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Abstract: In this paper, we investigate whether the strength characteristics of composite materials
can be described through the predictions of the homogenization theory concerning local stresses. We
establish the homogenized strength criterion (HSC) of composite materials, following the general
scheme developed in the homogenization theory. Since the homogenization theory involves solving
the so-called periodicity cell problem (PCP), HSC can be constructed in the form of a computer
procedure only. We developed the HSC computer program and carried out numerical calculations
for fiber-reinforced material. We conclude that HSC can be used to calculate safety zones and the first
failure strength criteria (see detailed definitions below). We present numerically calculated safety
zones and fracture surfaces for several cases.
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1. Introduction

The construction of the homogenized strength criteria (HPC) of composite materials
attracts the attention of both researchers and engineers [1–10]. HSC is a criterion for the
strength of composite components, written in terms of macroscopic SSS. In [2,3], a theoreti-
cal scheme for constructing an HSC was proposed. The restriction of the approach [2,3] is
that it is a framework scheme that cannot be directly applied to a particular composite. We
applied in [1] the theoretical scheme [2,3] to fibrous composites widely used in engineer-
ing [10–16]. The approach developed in [1] is briefly presented below (see Formulas (1)–(6)
and computation scheme in Section 4). The calculations in [1] are based on the effect of SSS
localization [16–21] in a composite with densely packed fibers. The dense packing of fibers
in composites is a common but still special case. In addition, calculations based on the
SSS localization effect take into account only the principal terms, which gives approximate
results. If one wants to have precise strength criteria suitable for general cases, it is neces-
sary to implement the general procedure described in [2,3]. Below, we will explain that the
procedure from [2,3] cannot be implemented explicitly, but it is possible to construct a HSC
in the form of computer programs. We develop relevant programs and present an example
of HSC.

Although the idea of HPC was formulated several decades ago, it has not been fully
implemented, primarily due to computational problems. The theory of homogenization in
the earliest publications [22–25] discussed both homogenization (also called microscopic,
general, and global) characteristics and the relationship between local and homogenized
stress–strain state. It has been stated, see [25], for example, that the aforementioned relation-
ship, in perspective, leads to HSC. The calculation of both homogenization characteristics
and local stress–strain states in a composite involves solving the so-called periodicity
cell problem. To calculate all the homogenized characteristics, it is necessary to solve
six periodicity cell problems (according to the number of elements of the stress or strain
tensor). When using the theory of homogenization to directly construct a fracture surface
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(or similar objects), it is necessary to solve six periodicity cell problems for each value of
the homogenized stress/strain. The more or less accurate design of the fracture surface
involves taking into account the thousands of values of the homogenized stresses/strains.
In the 1960s–1980s, the power of computers was sufficient to solve (often with low accuracy)
problems with periodicity cells with simple geometry. A very popular object for numerical
analysis in 1960s–1980s were fiber-reinforced composites reinforced with a unidirectional
system of fibers. This theme remained actual until now, see, e.g., [26,27]. Frequently, the
numerical analysis results for the unidirectional layer were used for theoretical reasoning in
order to construct the strength criteria of composites with multidirectional reinforcement.

For a composite with complex geometry, computational difficulties (both related to
the power of the computer and problems of theoretical nature) increase drastically. This
likely led to a “gap” between research on unidirectional fiber-reinforced composites and
complex structure composites. With increasing computer power, researchers are turning
their attention to composites with a complex structure. Considerable attention is being paid
to the numerical modeling of textile composites, such as knitted and woven, see [28–33]
and references in this publications. As a rule, the authors developed numerical methods for
calculating a composite subject to a specific SSS. Although the construction of the HSC (the
composite calculation taking into account the set of SSSs) is the logical next step, this next
step has not been taken in practice. Once again, this step, if it follows the homogenization
theory directly, involves a much larger calculation than that required in the solution to
specific SSS.

According to the results of a bibliographic search on the Internet, it should be stated
that the number of publications devoted to the use of averaging theory for calculating
strength is significantly (by an order with guarantee, perhaps two) less than the number of
publications devoted to the use of homogenization theory to calculate the average char-
acteristics of a composite. From an engineering point of view, the importance of material
characteristics such as Young’s modulus and tensile strength seems to be equivalent.

Recently, new papers on the HSCs have appeared, see [34–37]. The recent works are
restricted via the construction of certain 2D fragments or sections of HRS failure surfaces.
By using our computer program, we computed a “safety zone” and “HSC failure surface”
for the planar overall stress–strain state and presented corresponding 3D pictures of the
aforementioned objects.

