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Abstract: The world is suffering from heavy pollution because of synthetic petrochemical plastic used
in our daily activities. A possible solution is the use of bioplastic synthesized from natural renewable
resources. The present work investigates the development and characterization of polymer bioplastic
using ginger tea and green tea to decrease the adverse effect of petrochemical plastic waste for
versatile applications. Two kinds of bioplastic samples were produced with two types of tea, ginger
tea and green tea, using glycerol, vinegar, starch, and water. SEM (scanning electron microscopy),
FTIR (Fourier transformed infrared spectroscopy), mechanical (tensile), TGA (thermogravimetric
analysis), DSC (differential scanning calorimetry), and time tests of bioplastic degradation analysis
were carried out to evaluate the morphological, mechanical, and thermal behaviors of the synthesized
tea bioplastics. The research result showed ginger tea bioplastic had a maximum tensile strength of
2.9 MPa and a minimum elongation of 7.46 mm. More than 78% of degradation occurred in ginger
bioplastic within 30 days. Compatible thermal and morphological characteristics are also observed in
the prepared bioplastic samples.

Keywords: bioplastic; ginger tea; green tea; environmental remediation; morphology

1. Introduction

Composites regularly come full circle into lightweight structures, having great firm-
ness and custom-made properties for applications, subsequently sparing weight [1]. Bio-
composites are materials made from filaments (standard or engineered) and petroleum-
inferred non-biodegradable polymers or biopolymers [2]. However, bio-composites in-
ferred from natural plastics and fibers are eco-friendlier, hence they are among the most
desired materials of the 21st century [3]. The non-renewability and non-biodegradability
of petroleum resources, depletion of reliable wood products, environmental concerns,
and increasing awareness of the carbon footprint are causing research to be directed
into natural fiber-reinforced composites for new applications [4]. Due to waste disposal
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problems and strong environmental regulations, a significant proportion of scientific stud-
ies have led to biodegradable eco-composite materials [5]. Composite bioplasticis iden-
tified as an emerging material for creating maintainable materials, primarily because
of the total biodegradability of composite biodegradable plastic produced for differ-
ent applications [6–8]. Biopolymer-based materials are necessary to convert into hybrid
biopolymer composites to increase their mechanical and tribological properties [9–11].
Biopolymer materials are available at a low price, have excellent mechanical properties,
and are biodegradable [12,13]. Starch has been gaining attention since the 1970s. Numerous
endeavors have attempted to create starch-based polymers for moderating petrochemical
assets and diminishing their natural effects [14]. However, starch-based materials have a
few downsides, including long-term steadiness caused by water assimilation, maturing
caused by retro degree, and destitute mechanical properties [15]. Plasticizers such as glyc-
erol have allowed us to make improvements in the shelf-life and versatility of items in
order to overcome these restrictions [16].

Yam starch bioplastic exhibits better toughness in comparison to small flexible potato
starch bioplastic [17]. Additionally, it has exceptionally tall biodegradable properties, with
conventional mechanical and thermal properties [18]. Ca2þ particles in a starch–water
suspension with and without warming impact its physicochemical properties [19]. Starch–
water suspensions warmed without Ca2þ delivered custard without kinematic consistency;
this was reflected in the immaculate flexible behavior of the mechanical test [19]. In contrast,
the closeness of divalent particles of Ca2þ in these suspensions prompts the arrangement of
a hydrogel [20] with a far better mechanical quality, Young’s modulus, water dissolvability,
and contact point; this is accomplished with 4% energy natural product peel expansion,
combined with 32 to 38 wt % glycerol from 80 to 120 rpm screw speed [21]. Its pliable
quality confirms that the bioplastic of jackfruit starch, percent stretching, Young’s modu-
lus, and glycerol produce a film with great mechanical properties [22]. Starch is suitable
because of its for low cost, availability, renewability, biodegradability, on-abrasiveness,
and low density [22]. However, starch-based materials have a few disadvantages, includ-
ing long-term steadiness caused by water assimilation, maturing caused by retro degree,
and destitute mechanical properties [23]. Plasticizers such as glycerol have allowed us to
make strides in the shelf-life and versatility of items in order to overcome these impedi-
ments [15]. Filler is the foremost successful strategy to extend this inclination [16]. Some
cost-effective fortifications are natural renewable assets [24], lyocell [25], brief abaca [26],
paper mash [27,28], jute [29], bamboo [30], microcrystalline cellulose [31], pineapple [32],
Cordenka [33], flax [34], sisal [35], and kenaf [36]. PLA is an attractive prospect due to
its, renewability, biodegradability, moo thickness, non-abrasiveness, and its moo-fetched
quality [37]. A selection of studies on the mixing of PLA/starches [38] such as wheat starch,
corn starch, and cassava starch [39] have been investigated.

