the adsorption experiments.

In each experiment, 25 mL dye solution of a pre-decided concentration along with a
known weight of CCA, was stirred on a magnetic stirrer for a pre-determined time. It was
then filtered and the residual R-16 dye concentration was evaluated spectrophotometrically
at 493 nm using a Shimadzu 1900 UV-visible spectrophotometer (Shimadzu, Kyoto, Japan)
with matched quartz cuvettes. Triplicate observations were obtained and the mean values
are reported. The equilibrium adsorption efficiency in mg g−1 can be calculated using
following equation [48].

qe =
C0 − Ce

W
× V

where C0 and Ce are the initial and equilibrium concentration of R-16 in solution in mg L−1,
respectively, V is the solution volume in L, and W is the weight of CCA used in g.

Trial runs were performed to compare the adsorption efficiencies of unmodified and
sequentially modified adsorbents for the reactive orange16 dye. For this, 50 mg L−1 dye
solution was equilibrated for 60 min with 100 mg of unmodified chitosan, activated charcoal,
sodium citrate crosslinked chitosan, and CCA composite in different flasks. The solution
phase concentrations in each flask were determined after filtration and the adsorption
efficiency was calculated for each of them.

To study the effect of temperature as part of the evaluation of the thermodynamic
parameters, the temperature was varied from 298 to 333 K. The quantity of adsorption
of R-16 on CCA was investigated at an R-16 concentration of 100 mg L−1 using a 25 mL
volume and adsorbent dose of 100 mg.

In all the experiments, the original solutions as well as the treated solutions were
filtered through Whatman no. 1 filter papers to overcome the effect of adsorption by
filter paper.

X-ray diffraction (XRD) spectra were recorded on an Ultima IV diffractometer (Cu Ka
radiation, 40 kV and 20 mA) from 2θ = 2◦ to 10◦ with a step size of 0.02◦ (Rigaku, Tokyo,
Japan). The thermal stability of the synthesized material (CCA) was assessed in a DTG-60
simultaneous DTA/TG instrument (Shimadzu, Tokyo, Japan) in nitrogen medium. About
15 mg of the sample was loaded on a platinum pan with a heating rate of 20 ◦C min−1 up
to 900 ◦C under 100 mL min−1 of flowing N2. Fourier transform infrared (FTIR) spectra
were obtained on a BrukerAlphaE, London, UK, spectrometer in the range 500–4000 cm−1

using KBr pellets. The textural properties of the adsorbent were assessed using a scanning
electron microscope (SEM) model TESCAN VEGA 3 SBH. Energy dispersive spectroscopy
(EDAX) analysis was performed for elemental composition using an X-ray analyzer Oxford
INCA Energy 250 EDS system during SEM observations. The samples were degassed at
150 ◦C for 2 h under vacuum and N2 adsorption/desorption isotherms were acquired
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at −196 ◦C on a Quantachrome Nova 2200e analyzer (Anton Paar, Graz, Austria). The
surface area was calculated by considering the BET model, and the pore volume was
obtained using the BJH method. pHPZC was performed using an Equiptronics EQ-615
pH meter, the absorbance of the dyes was recorded using an Equiptronics EQ-824, while
an Equiptronics magnetic stirrer model EQ-770 was used for batch adsorption stirring
(Equiptronics, Mumbai, India).

The CO2 adsorption capacity of the CCA material was evaluated using a Quan-
tachrome Nova 2200e analyzer. The sample was pre-treated at 150 ◦C under vacuum, and
CO2 adsorption isotherms were obtained at 25 ◦C with pressures up to 1 bar.

Linear regression analysis was used to determine the parameters of isotherms and
kinetic models. Additionally, error analysis was carried out to ascertain the desired accuracy
has been achieved.

SSE (error sum of squares) = Σ (qe/t
exp−qe/t

cal)2

where qe/t
exp and qe/t

cal are the experimental adsorption capacity at equilibrium or at any
time (qe/t

exp) and the calculated adsorption capacity at equilibrium or at any time (qe/t
cal)

from the models, respectively.

AIC (Akaike information criterion) = N Ln SSE/N + 2K

where, N is the number of data points and K is the number of parameters [49].

