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Abstract: Among conducting polymers, polythiophene has gained an important stance due to its
remarkable physical features. Graphene is a unique, two-dimensional, nanocarbon nanomaterial. As
in other polymers, graphene has been reinforced in polythiophene to form advanced nanocomposites.
This comprehensive review covers the design, essential features, and methodological potential of
significant polythiophene and graphene-derived nanocomposites. In this context, various facile
approaches, such as in situ processing, the solution method, and analogous simplistic means, have
been applied. Consequently, polythiophene/graphene nanocomposites have been investigated
for their notable electron conductivity, heat conduction, mechanical robustness, morphological
profile, and other outstanding properties. Studies have revealed that graphene dispersion and
interactions with the polythiophene matrix are responsible for enhancing the overall characteristics
of nanocomposites. Fine graphene nanoparticle dispersal and linking with the matrix have led to
several indispensable technical applications of these nanocomposites, such as supercapacitors, solar
cells, sensors, and related devices. Further research on graphene nanocomposites with polythiophene
may lead to remarkable achievements for advanced engineering and device-related materials.

Keywords: polythiophene; graphene; nanocomposite; dispersion; interaction; supercapacitor; solar
cell; sensor

1. Introduction

Among carbon nanofillers, graphene has attained an essential research spot by effec-
tively enhancing polymer characteristics such as the microstructure, electron transference,
mechanical robustness, heat stability, and several other features [1,2]. For conducting or con-
jugated polymers, graphene has been applied as an effective nanofiller [3]. Polythiophene
belongs to the family of conductive polymers, with advanced conductivity, electrochemical,
and physical properties [4]. Like other conducting polymers, polythiophene has been effec-
tively applied to develop nanocomposites [5]. The resulting graphene-filled polythiophene
nanocomposites demonstrate fine morphology, electron conduction, supercapacitance,
sensing, strength, and heat-resistance properties for use in supercapacitors, solar cells,
sensing devices, and related electronics and energy applications [6–8]. In this context, the
dispersion and interactions of graphene nanoparticles in the polythiophene matrix has
led to the development of a compatible interface and electron conduction pathways for
fine charge mobility [9]. In addition, the interfacially interacting polythiophene/graphene
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nanostructure is responsible for the overall improved characteristics and technical perfor-
mance [10]. At this juncture, polythiophene derivatives have been found to be capable of
developing fine connections with graphene nanosheets [11].

This innovative overview offers an outlook on the design, features, and potential of
technically important polythiophene/graphene nanocomposites. The incorporation of
graphene in polythiophene matrices has produced high-performance nanocomposites. The
characteristics and performance of these nanocomposites depend upon the compatibil-
ity between matrix–nanofiller interactions and consistent nanoparticle dispersal. High-
competence polythiophene/graphene nanocomposites have been observed to be functional
in important technical fields. To the best of our knowledge, this review is ground-breaking
by revealing the technical progression in the field of polythiophene and graphene-derived
nanomaterials. Consequently, polythiophene and derivative matrices filled with graphene
exhibit notable characteristics and provide high-efficiency nanomaterials. These innovative
nanocomposites are anticipated for progressive applications such as supercapacitors, solar
cells, and sensing devices.

2. Polythiophene and Derived Forms

Polythiophene is a conductive polymer formed by the polymerization of thiophene
monomers and its backbone has repeating thiophene units [12]. Thiophene is actually a
heterocyclic molecule with a sulfur atom. Polythiophene is a semiconducting polymer with
a low band gap [13]. The remarkable properties of polythiophene include high electron
transference, optical properties, thermal stability, and environmental stability [14]. Due to
its π-conjugated structure, polythiophene has fine electrical conductivity behavior [15]. The
electron transport mechanism has been found to depend upon the passage of polarons and
bipolarons through the main chain [16]. Furthermore, electrical conduction through the
polythiophene backbone can be enhanced through oxidation or reduction reactions. In this
way, polythiophene may have high electric conduction around >100 Scm−1 [17]. Usually,
organic solvents are used for the processing of polythiophene. A number of chemical and
electrochemical methods have been used to form polythiophene [18]. Electrochemically
polymerized polythiophene usually reveals better electrical conductivity relative to the
polymers synthesized via other methods. Here, the oxidation process is usually supported
due to the presence of an electron lone pair on the sulfur of the thiophene ring. Processes
like doping or modification of thiophene moieties can also enhance the desired properties
of this polymer [19,20]. The potential utility of polythiophene has been increased through
the development of numerous derived forms [21–23]. Table 1 demonstrates some important
polythiophene derivatives, such as poly(3-hexylthiophene), poly(3-octylthiophene), poly(3-
octadecylthiophene), poly(3-dodecylthiophene), and more derived forms. Polythiophene
along with its derived forms have been applied in solar cells, batteries, electronics, etc. [24].
In addition, polythiophene and its derivatives have been applied in nanocomposite for-
mation [25]. Especially, using carbon nanofillers may enhance the π-stacking interactions
with the polythiophene backbone and facilitate better dispersion, physical properties, and
applications [26].

Table 1. Derivatives of polythiophene.