Acidification, hydrolysis, and microbial fermentation are the most common chemical
or biological processes used to make bioplastic from different natural resources such as
vegetable oil, potatoes, corn, and wheat [40,41]. Starch is considered one of the most-utilized
sources by researchers among natural resources. Starch is basically formed by amylase
and amylopectin. The linear structure of amylase provides highly flexible and strong
mechanical properties. However, the branched structure of amylopectin provides lower
resistance to tensile strength and elongation properties [42]. Among natural resources,
starch is inexhaustible, renewable, and has a low price [43]. Different types of tea are mixed
with starch nowadays to improve the quality of bioplastics. They are biodegradable and
can improve the properties of bioplastics. The literature shows several examples of the
preparation of bioplastic from tea [44].

Ginger is a flowering plant that is around one meter tall. Its rhizome and roots are
widely consumed as a spice and folk medicine. It is traditionally used as medicine for
menstrual pain, osteoarthritis, migraine, rheumatoid arthritis, diabetes, cardiovascular
disease, metabolic disorder, etc. in different parts of the world, especially in China and the
Indian subcontinent [45,46]. It is also popular for cooking. Edible fresh ginger contains
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85–95% moisture which is sensitive to microbial damage [47,48]. It is rich in phenolic
and terpene compounds [49]. Additionally, it is bio-degradable and can be converted
into compost.

Green tea is a kind of non-fermented beverage and is beneficial for the health of
consumers. It contributes to one fifth of global tea production. It is rich in catechins, amino
acids, minerals, alkaloids, and polyphenols, which have potential health benefits [50,51]. It
dominates the consumer tea market in China [52]. Based on its production method, green
tea can be divided into four categories of roasted, baked, sun-dried, and steamed [53]. It
has resistance to oxidation, cancer, neuro-degeneration, bacteria, and inflammation [54,55].
In addition, green tea is biodegradable, easily biodegrades in nature and is converted into
compost fertilizer.

This research paper intended to use renewable natural agricultural sources such as
green tea and ginger for the production of bioplastics. The novelty of this work is that it
used both ginger and green tea to synthesize bioplastic, which the previous researchers did
not do. Moreover, tea is a naturally renewable resource and is abundant in many parts of
the world. It has excellent biodegradable properties. Besides, tons of used teas which can
be reused are thrown out every day. This work may be a good source of information for the
synthesis of bioplastics in order to reduce the hazards and issues of conventional plastics.

2. Materials and Methods
2.1. Materials

The raw materials used in this research work are available in the local area and are
renewable. Their collection was easy and affordable. The raw materials for this research,
for example corn, ginger, white vinegar, and glycerol, were collected from the nearby local
market. The corn and ginger were washed three times with distilled water and dried under
the sun, followed by boiling and blending to obtain starch. Distilled water was collected
from the environment lab of IUBAT. Green tea was supplied by the famous tea brand
Isphahani Mirzapur tea. Other researchers also used similar materials in their research to
fabricate bioplastic materials [56].