3. Results
3.1. Characterization of CCA

FT–IR spectra of native chitosan showed (Figure 1a) its characteristic vibrational
peaks at 1021 cm−1 (C–O–C stretching), 1641 cm−1(N–H stretching), 2864 cm−1 (C–H
stretching), and 577 cm−1 (C–H bending) [50].When CCA was formed, these bands shifted
to higher wavenumbers while the spectrum was found to be highly complex (Figure 1b). In
addition to that, the peak observed at 698 cm−1 is due the C–H bending and deformation
frequencies of the cross-linker sodium citrate. The C=O stretching band was found to get
intensified at 1692 cm−1. This indicates cross-linking of sodium citrate with chitosan
involving electrostatic interactions [51].
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Figure 2 shows the X-ray diffractograms of chitosan and CCA. Native chitosan showed
characteristic peaks at 2θ = 10.92◦ and 20.01◦ corresponding to (020) and (110) planes,
respectively [52]. In case of CCA, these two peaks were found to shift towards lower values.
The decrease in crystallinity of adsorbent can be attributed to the typical amorphous regions
of chitosan which are established through intramolecular and intermolecular H-bonding
interactions. The XRD pattern of CCA shows additional peaks at 2θ = 44.56◦, 72.7◦, and
88.39◦ corresponding to various planes of sodium citrate [53].
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Thermal analyses were performed to evaluate the stability of the adsorbent at ele-
vated temperatures, as this property is important to ensure its further use during several
temperature and pressure swings. The TGA curve (Figure 3a) of chitosan showed two
sharp weight losses due to loss of moisture and adsorbed water up to 120 ◦C and thermal
decomposition between 275 and 325 ◦C. The total weight loss was found to be almost
100%. The composite material CCA also exhibited two sharp weight loss events. The first
started at ambient temperatures going up to approximately 150 ◦C and is associated with
the loss of physically adsorbed water. The second loss occurred in the range 325–400 ◦C.
This shows enhanced thermal stability in comparison to the native chitosan. A gradual
decomposition occurred above 400 ◦C corresponding to the complete decomposition of
chitosan and the destruction of citrate crosslinking. The DTA curves (Figure 3b) presented
endothermic peaks corresponding to moisture loss in both the materials and exothermic
peaks for thermal decay. The shift in exotherm to higher temperature in CCA is a clear
indication of formation of composite between chitosan and activated charcoal with the
citrate crosslinker, as well as increased thermal stability of CCA.

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 3. (a) TGA curves and (b) DTA curves of chitosan and CCA. 

N2 adsorption/desorption isotherms of CCA as depicted in Figure 4 showed the N2 
physisorption isotherm was type IV according to the IUPAC classification. This result 
indicated the presence of micropores in its structure. The pure chitosan was found to 
have a surface area of 0.013 m2 g−1 with a pore volume of 1.263 × 10−3 cm3 g−1 while those of 
activated charcoal were 897.9 m2 g−1 and 12.29 cm3 g−1.This indicates a non-porous nature 
of chitosan and a highly porous nature of activated charcoal. The surface area of CCA 
was 165.83 m2 g−1 with a pore volume of 1.332 cm3 g−1. The mean pore radius of CCA was 
found to be 1.459 nm, indicating that it is a microporous material [54]. The intermediate 
surface area of CCA is indicative of formation of composite and loading of chitosan into 
the porous framework of activated charcoal. The adsorption–desorption isotherm shows 
a small hysteresis loop of the H4 type. Such a loop is observed if the material is highly 
complex showing microporosity as well as mesoporosity. This observation is consistent 
with the granular-like appearance of the surface of the material as obtained in SEM mi-
crographs. The isotherm shows that desorption curves shifted to lower values than ad-
sorption curves, which can be attributed to cavitation-persuaded desertion [55]. The high 
adsorption capacity of CCA towards R-16 dye can be prominently attributed to the high 
surface area, large pore volume, and micro and mesoporous nature of the adsorbent. 

 
Figure 4. (a) N2 adsorption–desorption isotherms; (b) pore size distribution of CCA. 

The SEM micrographs show the surface morphology of the chitosan and the modi-
fied adsorbent (Figure 5). Chitosan has a relatively smooth and regular surface compared 
to CCA which has an irregular and heterogeneous surface. The porous and folded sur-
face of the adsorbent enhances the surface area and therefore the adsorption capacity. 
The EDAX technique was used to analyze the elemental composition of CCA. Both chi-

Figure 3. (a) TGA curves and (b) DTA curves of chitosan and CCA.



