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Abstract: In this work, the adsorption and photocatalytic properties of ZnO-ZnAl2O4-CuO nanosized
porous composites synthesized by the polymer-salt method have been studied. To evaluate the
efficiency of adsorption, experiments were carried out on the decolorization of aqueous solutions of
the Chicago Sky Blue diazo dye. The adsorption process is divided into two stages, at the first stage,
the dye is rapidly adsorbed on the outer surface of the composite particles (kf = 0.0073 min−1), at
the second stage, the dye diffuses into the pores of the material (kf = 0.0007 min−1). It was noted
that the rate of photocatalytic decomposition of the dye (kf = 0.021 min−1) is higher than the rate
of the adsorption process, which indicates the occurrence of photocatalytic decomposition of dye
molecules both on the surface of the composites and in the liquid phase. With an increase in the light
intensity, the photocatalytic process is significantly accelerated, linearly at low intensities, and at high
intensities (I > 100 mW/cm2) the dependence becomes a power law.

Keywords: adsorption; photocatalysis; kinetics; ZnO; nanoparticle

1. Introduction

Photocatalytic processes are widely studied and used for water and air purification,
water splitting and other practical applications [1–5]. Nanomaterials based on ZnO are
effective photocatalysts that are used for water and air purification [4–13].

It is known that the photocatalytic process includes the light absorption by semi-
conductors, generation of electron-hole pairs, and formation of chemically active oxygen
species (hydroxyl radicals OH, singlet oxygen, etc.), which oxidize organic contamina-
tions on the surface of photocatalyst [1–3,14]. Therefore, the role of different processes
proceeding on the semiconductor’s surface during photocatalytic processes is very impor-
tant. The increase in the material’s specific surface area at the application of nanoscale
semiconductors promotes their photocatalytic activity.

The decrease in the size of semiconductors ZnO crystals can be achieved by the opti-
mization of their synthesis conditions [11,15] or by the formation of mixed photocatalytic
ZnO-RxOy composites (R = Mg, Al, Y, Sn, etc.) [16–18]. The simultaneous formation of
different crystals prohibits their growth and aggregation, and provides the formation of the
material structure consisting of small particles with a high specific surface area.

ZnO-ZnAl2O4-CuO porous nanocomposites having high bactericidal properties were
synthesized and studied in detail [19]. ZnAl2O4 nanoparticles demonstrate high photocat-
alytic properties [20–28] that determined their application as a component of the prepared
composite. Cu additions improve the photocatalytic properties of ZnAl2O4 [29].

It is known [15,26–30] that besides chemical composition the material morphology
plays an important role in the photocatalytic effectiveness. The application of the photocat-
alysts with specially designed morphology (nanowires, flower-like nanoparticles, porous
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photoactive matrixes, etc.) demonstrates high photocatalytic effectiveness [31,32]. So,
porous photocatalysts have high adsorption capability and provide an effective decompo-
sition of organic contaminants that determines their promise for practical environmental
application [30,32]. However, the kinetics of photocatalytic and adsorption processes in
porous matrixes has some specific features [20,30,32–34] that require those study.

To assess the photocatalytic properties of materials, a technique based on the study of
their effect on the efficiency of organics decomposition in solution is used often [21,31,35,36].
Azo dyes represent the largest production volume of dye chemistry today, and their relative
importance may even increase in the future [37]. They play a crucial role in the governance
of the dye and printing market. However, the presence of these dyes and pigments can
cause a significant alteration in the ecological conditions of the aquatic fauna and flora,
because of the lack of their biodegradability [38]. Therefore, the application of azo dye as a
modal contaminant for photocatalytic tests of developed composites is reasonable.

The aim of this work is to study the features of kinetics of diazo dye adsorption and
photooxidation in the solutions containing additions of ZnO-ZnAl2O4-CuO composites.

2. Materials and Methods

The polymer-salt method which is applied for the synthesis of different nanoparti-
cles [15,16,30,33] was used in this study. The aqueous solutions of Zn(NO3)2, Al(NO3)3
and CuSO4 were used as raw materials for the nanocomposites synthesis. The solution
of polyvinylpyrrolidone (PVP) (K30; Mw = 25,000 ÷ 35,000) in propanol-2 was added to
the mixture of aqueous solutions of metal salts. Liquid mixtures were stirred for 30 min
at room temperature. After drying obtained polymer-salt composites were calcined in an
air atmosphere at 680 ◦C for 2 h. Chemical compositions of initial solutions and obtained
composites are given in Table 1. These two compositions have different Zn/Al molar ratio
(Table 1) that provides the variation of the crystal structure, morphology and properties of
prepared composites.