2.2. Fabrication of Bioplastic

Two different types of bioplastic samples were developed with ginger and green tea,
with the intention of improving the different properties of starch-based bioplastics. The
ingredients, such as corn starch, distilled water, white vinegar, and glycerin, were measured
carefully with the help of a precise electronic balance before being mixed with ginger. The
mixture was stirred with a magnetic stirrer with the application of heat to boil. Later, the
mixture was placed on aluminum foil and allowed to cool naturally [57,58]. Bubbles were
removed when they formed from time to time. The same procedure was followed for green
tea as well. Here, some percentages of tea have been mixed with corn starch to improve
the properties of corn starch-based bioplastics. The percentages of different ingredients are
shown in Table 1.

Table 1. Composition of different ingredients used to fabricate the bioplastic samples.

Ingredient Weight Percent (%)

Corn Starch 60 gm 11.50

Distilled water 360 mL 69.30

White Vinegar 40 mL 7.70

Glycerol 40 gm 7.70

Ginger/Green Tea 20 gm 3.80
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2.3. Characterization
2.3.1. Soil Burial Biodegradation Test

All the prepared bioplastics must be biodegradable, and as such a test on biodegradability
must be performed. The samples were cut with dimensions of 50 mm × 30 mm × 3 mm for
the soil biodegradation test. The humidity and pH of the soil was 7.6% and 6.5, respectively.
Each sample was measured carefully with a precise electronic balance. Then, the samples
were buried in the soil at a 10 cm depth. The samples were buried for 7, 15, and 30 days,
and weights were measured again after removal from the soil, followed by drying. The
biodegradation rate was calculated from the weight differences [59–61]. The following
formula was used to measure the rate of degradation.

Loss of weight % = (Mi − Mf)/Mi × 100%

Here, Mi = the initial mass and Mf = the final mass of the bioplastic sample in a dry
condition.

2.3.2. Mechanical Test

Tensile property is a crucial factor for bioplastic materials to be used in different
practical applications. It determines the usability of a material based on its load-carrying
capacity. Tensile tests were performed at Poly Cable Industries, Munshiganj, Dhaka, using
the CHUN YEN brand Universal Testing Machine Model No.: CY-6040A4. Estimating the
force–distance data at a stain rate of 2 mm/min at room temperature, the tensile strength
(TS) and elongation were determined from the stress–strain curves. Each experiment was
performed three times and average data were considered. The specimens before and after
the tensile test are illustrated in Figures 1a and 1b, respectively.
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Figure 1. (a) Prepared samples for the tensile test and (b) a sample during the tensile test.

2.3.3. FTIR Analysis

The FTIR spectra analysis was carried out at the Centre for Advanced Research
in Sciences (CARS) at the University of Dhaka, with Shimadzu machine Model No- IR
Prestige-21. This analysis was performed on the samples of bioplastic to find the presence
of different functional groups in the synthesized bioplastic samples. To identify the range of
functional groups in relation to the chemical composition and physical state of the samples,
this analysis is performed by an FTIR machine. The spectra were measured within the
range of 500 cm−1 to 4000 cm−1.

2.3.4. SEM Analysis

Surface morphology plays a crucial role in determining the properties of bioplastics,
including mechanical and biodegradable bioplastics, to discover their application in various
fields. The morphology of bioplastics and filler material distribution were analyzed by a
scanning electron microscopy (sEm) analyzer. The microstructure of fabricated bioplastic
with the arrangement of filler materials is clearly recognized using this method. The
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samples were cut to dimensions of 10 mm × 10 mm × 3 mm for the test. The pictures were
captured at 10 kV. SEM (Model: Hitachi SU-1510, made in Japan) was used to characterize
the material surfaces in this study.

2.3.5. Thermal Analysis

Thermal property is an essential characteristic of a bioplastic material that is to identify
its application at elevated temperatures. The thermal property was measured within a
temperature range of 5 ◦C to 500 ◦C in a nitrogen environment, in which a 5 ◦C min−1

heating rate was maintained. A thermogravimetric analyzer (SDT650 Serial No. 0650-0180)
was used to investigate the relationship between temperature, weight loss, and heat flow.
After that, DSC and TGA measurement samples were acquired from a trial specimen
for measuring HDT by cutting it perpendicularly from the glass mat. It should also be
mentioned that the model weighing 39–55 mg was calculated for each test.