J. Compos. Sci. 2023, 7, 103 6 of 16

N2 adsorption/desorption isotherms of CCA as depicted in Figure 4 showed the N2
physisorption isotherm was type IV according to the IUPAC classification. This result
indicated the presence of micropores in its structure. The pure chitosan was found to have
a surface area of 0.013 m2 g−1 with a pore volume of 1.263 × 10−3 cm3 g−1 while those of
activated charcoal were 897.9 m2 g−1 and 12.29 cm3 g−1.This indicates a non-porous nature
of chitosan and a highly porous nature of activated charcoal. The surface area of CCA was
165.83 m2 g−1 with a pore volume of 1.332 cm3 g−1. The mean pore radius of CCA was
found to be 1.459 nm, indicating that it is a microporous material [54]. The intermediate
surface area of CCA is indicative of formation of composite and loading of chitosan into
the porous framework of activated charcoal. The adsorption–desorption isotherm shows
a small hysteresis loop of the H4 type. Such a loop is observed if the material is highly
complex showing microporosity as well as mesoporosity. This observation is consistent with
the granular-like appearance of the surface of the material as obtained in SEM micrographs.
The isotherm shows that desorption curves shifted to lower values than adsorption curves,
which can be attributed to cavitation-persuaded desertion [55]. The high adsorption
capacity of CCA towards R-16 dye can be prominently attributed to the high surface area,
large pore volume, and micro and mesoporous nature of the adsorbent.
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The SEM micrographs show the surface morphology of the chitosan and the modified
adsorbent (Figure 5). Chitosan has a relatively smooth and regular surface compared to
CCA which has an irregular and heterogeneous surface. The porous and folded surface of
the adsorbent enhances the surface area and therefore the adsorption capacity. The EDAX
technique was used to analyze the elemental composition of CCA. Both chitosan and CCA
have elemental C, N, and O as constituent elements, along with a slight impurity of Na
in CCA.

3.2. Optimization of Adsorption Equilibrium Parameters

The pH of the R-16 dye solution greatly influences the adsorption process, and thus
the impact of solution pH on adsorption was studied. The pH of the R-16 dye varied from
pH 4.0 to 8.0 and was equilibrated with a 100 mg CCA dose for 60 min on magnetic stirrer.
Figure 6a shows that the R-16 dye removal reached a maximum at pH 8. Under acidic
conditions, the nitrogen atoms of both chitosan and R-16dye get protonated, leading to
repulsive interaction. Under stronger basic conditions, as the pH exceeds 8.2, the surface
charge of CCA becomes negative and it repels the anionic dye molecules [56]. Hence, it is
quite obvious that the electrostatic interaction is strongly attractive at a near-neutral pH
between 7 and 8. Hence, pH 8.0 was maintained throughout the studies (Figure 6a). At
pH 9.0, the surface charge of material becomes negative, thereby repelling the anionic dye.
This could be reflected in a sudden decrease in adsorption efficiency at pH 9.0.
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In order to determine the effect of CCA dosage on the removal of R-16 dye, the dose
was varied from 25 mg to 300 mg and equilibrated with 100 mg L−1 R-16 dye for 60 min.
With an increase in the adsorbent dose, the rate of adsorption was found to increase due to
availability of more and more adsorption sites. When the available dye molecules were
completely adsorbed, a plateau was obtained at above 100 mg adsorbent. The adsorption
efficiency in terms of qe (mg g−1) was found to be high at lower adsorbent doses and
further decreased with an increase in dose (Figure 6b). Above 100 mg adsorbent dose the
removal of R-16 dye is more than 90% and thus 100 mg dose was fixed for further studies.

In order to determine the effect of contact time, the time was varied from 5 to 150 min.
From Figure 6c, it can be seen that there is a rapid increase in adsorption up to 60 min,
leading to saturation of adsorbent surface. Equilibrium was achieved, and so negligible
variation was observed after this. Thus, 60 min time was fixed for further studies.

A range of initial R-16 dye concentrations were used in the adsorption studies, ranging
from 25 mg L−1 to 500 mg L−1. The study was carried out at previously optimized
parameters with a fixed dose, time, and original pH of dye solution. More than 90%
adsorption was observed up to 100 mg L−1, then it decreased rapidly with further increase
in dye concentration due to saturation of adsorbent surface (Figure 6d). The efficiency of
material was found to be maximum at an R-16 dye concentration of 300 mg L−1.