Table 1. Chemical compositions of initial solutions and obtained composites.

Sample Chemical Composition of Solutions, mol.% Chemical Composition of Powders,
mol.%

H2O PVP Propanol-2 Zn(NO3)2
·6H2O

Al(NO3)3
·9H2O

CuSO4
·5H2O ZnO ZnAl2O4 CuO

1 80.533 0.002 19.010 0.320 0.133 0.002 80.16 19.83 0.04

2 80.561 0.002 19.010 0.162 0.258 0.002 20.81 79.18 0.01

The morphology of composites was studied by SEM analysis using a microscope
Supra 55VP. The analytical elemental chemical composition of glass was determined by the
EDS method using setup Advanced Aztec Energy (Oxford Instruments). The differences
between nominal and analytical chemical compositions were less than 6%.

The diffractometer Rigaku Ultima IV was used for X-ray diffraction (XRD) analysis
of prepared materials. The diffraction patterns were scanned from 20◦ to 100◦ (2θ). The
crystallite size was calculated using Scherrer’s equation:

d =
0.9 λ

β cos θ
, (1)

where d is the average grain size of the crystallites, λ—is the incident wavelength, θ—is
the Bragg angle (radians) and β is the full width at half maximum (FWHM) in radians.

It is known that chemically active singlet oxygen has the characteristic luminescence
band in NIR spectral range (λmax = 1270 nm) [39]. An experimental luminescence setup,
previously described in [40], was used for the study of singlet oxygen photo-generation
in prepared materials. Two different LEDs (HPR40E set) (λmax = 370 nm; power density
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0.35 W/cm2) and (λmax = 405 nm; power density 0.90 W/cm2) were used for lumines-
cence excitation.

Diazo dye Chicago Sky Blue (CSB) (Sigma Aldrich, St. Louis, MO, USA) was used
as a model of organic contamination in adsorption and photocatalytic experiments. This
dye was used earlier for the estimation of the photocatalytic properties of different materi-
als [30,33,41]. The mass of the powder portions used in the experiments was 0.01 g. The
powder portions were mixed with 3 mL of an aqueous dye solution (all dye solutions will
be aqueous) and placed in a quartz cuvette. The dye content in the initial solutions was
41 mg/L.

A mercury lamp (DR-240, Saransk, Russia) was used for UV irradiation of the cuvette
with dye solution. The cuvette was disposed of at the different predetermined distances
from the lamp to study the effect of the light intensity on the rate of a photocatalytic process.
The power density of the radiation was varied from 45 to 600 mW/cm2.

3. Results and Discussion
3.1. Crystal Structure and Morphology of ZnO-ZnAl2O4-CuO Composites

Figure 1 shows the SEM images of composites 1 (a,b) and 2 (c,d) at different magnifica-
tions. Both composites consist of small nanoparticles that determine the high value of their
specific surface area. Composite 1 consists of small nanoparticles many of them having
shape rods (Figure 1a,b). Numerous pores are observed in the structure of composite
2 (Figure 1c,d). The observed difference in powder morphologies is determined by the
chemical compositions of prepared powders.
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Figure 1. SEM images of composites 1 (a,b) and 2 (c,d) at different magnifications.

Figure 2 shows the XRD pattern of composites 1 (a) and 2 (b). Intensive peaks are
characteristic of hexagonal ZnO crystals (JCPDS No. 36–1451) and small peaks related
to cubic crystals of ZnAl2O4 (JCPDS No. 05-0669) are observed. The ratios between
intensities of different ZnO peaks are close to standard values that indicate the absence of
the texture in prepared materials. The average crystal size of ZnO crystals calculated using
Scherrer’s equation is 25 nm. The calculated lattice constants of hexagonal ZnO crystals
are: a = 3.2447 Å and c = 5.1955 Å, which is less than the lattice constants values given for
pure ZnO in the review [42] (a = 3.2475 ÷ 3.2501 Å; c = 5.2042 ÷ 5.2075 Å).
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Ionic radii of Cu2+ ions is slightly less than ionic radii of Zn2+ (0.57 and 0.60 Å,
correspondingly) and Cu2+ easily replaces Zn2+ in the crystal structure which leads to the
contraction of the crystal cell [43]. The absence of any peaks of Cu compounds (Figure 2)
and lower values of lattice parameters a and c of formed ZnO crystals compared with
the literature data [42] may indicate the incorporation of copper ions into the structure of
ZnO crystals.
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Intensive peaks of cubic ZnAl2O4 crystals and small peaks of ZnO crystals are ob-
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and ZnAl2O4 nanocrystals.