2. Homogenization Method as Applied to Composite Reinforced by Systems of Fibers

The homogenization method [22–25] has solved the principal problem of the mechanics
of composite materials—the computation of the macroscopic (homogenized) characteristics
of composite material. It gave rise to new scientific directions related to homogenized char-
acteristics, for example, the topology design theory [38–40] and auxetic materials [41–45]. In
another fundamental problem—the calculation of the strength properties of a composite
material—progress was faring worse than in the previously mentioned issue. Especially
small progress was made in the construction of HSC for specific composites. As the theoret-
ical scheme of the construction of the HSC of composite material has been known since the
1990s (see [2,3]), we propose that the limited progress in the field is related to computational
difficulties. We refer to computational difficulties as both problems with computational
resources (hardware and software) and computational methodology.

The problem of composite strength has continuously attracted the attention of the re-
searchers and engineers since the first papers on the strength [2–8] of the composite [46–48].
Many strength criteria have been developed for composite materials. Note that in all the
articles mentioned above we find the same basic scheme: typical modes of local SSS are
introduced; a connection between local SSS modes and macroscopic SSS is established; and
the strength criteria of the composite components are written in terms of macroscopic SSS.
This means that the purpose of these articles was the construction of the HSC, even if the
term “homogenized strength criterion” was not used at all.



J. Compos. Sci. 2023, 7, 145 3 of 11

Today, computing resources (hardware and software) are sufficient to implement the
methodology from [2,3] with the accuracy required in engineering. So, the problem is
methodology. In this work, we construct HSC for a composite reinforced with layers of
orthogonal fibers. The constructed HSCs resemble certain well-known strength criteria but
do not fully match any of them.

Let us consider a composite reinforced with layers of orthogonal fibers. We will
consider this simple reinforcement scheme in order not to clutter up our presentation with
unnecessary details. We assume that the layers are parallel to the Ox1x2-plane and the
fibers in the layers are parallel to Ox1 or Ox2-axes (Figure 1). The characteristic dimension
ε of the microstructure of the composite (the radius of the fibers and the distances between
the fibers) is assumed to be small compared to the size of the material sample: ε << 1.
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To describe this two-scale material, the “fast” (microscopic) variables y = x/ε are
introduced in addition to the “slow” (macroscopic) variables x [15–17]. Figure 1b displays
the periodicity cell (PC) P = [0, h1]× [0, h2]× [0, h3] of the composite in the “fast” variables.
Denote Γi = [0, hj]× [0, h3] and Γi + hiei (i = 1, 2 and j = 1, 2) as the opposite lateral faces
of PC.

We consider the elasticity problem of composite (it means the fibers and matrix are
assumed to be elastic and the connection between the fibers and the matrix is “ideal” [9–11]).
The basis for the construction of the strength criterion is the analysis of the local SSS in
the composite. A complete analysis of the SSS in the components of the fiber-reinforced
composite was carried out in [1] by using the two-scale method, see [15–17]. The main
result of [1] is that the local stresses σloc

pq (y) in the composite, subjected to the macroscopic
strains εmn, are computed by the formula:

σloc
pq (y) = εmn(x)apqkl(y)Zmn

k,l (y) (1)

where elastic constants aijkl(y) = aF
ijkl in the fibers, aijkl(y) = aM

ijkl in the matrix, and the

functions Zαβν(y) (α, β = 1 or 3, ν = 0, 1) are solutions to the boundary-value problem (4)
from [1] (often referred to PCP).

By using the local stresses σmn
pq (y) = apqkl(y)Zmn

k,l (y) corresponding to PCP (4) from [1],
we can write (1) as the following:

σloc
pq (y) = εmn(x)σ

mn
pq (y) (2)

After the functions Zmn(y) have been computed, the local stresses σloc
pq (y) in the

composite are computed following (1) or (2). The effective (homogenized) constants Apqmn
of the composite are given by the formulas [15–17]

Apqmn =
1

mesP

∫
P

apqkl(y)Zmn
k,l (y)dy (3)

Hereafter, mesP means volume in 3D cases and square in 2D cases.
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The homogenized stress and strains are connected by the homogenized Hook’s low
σkl = Aklmnεmn.