3. Results and Discussion
3.1. Mechanical Properties Analysis

Figure 2a–c, and Table 2 specify the mechanical properties of ginger tea and green
tea bioplastic. Green tea provided the highest tensile strength. In the test, the ginger tea
bioplastic was able to withstand 2.9 kgf loads, whereas green tea bioplastic was able to
withstand a 2.7 kgf load. Ginger tea bioplastic showed a 2.9 N/mm2 Young’s modulus,
and green tea bioplastic showed 2.1 N/mm2 Young’s modulus. Elongation was observed
at 7.4 mm and 8.5 mm from ginger tea and green tea bioplastic samples, respectively. The
maximum stress obtained from the samples prepared by ginger tea bioplastic and green tea
bioplastic was 2.5 N/mm2 and 2.6 N/mm2, respectively. Ginger tea bioplastic and green
tea bioplastic samples showed maximum strains of 37.3% and 42.5%. The incorporation of
green tea enhances tensile properties [17]. The improvement in the mechanical properties
of green tea bioplastic may be because of the higher cross-linking of bioplastics at lower
mold temperatures [62]. The higher percentage of proteins and the thermal profile of
the proteins present in green tea bioplastics because of this higher cross-linking act to
improve its mechanical properties. However, increased heat treatment time improves the
maximum stress while decreasing the maximum strain, thus making bioplastic stiffer [63].
The standard deviation, in fact, the error obtained in this research was ±2%.Table 2 shows
the tensile properties of the bioplastic samples.
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Table 2. Tensile properties of different samples.

Sl.
No. Samples Load

(kgf)
Young’s Modulus

(N/mm2)
Elongation

(in mm)
Stress

(N/mm2) Strain (%)

1 Ginger
Tea 2.9 2.946 7.46 2.582 37.30

2 Green Tea 2.7 2.138 8.50 2.678 42.50
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3.2. FTIR Analysis

The purified bioplastic was first characterized using Fourier-transform infrared (FTIR)
spectroscopy. There were several major functional groups in the FTIR spectrum of the
bioplastic., i.e., FTIR investigation has been carried out to compare the spectra of ginger tea
and green tea bioplastics, as shown in the spectra displayed in Figure 3a,b. Both spectra show
similar types of curves, as both of the samples were prepared from similar types of ingredients
such as corn starch, distilled water, white vinegar, and glycerol. The only difference was the
use of ginger tea in one sample and green tea in another sample. However, both ginger tea
and green tea are organic and have similarities in chemical constituents. This is why both
spectra show similar characteristics. The alcohol (O-H) stretching band is at 3317.56 cm−1,
which is shifted to 3305.99 cm−1 in green tea; this represents the aromatic phenolic compound
of both ginger and green tea [64]. Wavenumber 1647.21 cm−1 is attributed to a hydroxyl
group in ginger tea which shifted to 1645.28 cm−1 in green tea. Ginger tea has C-O stretching
band at 1020.34 cm−1 which shifted to 1022.27 cm−1 in green tea. The sample prepared
with tea contains strong stretching thiocyanate at 2152 cm−1, which is not available in the
sample prepared with ginger [65]. In addition, the sample prepared with ginger tea contains
a medium stretching alcohol O-H band at 3725 cm−1 of the gingerol [66]. The different
functional groups present in the bioplastics are shown in Table 3.

Table 3. Band assignment of ginger tea and green tea bioplastics.