3.2. Band Gap Values

It is well-known that the band gap value is one of the most important parameters of pho-
tocatalytic material which significantly affects its photocatalytic effectiveness and determines
requirements for the spectral range of exciting radiation. The measurements of composites
absorption spectra showed that the absorption edges of both powders are ~370–380 nm.

To determine the material band gap value, Tauc’s equation was used [44]:

(αhν) 2 = A(hν-Eg) (2)

where hν is a photon energy, Eg is a semiconductor band gap value, A is a constant, and α is
an absorption coefficient. The graph construction in the coordinates (αhν)2 = f(hν) allowed
us to define the band gap value of studying materials (Figure 3).
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The band gap values of multicomponent ZnO-based semiconductors were described
sufficiently by Vergard’s law at b = 0 [44–46]. For (100-x-y)ZnO-xAl2O3-yCuO material
with x molar fraction of ZnAl2O3, y molar fraction of CuO and b = 0, Verlag’s law can be
expressed by the equation:

Eg
(ZnO-ZnAl2O4-CuO) = xEg

ZnO + yEg
ZnAl2O4 + (1-x-y)Eg

CuO, (3)

where Eg
(ZnO-ZnAl2O4-CuO) is a composite band gap value, Eg

ZnAl2O4, Eg
CuO, and Eg

ZnO

are band gap values of ZnAl2O4, CuO and ZnO, respectively. The substitution of molar
ratios of oxides and their band gap values (Eg

ZnO ~ 3.37 eV [47], Eg
ZnAl2O4 ~ 3.85 eV [48],

Eg
Fe2O3 = 1.51 eV [49]) into Equation (3) gives Eg

(ZnO-ZnAl2O4-CuO) values 3.43 eV and 3.68 eV
for composites 1 and 2, correspondingly.

As can be seen from Figure 3, experimental Eg values of composites 1 and 2 are ~3.55
and 3.63 eV. The differences between calculated and experimental Eg values are not signifi-
cant. It is possible to conclude that Equation (3) described experimental data successfully.

3.3. Photostimulated Discoloration of Dye Solutions
3.3.1. Photolysis of Dye Molecules in Solutions

Figure 4 demonstrates the influence of UV irradiation on the absorption spectra of
CSB solutions without the addition of composite (a) and with the addition of powder 2 (b).
The intensity of the dye absorption band (λmax = 612 nm) decreases in the spectra of both
solutions under UV irradiation.
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composite (a) and with the addition of powder 2 (b).

The changes in absorption spectra of CSB solution without the addition of photocat-
alytic composite are determined by the dye photolysis in the solution. Figure 4a shows that
these changes are small after 20 min of UV irradiation.

Figure 4b exposes the effect of UV irradiation on the absorption spectra of CSB solution
containing powder 2. It is seen that the shape of dye absorption spectra has remained during
irradiation. This fact suggests that forming intermediate products of dye decomposition
have not remarkable light absorption in the visible spectral range. The behavior of spectral
changes is similar to that reported for CSB photodecomposition in solutions with other
photocatalysts [30,33,41].

3.3.2. Photocatalytic Discoloration of Dye Solutions

The kinetic dependence of the photo decoloration of CSB solution without photo-
catalytic additions is shown in Figure 5 (curve 1). The decomposition of CSB in solution
without photocatalysts proceeded slowly: less than 4% of dye molecules were decomposed
after UV treatment for 20 min. Dye photolysis is a photochemical reaction proceeding
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without a photocatalyst. The kinetics of this process is described often by the equation of
pseudo-first order:

C = C0 × e−kt, (4)

where C and C0—current and initial dye concentrations; k—constant rate of photochemical
reaction; t—time.