3. The Strength of the Composite

Our goal is to obtain the HSC of the composite. We call the homogenized strength
criterion (HSC) the strength criterion of composite components (fibers and matrix), written
in terms of homogenized strains εmn or homogenized stresses σkl . We assume that the
strength criterion of the material of the fibers and the binder may be written in the form
f (y, σloc

pq ) ≤ σ∗(y), where

σ∗(y) =
{

σ∗F in fiber
σ∗M in binder

,

f (y, σloc
pq ) =

{
fF(σ

loc
pq ) in fiber

fM(σloc
pq ) in binder

(4)

In (4), σ∗F is the strength limit of the fibers and σ∗M is the strength limit of the matrix.
The following condition

F(εmn) = max
y∈P

f (y, εmnapqkl(y)Zmn
k,l (y))

σ∗(y)
< 1 (5)

ensures no damage at all the points of PC P. For this reason, we call the strains
{εmn: F(εmn) < 1} the safety zone V.

The destruction of composite starts when the condition F(εmn) = 1 is satisfied and
occurs at point(s) y0 ∈ P, at which the maximum in (5) reaches values 1:

f (y0, εmnapqkl(y0)Zmn
k,l (y0))

σ∗(y0)
= 1 (6)

The destruction of composites is a complex multistage process. This thesis was
formulated in the initial works on composite materials [18,19] and is still accepted, see,
for example, [20,21,47,48]. Therefore, when speaking about the strength or fracture of a
composite, it is necessary to indicate which stage of fracture is being discussed. HSC (6)
F(εmn) = 1 is the “first crack” criterion and y0 indicates the “weakest element” of the
composite. The fulfillment of Equation (6) F(εmn) = 1 does not mean that the composition
breaks up into separate parts. It is not excluded that the composite will not even lose its
load-bearing capacity. In any case, if the condition F(εmn) = 1 is met, the “first cracks”
appear in numerous PCs, which means that damage to the composite will be massive, and
this stage should be singled out as the specific stage of the destruction process. We say that
deformations {εmn: F(εmn) = 1} form a fracture surface S.

The condition (5) F(εmn) < 1 guarantees that the composite does not fail when
strains εmn are applied to the composite. For this reason, we say that deformations
{εmn: F(εmn) < 1} form a safety zone V.

The safety zone V and the destruction surface S belong to R3. The destruction surface
S is the boundary of the safety zone V.

Formulas (5) and (6) can be written in terms of homogenized stresses σmn if the
homogenized strains εmn are expressed through σmn by using the homogenized Hook’s low
εmn = A−1

mnklσkl and then this expression is substituted to (5) and (6).

4. Construction of HSC in the Form of a Computer Program

The construction of HSC in [1] was based on the SSS localization effect [34–38] in
the high-contrast composite. In [1], we use the SSSs localized in different domains for
the different deformation modes. As a rule, this is not the case. In addition, calculations
based on the SSS localization effect are approximate, since only leading terms are taken
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into account. To construct a universal and accurate HSC, it is necessary to implement
the general procedure described above. The construction of HSC, in general or special
cases, assumes the computation of the local stresses σloc

pq (y) in the PC. In the general cases,
these computations can be performed only numerically. Let us describe our proposed
computational scheme. By virtue of Formula (1), the construction of the GSP can be divided
into two computational blocks. The first is for PCP solution. This block is responsible for
the microstructure of the composite. The other is for calculating HSC value. The detailed
description of the blocks is given below.

Block of micro-structural analysis: solve PCP (4) for the unit value strains εmn = δmn, compute the local stresses
σmn

pq (y) = apqkl(y)Zmn
k,l (y) in all finite elements, and save σmn

pq (y) into files.

↓
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Block HSC: compute the local stresses σloc
pq (y) in all finite elements for the given macroscopic strains εmn following Formula (1) and

check the condition (5).

In order to determine the failure surface, it is necessary to replace “check condition (5)”
in the HSC block with “select macroscopic strains εmn that satisfy the equation F(εmn) = 1
(and draw these points if one wants for a visualization of the fracture surface)”. The
calculations mentioned in the first block can be performed using the ANSYS (or similar)
FEM software. The calculations mentioned in the second block can be performed using
a program developed for this case (the authors developed program in C). The main com-
ponent of our computer program, except the file exchange procedure, is the procedure
for numerical solution to Equation (6). The program also includes a graphics procedure,
which can be used for illustrative purposes only. Another version of the second program
computes the HSC value (5) and decides whether the homogenized stresses/strains belong
to the safety zone. The integration of HSC with ANSYS (or similar) FEM software is a
separate problem.

In the present configuration, the computational programs are independent. The
first block program accounts for the local (material and geometrical) characteristics of
the composite. It does not depend on the macroscopic strains εmn. The second block
program—HSC itself—computes the strength criterion value for prescribed macroscopic
εmn. This program is the same for any composite material. The information about the
specific structure of the composite plate is input into this program in the form of the
σmn

pq (y)-files.
The computations mentioned in the first block are time-consuming (from a few minutes

to an hour) due to numerical solution to the 3D elasticity problem. The HCS procedure is
fast (a few seconds). The failure surface construction procedure is time-consuming due to
the many repetitions of the fast HCS procedure.