Sl.
No. Functional Group Wave Number

Literature (cm−1) Ginger Tea Green Tea

1 O–H stretching 3600–3300 [50] 3313.47 3307.92

2 C–H stretching 2800–3000 [67]
2929.87 2929.87

2860.43 2860.43

3 C=O band 1743 [68] 1743.65 1743.65

4
OH hydroxyl groups bending 1580–1700 [69] 1647.21 1645.28

CH2vibration bending ~1450 [70] 1452.4 1450.47

5 C–O–C asymmetric stretching 1149, 1151 [70] 1151.5 1151.5

6
C–O stretching 1200–800 [50] 1020.34 1022.27

C–O–C ring vibration of carbohydrate 920, 856 [50] 923.9 923.9

3.3. Surface Morphology Analysis

The surface microstructure of the ginger tea bioplastic was examined with SEM analy-
sis, and the results are displayed in Figure 4. Analyses of the ginger tea bioplastic’s com-
posite surface reveal that the bioplastic composite has sporadic character, including flaws
in edges and grooves [71]. The SEM image shows that the ginger tea bioplastic surfaces
are exposed to air (which is undesirable), with a few grooves and closer non-gelatinized
granules [72]. The surface structure affects the tensile property of the bioplastic [69]. This
surface is no more compatible than morphologies with fewer voids and cracks, and is
associated with poor interfacial attachment [73]. Some micropores are visible in the mi-
crographs and may interact with the microorganism available in the soil, accelerating the
biodegradation process [74].
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The water evaporation during blend preparation, either by heating or in combination
with mechanical stress and the lack of interface adhesion, causes void formation [75]. The
smaller crack propagation of ginger tea bioplastics thus showed no better bonding between
the components. The mechanical strength will be lower due to crack and void propagation
from the solid particles [76].

Figure 5 shows the surface microstructure of green tea bioplastics using SEM analysis.
Analyses of green tea-based bio-polymer surfaces seemed to uncover where an irregular
structure existed. There are no cracks in the green tea bioplastics, but small and large air
gaps are visible [77]. Because the Camellia sinensis(raw material of green tea) leaves and
buds fibers are present in green bioplastics, an air gap has been created. Due to the air gap,
mechanical strength will be lesser in these areas [78].

Finally, we can say that no void or crack was found in green tea bioplastic. The surfaces
are filled with air gaps for both of the samples, with the presence of foreign particles.

3.4. Thermal Properties Analysis

A TA-Instrument SDT650 was used to examine the TGA and DSC analysis of the
synthesized bioplastics. The specimen weight was within the range of 39–55 mg, and the
heating rate was 5 ◦C per minute within the range of ambient to 500 ◦C temperature.
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Figure 5. SEM photograph of green tea bioplastic at (a) 100×, (b) 750×, (c) 2000× and (d) 3000×.

3.4.1. TGA Analysis

Thermogravimetric analysis of the ginger tea bioplastic’s decomposition profile is
shown in Figure 6.Initially, the mass of the green tea bioplastic sample was 39 mg and
the mass of the ginger tea bioplastic was 47 mg, which was the 100% weight for both of
the samples. With the increase in temperature, weight decreased for both samples due
to degradation. The TGA bioplastic composite indicates two stages of degradation. In
the first step, 50–220 ◦C, the dissipation of moisture content may occur in the ginger tea
bio-polymer, and this happened between 235–385 ◦C, which demonstrates the thermal
deterioration of ginger tea bioplastics. The ginger was completely decomposed at 390 ◦C.
In between temperatures of 25 and 100 ◦C, almost 5% of the weight is lost due to moisture
evaporation [79,80]. At 350 ◦C, temperature pyrolysis of cellulose occurs, leaving only 10%
of the weight of the samples [81,82].

It is well known that starch degrades at around 275 ◦C. In the primary step, 73–229 ◦C,
the moisture was contained via evaporation in green tea bioplastic. In the second stage,
between 250–396 ◦C, the thermal decomposition of green tea bioplastics was indicated.