Experimental data are described by the equation pseudo-first-order (3) with the con-
stant rate k = 0.002 min−1 and determination coefficient R2 = 0.9319. Obtained experimental
data showed that the photolysis of dye molecules in the solutions without photocatalytic
additions is a slow process and the input of this process in the total dye decomposition
during the photocatalytic process is small.
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The rates of photocatalytic dye oxidation (Figure 5, curves 2 and 3) are significantly
higher than the rate of dye photolysis without photocatalysts (curve 1). The input of the
last process in the total dye decomposition during the photocatalytic process is small. The
significant difference in dye decomposition rates observed at the use of composites 1 and 2
is related to the difference of their chemical composition and morphology (Figure 1 and
Table 1).

The Langmuir–Hinshelwood (L–H) kinetic model is used often to describe semicon-
ductor photocatalysis [1,50]. According to this model, the dye decomposition rate r is
described by the kinetic equation: [1–4,25,49]:

r = −dC
dt

=
k1KaC

1 + KaC
, (5)

where C—current dye concentration at the time t, k1—constant rate of dye decomposition,
Ka—constant of adsorption-desorption equilibrium. At low dye content (C << 1 mM),
Equation (5) is simplified to a pseudo-first-order equation [50–52]:

ln(C|C0) = k1Kat = kappt, (6)

where kapp—apparent constant rate of pseudo-first order. Kinetics dependencies of the
photodecomposition of CSB in the solutions containing additions of powders are described
sufficiently by Equation (6) with determination coefficients R2 = 0.9689 and 0.9877 for
composites 1 and 2, correspondingly. These results agreed with the data of the work [52] in
which was demonstrated that the L–H model corresponds to the kinetics of photodecom-
position of an azo dye by porous photocatalysts at the initial stages of the process.
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The comparison of the constant rates of CSB photodecomposition under UV irradia-
tion (power density 20 ÷ 25 mW/sm2) in aqueous solutions with different photocatalytic
additions are exposed in Table 2. These data show that all Zn-containing materials demon-
strate photocatalytic activity. Hetero-structural semiconductor composites ZnO-SnO2 and
ZnO-ZnAl2O4-CuO demonstrate the highest photocatalytic activity. The photocatalytic
activity of composite 2 is significantly less.

Table 2. The comparison of the constant rates of CSB photodecomposition under UV irradiation
(power density 20 ÷ 25 mW/sm2) in aqueous solutions with different photocatalytic additions.

Photocatalysts Constant Rate, min−1 References

ZnO 100% 0.022 [29]

ZnO 93.2 mol.% + SnO2 6.8 mol.% 0.026 [29]

ZnO 95.7 mol.% + Er2O3 4.3 mol.% 0.012 [41]

ZnO 95.3 mol.% + Er2O3 4.7 mol.% 0.017 [41]

ZnO 96.2 mol.% + Sm2O3 3.8 mol.% 0.014 [41]

ZnO 80.16 mol.% + ZnAl2O4 19.83 mol.%
+ CuO 0.04 mol.% 0.021 present work

ZnO 20.81 mol.% + ZnAl2O4 79.18 mol.%
+ CuO 0.01 mol.% 0.005 present work

Authors [24] proposed that the high photocatalytic properties of ZnO-ZnAl2O4 com-
posites are attributed to the efficient spatial separation of the photo-generated electrons
and holes between ZnO and ZnAl2O4 particles. It is possible to suggest that the observed
relatively weak photocatalytic properties of composite 2 can be related to the small content
of ZnO in the structure (Table 1).

The photocatalytic activity of synthesized oxide composites is determined by their
ability to photogeneration of reactive oxygen species (ROS). In this work, the ability of
the photogeneration of singlet oxygen by ZnO-ZnAl2O4-CuO composites was studied by
the luminescent spectroscopy in NIR spectral range. Figure 6 shows the luminescence
spectra of composite 1 in the NIR spectral range. The emission band with λmax = 1270 nm
characteristic for singlet oxygen is observed in these spectra [39,40]. The comparison of
Figure 6a,b shows that the luminescent band intensities are higher at the irradiation of blue
light (λex = 405 nm). This is related to the higher power density of blue LED compare with
UV LED (look at “Material and Methods” section).
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3.3.3. Dye Adsorption from Solutions on the Surfaces of Composites

Observed solutions discoloration in the presence of photocatalytic composites is
determined by a few different processes:

1. The dye photolysis in the liquid phase;
2. Its adsorption on the powder surface;
3. Photocatalytic dye decomposition.

Figure 7a demonstrates changes in absorption spectra of dye solution containing
powder 1 during the adsorption process in the darkness. The behavior of these changes is
similar to that observed during UV irradiation of dye solutions. Approximately 25–30% of
dye molecules are adsorbed on the surface of the composite 1 during the first 120 min of the
adsorption process. It is worth noticing that adsorption process and solution discoloration
continued for 1 week (Figure 7a).
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Kinetic models of adsorption on the surface of photocatalysts are used in the consid-
eration of photocatalytic processes. The relatively simple kinetic models including the
equations of the pseudo-first or pseudo-second-orders are used often [30,41].

The adsorption rate can be described by the kinetic equation of pseudo-first-order [30,34,53]:

dqt

dt
= k f × (qe − qt), (7)

where qt—the dye amount adsorbed by 1 g of the sorbent at the time t; qe—equilibrium
adsorption capacity; kf—rate constant of the adsorption; t—adsorption duration.

According to Equation (7), the rate of adsorption decreases as the surface is filled with
dye molecules.

It is necessary to pay attention to the value of the equilibrium adsorption capacity qe,
which enters Equation (7). In some works [32,34] the qe is assigned a value determined as a
result of short-term experiments (1 ÷ 2 h) by approximating the kinetic dependence based
on the observed decrease in the adsorption rate. The data shown in Figure 7a indicate that
the achievement of adsorption-desorption equilibrium on the surface of ZnO-ZnAl2O4-CuO
composites requires a much longer adsorption process.

Figure 8 demonstrates the dependence ln(qe−qt) = f(t) for the dye adsorption on the
surface of composite 1 during 48 h. This long-term dependence is described formally by
kinetic Equation (4) with k1 = 0.0007 min−1 and R2 = 0.9525. However, the experimental
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points obtained at the initial stages of the adsorption deviate significantly from the linear
dependence that indicates that the adsorption process has the complicated behavior.
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The inset in Figure 8 shows the dependence ln(qe – qt) = f(t) for the initial stages of
the dye adsorption on the surface of composite 1. However, the linear dependence exposed
in the inset in Figure 8 does not correspond fully to experimental points. It is indicated by
the relatively low R2 value (R2 = 0.9325). This linear dependence was used only formally
for the evaluation of the photocatalytic rate at the initial stage of the process. The rate of
adsorption in these stages is significantly (more than 10 times) higher (kf = 0.0073 min−1)
than the average value.

Based on obtained data the kinetics of the adsorption process can be separated into
two different stages:

• Fast adsorption observed at the initial stages of the process (duration of adsorption ~
120 min);

• Slow adsorption which is proceed at a more long-term process (duration of adsorption
> 120 min).

It is possible to suggest that dye molecules fast adsorb on the external surface of
composite particles at the first stage of the process. Following slow adsorption is deter-
mined by the labored diffusion of dye molecules into the tiny pores and caverns inside
composite particles.

For the description of adsorption kinetics, the equation of pseudo-second-order is
often used also. This equation can be written as:

dqt

dt
= k2 × (qe − qt)

2, (8)

and in the integral form [35,51,54]:

t
qt

=
1

k2 × q2
e
+

t
qe

, (9)

where k2—rate constant of the adsorption, qe—equilibrium adsorption capacity, qt—the
dye amount adsorbed by 1 g of the sorbent at the time t. This model describes a much
stronger dependence of the adsorption rate on the coverage degree of the sorbent surface
with dye molecules. The graphs t/q = f(t) for the kinetics of dye adsorption on the surface
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of composite 1 showed a satisfactory agreement (R2 = 0.9899) between experimental data
and Equation (9) (Figure 9).
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In long-time (7 days) dye adsorption experiments the adsorption/desorption equi-
librium was achieved. Based on the obtained results the values of equilibrium adsorp-
tion capacities of prepared powders were calculated. These values are 9.71 × 10−3 and
8.86 × 10−3 mmol/g for powders 1 and 2, correspondingly.

According to literature data [55] the surface area of the CSB dye molecule is 423 Å2. As-
suming the monomolecular adsorption we calculated the values of specific surface areas of
nanocomposites. These values are 247 and 137 m2/g for powders 1 and 2, correspondingly.
Such values are relatively high and are observed often for different porous matrixes.