In our calculations, we used the ANSYS FEM software to solve the linear elasticity
problem. For this reason, we did not pay much attention to the convergence and stability
of numerical procedures (ANSYS FEM computational procedures satisfy the necessary
requirements for an accurate solution of a linear problem of elasticity theory). We adopted
the FE mesh, which twice refined the changes solution to less than 5%.

CPU 3 GHz and 1 GB of computer RAM was enough to solve problems with periodicity
cells in the “Microstructural Analysis Unit” in 1–10 min. The main problem in the “Block
of microstructural analysis” was the generation of a periodic FE grid (the insufficiency of
ANSYS in this area is known [49]). Executing a C program in the “HSR Block” in HSR mode
takes a few seconds. The execution of program C in the “build security zone” mode was
time-consuming and took between 10 and 30 min. This was due to the repeated repetition
of the calculations of the “VSM block” in the “Construction of a security zone” mode.

We do not discuss specific issues here, such as interaction between Windows and DOS
simulators and the like, which are specific problems associated with the software used by
the authors.
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5. An Example. Construction of the Failure Surfaces and the Safety Zones

We construct the HSC for the fiber-reinforced material considered in [1]. The material
parameters of the fibers and the matrix used in our computations are presented in Table 1.
These elastic characteristics correspond to the carbon/epoxy composite.

Table 1. The material parameters of the fibers and the matrix used in our computations.

Young’s Modulus GPa Poisson’s Ratio Strength Limit Pa

Fibers EF = 170 GPa νF = 0.3 σ∗F = 1.5 · 109

Matrix EM = 2 GPa νM = 0.36 σ∗M = 60 · 106

The dimensions of the components of the composite are the following (Figure 1): h1 = 1.1,
h2 = 3, h3 = 1.1, h =0.1, δ = 0.1, and R = 0.45, see Figure 1. These values are included in the
non-dimensional “fast” variables y. The corresponding dimensional values are computed by
multiplying by ε. For carbon fibers, ε varies from 5 to 20 µm (5− 20 · 10−6 m).

The solution to PCP and σmn
pq was obtained by using ANSYS FEM software. In compu-

tation, finite element SOLID185 was used and the number of finite elements was about 3000.
In our computation, we accept the von Mises strength criterion for the fibers and

the binder. In this case, f (σmn) =
√

3
2 sijsij, where sij is the deviator of the local stress

tensor σmn.
In general cases, the failure surface {εmn : F(εmn) = 1} and the safety zone

{εmn : F(εmn) < 1} are 6D objects and cannot be visualized in an appropriate way. In
the case of macroscopic in-plane deformation, the problem depends on the three macro-
scopic strains and the corresponding objects may be visualized. For this reason, we consider
the macroscopic in-plane deformation in the Ox1x3 plane. In this case, εi3 = 0 (i = 1, 2, 3).

The periodicity cell P is formed of fibers F and matrix M: P = F ∪M. The strength
conditions for the fibers and the matrix separately) take the following form:

BF(εαβ) ≤ 1, BM(εαβ) ≤ 1 (7)

where (εαβ) = (ε11, ε22, ε12), α, β = 1, 3, and

BF(εαβ) = max
y∈F

fF(εαβaF
pqklZ

αβ
k,l (y))

σ∗F
, BM(εαβ) = max

y∈M

fM(εαβaM
pqklZ

αβ
k,l (y))

σ∗M
(8)

The equation BF(εαβ) = 1 introduces the failure surface SF for the fibers and
BM(εαβ) = 1 introduces the failure surface SM for the matrix. The destruction of the
fiber starts at the point(s) y0F ∈ F at which the first maximum in (8) reaches values 1. The
destruction of the matrix starts at the point(s) y0M ∈ M, at which the second maximum in
(8) reaches values 1.

The failure surface S for the periodicity cell (i.e., for composite as a whole) is de-
termined as the {εmn : max(BF(εαβ),BM(εαβ)) = 1}. This definition reflects the fact that
destruction may start both in the fibers and in the matrix.

The failure surface S may be determined in another equivalent way. VF, VM, and
V are the safety zones for the fibers, matrix, and the composite as whole. The domain
V is determined by the inequality max (BF(εαβ) and BM(εαβ)) ≤ 1 is the intersection of
the domains VF and VM determined by the inequalities (7). The failure surface S is the
boundary of the domain V.