Finally, the decomposition profiles of ginger tea bioplastic and green tea bioplastics
are shown in Figure 7. Here, almost 50% of weight loss occurs around 265 ◦C for ginger
and green tea bioplastics. After that temperature, a rapid weight loss is observed, and at
around 290 ◦C, both samples lost more than 80% of their weight. Nurul et al. [83] also
mentioned in the literature that in the case of yam and potato bioplastics, 50% of weight
loss occurs between 250 ◦C and 310 ◦C, and at around 350 ◦C, more than 90% of their
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weight is lost. The decomposition temperature of ginger tea bioplastic is higher than that
of green tea bioplastic. It also indicates that green tea bioplastic has more excellent heat
stability compared to ginger tea bioplastic. The summarized TGA test results are displayed
in Table 4.
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Table 4. TGA test results of bioplastics samples.

Sl. No. Sample First Step Second Stage

2 Ginger Tea Bioplastic 50–220 ◦C 235–385 ◦C

3 Green Tea Bioplastic 73–229 ◦C 250–396 ◦C

3.4.2. DSC Analysis

A differential scanning calorimetry graph of the ginger tea and green tea bioplastic
decomposition profiles is seen in Figure 7. Here, the melting point Tm and glass transition
temperature Tg point of these bioplastic samples are shown. Ginger tea bioplastic has a
glass transition temperature range of 48–51 ◦C (approximate), a melting point of 276 ◦C,
and a crystallization temperature of 304 ◦C. Green tea bioplastic has a glass transition
temperature range of 49 ◦C to 52 ◦C (approximate), a melting point of 275 ◦C, and a
crystallization temperature of 303 ◦C. Ginger tea bioplastic significantly shifted the glass
transition temperature Tg. As Tg is above room temperature, glass-like behavior in strength,
stiffness, and brittleness can be observed in the developed bioplastic samples [18]. The
melting point Tm of the bioplastic was affected considerably in the presence of ginger tea.
Initially, low heat flow is observed from the ginger tea bioplastic compared to the green tea
bioplastic, but at higher temperatures, low heat flow is observed in the green tea bioplastic
compared to the ginger tea bioplastic. This indicates that green tea bioplastic is more stable
at a lower temperature than ginger tea bioplastic, and ginger tea bioplastic is more stable
at a higher temperature than green tea bioplastic. Ginger tea has a high gelatinization
temperature because of its constituents, such as higher lipid and protein content. The
functional properties of starch, for example, can change with passing properties and can
be charged with lipid complexes [17]. The addition of green tea decreases the phase
transition temperature and decreases thermal stability [84]. However, significant changes
in properties can be observed from the prepared samples, with a change of 1 ◦C. A summary
of the DSC results is presented in Table 5.

Table 5. DSC test results of bioplastics samples.

Sl. No. DSC Test (Sample) Glass Transition Point
Tg (◦C)

Melting Point Temp
Tm (◦C)

Crystallization
Temperature (◦C)

2 Ginger Tea bioplastic 50 276 304

3 Green Tea bioplastic 49 275 303

3.5. Soil Burial Biodegradation Analysis

The soil burial test’s degradation rate is measured from the weight differences before
and after degradation. Figure 8a,b shows the samples before and after the degradation at
different time intervals. From the obtained data, we can clearly observe that the biodegrad-
ability increases with the increase in time. It can also be observed that the sample containing
ginger is more biodegradable compared to the samples containing green tea. This is be-
cause of the higher biodegradability properties of ginger. Both the samples followed linear
biodegradation, which is in accordance with pseudo-zero-order kinetics in reaction rates
and constant [85]. The rate of biodegradation was less initially because the microorganisms
available in the soil were adapted to the samples and required adaptation time [86]. The
biodegradation increased after 1 week for both of the samples, due to CO2 production.
Bingxue Jiang et al. [87] synthesized and characterized corn starch-based bioplastic for
reinforcing eggshell powder. A soil biodegradation test was performed for 3 weeks and
a maximum of 58.25% degradation was obtained. After 30 days of observation, it can
be seen that the bioplastic samples prepared with ginger tea are far more biodegradable
than green tea bioplastic. Ginger is a highly bioactive product because of its constituents,
such as monoterpenes, sesquiterpenes, diterpenes, vanilloids, and flavonoids, which make
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it highly biodegradable and increase the biodegradability of any product when they are
mixed in [88,89]. Considering the biodegradability test, both bioplastics deteriorated very
rapidly in relation to weight and quality, and are characterized as biodegradable materials.
Table 6 compares the obtained biodegradable data with the data available in the literature.