The surface charge on the adsorbent was evaluated using pHPZC. It is the pH at
which the charge on the adsorbent surface is zero. In order to determine pHPZC, 50 mL of
0.1 M NaCl solutions which varied in pH from 2.0 to 9.0 were taken in separate conical
flasks. 100 mg CCA was added to each system and the solutions were stirred for 24 h. The
solutions were filtered, and the pH values of the filtrates were determined. From the plot
of ∆pH versus initial pH, the pHPZC of the adsorbent was determined to be 8.2 (Figure 7).
When the solution pH is less than 8.2, the charge on the adsorbent surface is positive and
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thus it will take up negative ions and when the charge on the adsorbent surface is negative
it will take up positive ions [57].
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3.3. Screening Runs

In order to check the applicability of CCA for R-16 dye confiscation, the four materials
were selected. A total of 100 mg each of chitosan, activated charcoal, citrate-crosslinked
chitosan, and CCA was added to 25 mL of 100 mg L−1 R-16 dye solution in separate conical
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flasks and stirred for 60 min. The solutions were filtered and residual concentrations of
filtrates were evaluated. The adsorption capacities and percentage adsorption of the four
materials are compared in Figure 8. It was observed that all the four materials have a
tendency to adsorb R-16 dye. However, the capacity was maximum for CCA with more
than 90% adsorption. Hence, it can be concluded that CCA is an admirable adsorbent for
R-16 dye.
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3.4. Isotherm Study

Adsorption isotherm models such as Freundlich [57] and Langmuir [58] were stud-
ied, which gave a better understanding of the adsorption mechanism (Figure 9a,b). The
adsorption studies were carried by equilibrating 25 mL of R-16 dye solution by increasing
the concentration from 25 to 500 mg L−1 with 100 mg adsorbent for 60 min. From Table 1 it
can be seen that the correlation coefficient value is quite close to unity for the Langmuir
isotherm. From the R2 value it can be concluded that there is a monolayer formation of
R-16 on CCA in accordance with the Langmuir model. Additionally, the AIC value was
found to be lower for the Langmuir model, indicating that it was the best fit model. The
Freundlich isotherm shows the value of n is 3.67 which specifies a chemisorption process
of adsorption. The adsorption capacity of R-16 dye is depicted in Table 1.

3.5. Kinetics of Adsorption

The measure of progress of R-16 dye adsorbed on the CCA depends on contact time
and thus the kinetics of adsorption were studied using pseudo-first- and pseudo-second-
order reactions. Experiments were carried out at concentration of 100 mg L−1 by varying
time from 5 to 150 min with 100 mg adsorbent. The plots of kinetics of adsorption for R-16
dye were studied and the results are depicted in Figure 9c,d. The values of the correlation
coefficients for both models were found to be close to 1 and so an error analysis was carried
out using AIC. As the value of AIC was lower for pseudo-second-order kinetics, it can
be concluded that it is best model to describe the R-16 dye adsorption on CCA, affirming
chemisorption. The results are summarized in Table 1. Additionally, an intraparticle
diffusion model designed by Weber and Morris [59] was used to identify if the adsorption
process is controlled by diffusion only. Figure 9e shows that the intercept between qt and
t1/2 is non-zero, indicating that adsorption is a complex combination of both intraparticle
diffusion and surface adsorption.
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3.6. Thermodynamics of Adsorption

The temperature has an influential effect on the adsorption process. The temperature
effect was observed at temperatures 298 K, 313 K, 323 K, and 333 K. It was observed that the
percent adsorption increases with an increase in temperature, indicating the chemisorption
nature as a minimum amount of activation energy is required for the reaction to proceed.
The values of Gibbs free energy (∆G), enthalpy (∆H), and entropy (∆S) were obtained
from intercept and slope of plot ln K versus 1/T. The negative value of ∆G over the entire
temperature range shows the process is spontaneous and exothermic. The positive values
of ∆H and ∆S show that the process is entropy driven. The respective van’t Hoff plots are
shown in Figure 9f and the results are summarized in Table 2.

3.7. CO2 Adsorption

Reported literature shows that native chitosan has a negligible CO2 adsorption capac-
ity [60]. Adsorption experiments were performed at 25 ◦C, within pressures up to 1 bar.
Figure 10 shows the adsorption–desorption curve for CO2 with an adsorption capacity
of 13.15 cm3 g−1.The composite materials showed higher adsorption capacities than the
parent chitosan, but lower than the pure activated carbon supports. This later finding can
be explained by the significantly higher BET area of the mesoporous activated carbons.
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One may assume that CO2 adsorption on the surface of the functionalized materials occurs
through acid−base interactions with the amine groups of the chitosan polysaccharide
chains. The accepted mechanism under anhydrous conditions takes place in two stages:
First, there occurs a formation of a zwitterion intermediate through a nucleophilic attack
of the amino group to the CO2 molecule. Then, the zwitterion is deprotonated by another
amine or basic site of the material to form a carbamate [61].The increase in capture capacity
in CCA from 2.24 cm3 g−1 for native chitosan by a factor of 5.87 times was an important
outcome of this modification.