Figure 2 displays the failure surfaces SM and SF. The safety surfaces are colored in
red/blue and pink-yellow for the best visibility of their 3D geometry. In Figure 2a,b, the half
of the failure surfaces SM and SF are displayed. The remaining parts of the failure surfaces
are the mirror reflections of the displayed fragments with respect to the Oεxxεzz-plane. The
mark 0.01 in the figures corresponds to 1% tension/shift strains. In Figure 2, the failure
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surface SM and a fragment of the failure surface SF are displayed. The surface SF is long in
the Oε13-direction. This means that the fibers are strong against the macroscopic shift in
the Oxz-plane. This is in agreement with the “scissor-like” deformation of the fibers [1].
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the strengths of carbon fibers and epoxy individually are very different, see Table 1. 

 

Figure 3. Failure surface for matrix and for fiber for the axial tension modes. Figure 3. Failure surface for matrix and for fiber for the axial tension modes.

Figure 4a displays the failure surfaces for zero axial stress ε33 and arbitrary axial stress
ε11 and shift ε13. Figure 4c displays the failure surfaces for the zero axial stress ε11 and the
arbitrary axial stress ε33 and shift ε13. The central fragments of Figure 4a,c are enlarged. In
both cases, the matrix is the weakest element of the composite. In Figure 4, we see that the
strengths of the fibers and the matrix are similar against the macroscopic axial tension and
rather different against the macroscopic shift.

We demonstrate the way in which the change of characteristics of components of
the composite changes the HSC. The strength limit of epoxy may change from 30 · 106 to
90 · 106 [50]. Figure 5 displays the interactions of the failure surfaces with the coordinate
planes when the epoxy strength limit is changed to σ∗M = 85 · 106 Pa (the other characteristics
are the same). Then, the failure surface SF is placed inside the failure surface SM (see
Figure 5a for the axial tension mode). This means that the fibers become the weakest
element of the composite. In the tension-shift case, the failure surface SM goes beyond
the failure surfaces SF, Figure 5b. The failure surface of the composite as a whole consists
of the fragments of the failure surfaces of the fibers and the matrix, see Figure 5c. When
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strains (ε11, ε33) belong to AB or DA in Figure 5c, the fibers are destroyed. When the strains
(ε11, ε33) belong to BC or CD, the matrix is destroyed.
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Figure 5. Failure surface: (a)—for the tension modes; (b)—for tension-shift mode; (c)—for composite
as a whole (the central part of Figure (b), enlarged).

Figure 6 displays the 3D failure surfaces for composite as a whole when σ∗M = 85 · 106 Pa.
It consists of the fragments of the failure surface for the fibers and matrix.

Although we use the von Mises strength criterion for the components of the composite,
Figures 2–6 demonstrate no similarity with the von Mises criterium at the macrolevel. The
proportions of the right angle sides in Figure 6 are 1:4 for the matrix and approximately 1:6
for the fibers. One can treat the long length of the failure surfaces along the line ε11 + ε33 = 0
as a residual form of the hydrostatic axis.

The failure surface of the composite is the intersection of the domains VF and VM (8).
Usually, intersection VF∩VM has a non-smooth boundary, even if SF and SM are smooth
surfaces. This kind of non-smoothness results from the change of the failure mode from the
“matrix failure” mode to the “fiber failure” mode (or vice versa) when the macroscopic SSS
changes.

Figures 3–5 show that the fracture surface SF of the fibers can also be non-smooth.
Thus, the fracture surfaces of fibers as an element of a composite are not directly related
to the strength criteria of fiber materials. In the example above, we used the von Mises
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strength criteria for the material of the fibers. The well-known von Mises fracture surface is
smooth and shows no similarity with SF.
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6. Conclusions

We present an implementation of HSC for fiber-reinforced material based on the ho-
mogenization theory. In general, an HSC for a fiber-reinforced composite can be developed
as a computer program. The original HSC-authoring program was developed in C/C++.
The program uses auxiliary data calculated using the ANSYS FEM program. The devel-
oped HSC program causes it to determine the “safety zone” and the “the first crack failure
surface”, to identify the “weakest” component of the composite (fiber or matrix), as well as
the weakest point in the composite.

HSC (at least in its current form) is not designed to analyze progressive damage or the
complete failure of a composite. Considering the reliability of ANSYS FEM (or similar FEM
software) for solving problems in the theory of elasticity, the authors consider it possible to
use HSC to predict the “safety zone” for composites.
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read and agreed to the published version of the manuscript.
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