Based on the obtained results it is possible to conclude that the adsorption of diazo dye
CSB from the aqueous solutions on the surface of porous ZnO-ZnAl2O4-CuO composites
can be described formally (R2 > 0.9) by both kinetic models pseudo-first and pseudo-second-
orders at initial stages of the process.

3.4. The Ratio of Adsorption and Photocatalysis Rates

Usually, the reactant species adsorption is considered the first stage of the photocat-
alytic process in a typical photocatalytic reaction [55,56]. Dye adsorption and its photode-
composition are considered successive stages of photocatalysis. Therefore, the total rate of
photocatalytic dye decomposition could not be higher than the adsorption rate. However,
this is not agreed with obtained experimental results.

The comparison of kinetic dependencies of dye adsorption from the solution on the
surface of composites 1 (Figure 7b, curve 1) and 2 (Figure 7b, curve 2) and its photocatalytic
decomposition using composites 1 (Figure 5, curve 3) and 2 (Figure 5, curve 4) indicates
the remarkable difference of the rates of these processes. This comparison shows that the
photocatalytic dye decomposition proceeds faster than the dye adsorption process. This
phenomenon was observed earlier in [30] and was explained by the oxidation of some parts
of dye molecules in the liquid phase by the chemically active oxygen species photogenerated
by a photocatalyst. The photocatalytic degradation of the organic contaminant in an
aqueous solution using a composite photocatalyst was observed also in [36]. Thus, it
is possible to conclude that at the application of porous ZnO-ZnAl2O4-CuO composites
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photocatalytic dye degradation proceeds on the surface of photocatalysts so as in the
liquid phase.

3.5. Influence of the Light Intensity on the Kinetics of Photocatalysis

It is known that light is the driving force of photocatalytic processes. Influence of light
intensity I on the kinetics of photocatalytic decomposition of different organic compounds
was studied in many works [1–9]. It was found that at the application of the L–H kinetic
model obtained values k1 and Ka are dependent on the light intensity I and different
approaches were used to describe these dependencies. Deng [1] and Puma et al. [9]
separate the dependence r = f(I) to a few different regions determined by I values. At low
light intensity a linear dependence of photodecomposition rate r from the light intensity I is
observed (r ∝ I) [1]. At the increase in light intensity linear dependence r = f(I) transforms
to a power law dependence r ∝ Iβ (0 ≤ β < 1) [1].

These features of r = f(I) dependencies are determined by the mechanisms of the pro-
cesses proceeding at the semiconductor photocatalyst excitation. Photogenerated electron-
hole pairs can recombine directly, or they can be trapped by the matter and take part in the
photocatalytic process. Clearly, that high light intensity and more trapping of electron-hole
pairs may increase the dye decomposition rate. The trapping of the electron-hole pairs
and photocatalytic action dominate at low light intensity values while the recombination
processes prevail at high light intensity values [1,10].

The dependence of kapp = f(I) for photocatalytic dye degradation using composite 1 is
exposed in Figure 10. At low light intensity, the dependence is linear but at I > 100 mW/cm2

it transforms into a power law dependence. The observed behavior of kapp = f(I) depen-
dence fully corresponds to the literature data.
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4. Conclusions

Cu-doped ZnO-ZnAl2O4 composites synthesized by polymer-salt method consist of
small (size less 100 nm) nanoparticles, have “pine needles”-like or porous structure and
demonstrate some features of their adsorption and photocatalytic properties. Experiments
on the adsorption of diazo dye Chicago Sky Blue from aqueous solutions on the surface of
prepared composites showed that adsorption kinetics consists of two different stages. The
first stage of this process is the fast dye adsorption on the external surface of composite
particles followed by the slow diffusion and dye adsorption inside pores and caverns.
The rate of photocatalytic dye decomposition is higher than the rate of the adsorption
process. It suggests the photocatalytic decomposition of dye molecules proceeds on the
surface of composites so as in the liquid phase. The chemical composition of Cu-doped
ZnO-ZnAl2O4 composites and morphology play the most important role in their adsorptive
and photocatalytic effectiveness.
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The increase in light intensity significantly accelerates the photocatalytic process. At
low light intensity, the dependence is linear but at I > 100 mW/cm2 it transforms into a
power law dependence.
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