Table 1. Isotherm and kinetic parameters.

Adsorption Isotherm

Sr. No. Models Parameter Values

1 Langmuir qm (mg/g) 34.62
b (L/mg) 0.0115

RL 0.634
R2 0.994

AIC 41.15

2 Freundlich KF (mg1−1/n/g/L) 12.94
n 3.671

R2 0.891
AIC 57.26

Adsorption Kinetics

1 Pseudo-first order K1 0.050
R2 0.998

AIC 261.30
2 Pseudo-second order K2 0.004

R2 0.999
AIC 65.30

3 Intraparticle diffusion Kint 1.504
R2 0.847

Table 2. Thermodynamic parameters.

Temperature
(K)

∆G
(kJ mol−1)

∆H
(kJ mol−1)

∆S
(J K−1 mol−1)

298 −5.711 29.699 119.01
313 −7.525
323 −9.028
333 −9.729

3.8. Sustainability Parameters

The sustainability parameters indicate awareness towards environmental concerns
during the formation of materials through chemical reactions. The raw materials used
for synthesis were non-toxic. The sustainability parameters for CCA were analyzed in
accordance with the reported literature [62] with respect to following parameters.

Mass intensity =
Mass of all materials used excluding water

Mass of product
kg kg−1

Water intensity =
Mass of all water used

Mass of product
kg kg−1

Reaction mass efficiency =
Mass of product

Mass of all reactants
× 100
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E − factor =
raw materials (kg)− desired product (kg)

total product including water (kg)

All solutions were prepared in aqueous media. The mass intensity (Table 3) was
found to be 2.97 kg kg−1 which can be minimized avoiding the loss of product during
filtration and washing. The values of water intensity and reaction mass efficiency need
improvement in accordance with the reported literature. The low value of the E-factor
shows the synthesis is environmentally friendly.
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Table 3. Sustainability parameters.

Parameter Values

Mass intensity 2.97 kg kg−1

Water intensity 2.28 kg kg−1

Reaction mass efficiency 39.02%
E-factor 0.47

These sustainability parameters are indicators of the fact that about 60% of the raw
material used in the process is wasted, thereby reducing the atom economy. Efforts will
further be made to improve the reaction mass efficiency. Such a material can be compared
with itself under different experimental conditions. It was observed that these are the best
conditions obtained for achieving the desired adsorption efficiency for the target pollutants.

3.9. Comparison of Adsorption Capacity

Table 4 shows adsorption capacities of various materials reported for the adsorption
of R-16 dye. The table is self-explanatory and shows a comparative account of adsorption
capacity with natural materials reported in the literature.

Table 4. Comparison with the reported literature.

Material Adsorption Capacity (mg g−1) Reference

Ethylene diamine-modified rice husk 16 [63]
Organofunctionalized kenyaite 33 [64]
Humin immobilized on silica 19.45 [65]

Surfactant zeolites 12.6 [66]
CCA 34.62 This work
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4. Conclusions

A CCA composite was successfully synthesized and characterized using various
techniques. The data obtained from the characterizations confirmed the formation of a
composite. SEM micrographs and EDAX techniques showed surface modifications as
well as its composition. BET surface area measurement, performed using the nitrogen
adsorption–desorption method, revealed a microporous nature of the adsorbent. CCA
was employed to remove R-16 dye from an aqueous medium, along with carbon capture.
The amount of dye adsorption was dependent on the adsorbent dosage, temperature, and
contact time. The maximum quantity adsorbed on CCA, obtained using the Langmuir
model, was 34.62 mg g−1. The thermodynamic data suggested that the adsorption of R-16
dye on CCA was spontaneous and endothermic in nature and was entropy-driven. The
adsorption mechanism of the R-16 dye on CCA surface could be assigned to various types
of interactions, such as electrostatic attraction or H-bonding interaction, while that of CO2
on CCA could be due to Lewis acid–base interactions. The adsorption results indicated that
CCA can be a promising alternative for the cleansing of aqueous as well as atmospheric
environments from anionic dyes and CO2, respectively. Sustainability parameter evaluation
has added a new dimension to the studies. The only area where further modification is
required for this material is the reduction in porosity as compared to activated charcoal,
thereby decreasing the CO2 adsorption capacity.
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