3.6. Comparative Analysis

Green tea bioplastic showed better mechanical properties with 2.678 N/mm2 tensile
strength and 42.5% tensile strain. The glass transition temperature for Ruhul [68] was 66.8 ◦C,
and for ginger tea bioplastic (present study) is 63 ◦C, which is higher than the present study.
However, the melting temperature is higher in the present study. The thermal decomposition
(50% of weight loss) is comparatively low in the mentioned previous study, and high in
the present study, which is shown in Table 6. This investigation demonstrates that green
tea bioplastic had improved physicochemical and thermal properties compared with others
mentioned in current and previous studies. In the soil biodegradation test, a maximum of 78%
degradation was obtained after 30 days of burial. Ginger bioplastic showed a higher rate of
biodegradation compared to tea bioplastic because ginger is more biodegradable. This study
may be compared with the studies of other researchers available in the literature (Table 7).
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Table 6. Biodegradation of different bioplastic samples found in the literature.

SL. Degradation Medium Weight Loss (%) Time (Days) References

1 Soil 100 4 [90]

2 Water 100 25 [91]

3 Soil 70.3 15 [17]

4 Sea water 39 30 [72]

5 Soil 50 10 [92]

6 Soil 69.29 45 [78]

7 Aerobic conditions in aqueous medium 86.8 68 [93]

8 Simulated environments 20 120 [94]

9 Soil 78 30 This work

Table 7. The comparative investigation of different kinds of tea bioplastics and relative research.

Sl. No. Test/Analysis
Starch Bioplastic Composite Bioplastic Present Study

Previous Study
[71]

Previous
Study [80]

Previous
Study [76]

Previous
Study [56,74]

Ginger
Tea

Green
Tea

1 Tensile Strength (Mpa) 3.55 3.95 3.86 1.92 2.9 2.7

2 Elongation (%) 88.1 62.5 62.7 10.1 37.3 42.5

3 Glass Transition
Temperature (Tg) 57.2 ◦C 66.8 ◦C 35.3 ◦C — 63 ◦C 60 ◦C

4 Melting temperature (Tm) 297 ◦C 303 ◦C 136.6 ◦C — 276 ◦C 275 ◦C

5 Thermal decomposition
(50% of weight loss) ◦C 291 ◦C 303 ◦C — 310 ◦C 285 ◦C 287 ◦C

6 Biodegradibility 64% 81% 60% 78% 47%

4. Conclusions

This research focused on bioplastics developed from natural ingredients. Tensile and
thermal property analysis was carried out on bioplastics prepared from ginger tea and
green tea. Green tea bioplastic was found to be much more durable, with higher strength
and reduced elongation. Morphological analysis indicates that green tea bioplastic has
a better consistent surface finish compared to ginger tea bioplastics. No voids or cracks
were found in the green tea bioplastics, and fewer voids and cracks were also observed
with ginger tea bioplastic. No chemical changes have been found in the tea bioplastic. As
a result, all peaks appeared in the same manner for all specimens. DSC curves showed
that the melting temperature (Tm) and glass transition temperature (Tg) of the utilized
tea bioplastic and ginger tea bioplastic appeared at an inclination higher than other tea
bioplastics. TGA demonstrated that ginger tea bioplastics have better thermal sustainability
than green tea bioplastics. Soil burial biodegradation tests have been carried out for all
prepared bioplastics. All tea bioplastics were found to be highly biodegradable. The results
suggest that the developed bioplastics can be used in packaging applications.
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