Derivative Structure
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Graphene is a unique two-dimensional nanocarbon nanostructure made up of sp2

hybridized carbon atoms arranged in a hexagonal lattice structure [27]. It comprises a one
atom thick nanocarbon nanosheet. Due to its remarkable nanostructure, graphene has high
electron conduction, thermal stability, and mechanical robustness properties [28]. Synthesis
methods used for graphene include the mechanical exfoliation approach [29], chemical
vapor deposition [30], thermal decomposition [31], and chemical or organic synthesis
methods [32,33]. For large-scale production, exfoliation techniques have been preferred for
the formation of graphene [34]. Applications of graphene have been observed in aerospace,
automotive, electronics, biomedical, and countless other fields [35–37]. Graphene oxide is a
well-known derivative of graphene [38]. Polythiophene solubility has been desirable for the
high performance of the nanocomposite form [39,40]. Subsequently, including graphene or
other nanofillers in polythiophene has resulted in improved conductivity, optical, heat or
mechanical constancy, and overall physical profiles [41–43]. Almost all of the properties of
polythiophene nanocomposites depend on nanoparticle dispersion in the matrix. Due to
van der Waals interactions, graphene nanosheets possess an aggregation tendency upon
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dispersion in solvents [44,45]. For polythiophene nanocomposite processing, dispersants
(surfactants, ionic liquids) have been used for fine dispersion of graphene into the polymer
matrix [46–48]. Iguchi and co-workers [49] developed a poly(3-hexylthiophene)- and
graphene-derived nanocomposite. For in situ polymerization, graphene was dispersed
in a mixture of toluene and N-methylpyrrolidone solvents. Consequently, the graphene
dispersion behaviour was studied in the poly(3-hexylthiophene) matrix (Figure 1).
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The wrinkling of graphene nanosheets and poor dispersion in the polymer result in
poor physical properties and technical performance of polymer/graphene nanocompos-
ites [50]. The formation of an interconnecting network by the graphene nanofiller facili-
tates electron transportation through nanocomposites [51]. Husain and co-workers [52]
presented an important study on the π-conjugated system of polythiophene and graphene-
derived nanocomposites. The combination of polythiophene and graphene may develop a
co-ordinated conjugated system for electron conduction [53,54]. Figure 2 reveals a clear
picture of π-π interactions between the polythiophene backbone and graphene nanos-
tructure. Accordingly, the lone pair of electrons on the sulfur of thiophene can interact
with the π electrons of the graphene nanosheet. Consequently, the conjugated system
endorses rapid electron or charge transportation through the nanocomposite nanostruc-
ture [55,56]. Here, adding 15 wt.% graphene nanofiller led to superior electrical conductivity
of ~0.7 S cm−1 due to matrix–nanofiller interactions in ethanol solvent [57]. Moreover, in
this solvent–nanocomposite system, the lone pair of electrons on the ethanol oxygen inter-
acted with the nanomaterial to develop better electron passage through the system [58].
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To attain better dispersion properties, graphene has been modified with various sur-
face functionalities [59–61]. In this way, the polar groups in organic solvents (dimethyl
sulfoxide dimethylformamide, 1-methyl-2-pyrrolidinone, etc.) can better interact with the
modified graphene nanostructures [62–64]. Consequently, the modified graphene forms
may develop covalent or non-covalent interactions for better dispersion in solvents [65,66].
The poly(3-hexylthiophene) solubility and modified graphene dispersion in chloroform
were analyzed [67]. Thus, the modified graphene revealed better dispersion properties in
polar solvents than the pristine graphene [68,69]. Finely scattered graphene in polythio-
phene leads to high-performance nanocomposites.

Aspects such as graphene content, dispersion in the matrix, and matrix–nanofiller inter-
actions have been found to be important for the physical features of polythiophene/graphene
nanocomposites, including the microstructure, conductivity, heat conduction, mechanical
properties, and other characteristics. Graphene-derived polythiophene nanocomposites
face key challenges regarding nanoparticle dispersion. Particularly, graphene disper-
sion has been a problem during large-scale production of nanocomposite materials. The
structure–property relationship in polythiophene/graphene nanomaterials is important
for high-efficiency applications of nanocomposite nanofibers. Li et al. [70] explored the
effect of dispersion of modified graphene on important properties. The modified graphene
developed a heat transfer interface with the poly(3-hexylthiophene) matrix due to π-π
interactions. The poly(3-hexylthiophene)/graphene nanocomposite revealed an in-plane
thermal conductivity of 4.17 W m−1 K−1, which was higher than that of the pristine poly-
mer matrix. The effect was observed due to better dispersal and interfacial properties of
the matrix and nanofiller. Kausar et al. [71] formed polythiophene and graphene-derived
nanomaterial. Owing to better graphene dispersion, a percolation threshold was attained
at 1.5 wt.% nanofiller content, with a high electrical conductivity of 1.8×10−3 S cm−1. The
resulting nanocomposite also showed a high thermal conductivity of 1.22 W/mK due to
the development of a thermal interface. Sharif et al. [8] developed a polythiophene and
graphene oxide-derived nanocomposite through in situ polymerization of the thiophene
monomer in the presence of nanocarbon. The graphene oxide dispersion effect was ob-
served in the development of conducting pathways with the polymer matrix. Consequently,
the electrical conductivity of the polythiophene/graphene nanocomposite was found to be
higher (2.5× 10−8 S cm−1) than that of neat polythiophene (1.3× 10−7 S cm−1). In addition
to the electrical conductivity, the thermal stability of this nanocomposite was found to
be enhanced due to graphene dispersion and interactions with the polymer. A weight
retention of 15–22% was observed at 600 ◦C due to better thermal stability properties.

4. Polythiophene and Graphene-Derived Nanocomposites

Both graphene and graphene oxide have been used as nanofillers for polymers [72].
Graphene oxide is actually an oxidized form of graphene and it has several oxygen func-
tional groups on the graphene surface. Graphene oxide has been frequently developed
using a facile Hummer’s method with a graphite precursor [73]. However, several other
physical or chemical exfoliation techniques have also been reported [74]. However, due
to the presence of functional groups, graphene oxide may have better dispersion and
interactions with polymers, leading to enhanced compatibility properties [75–77].

Polythiophene is an essential conjugated polymer and its backbone has the fine ca-
pability of electron transfer and charge mobility [78]. Consequently, polythiophene has
advantages of facile processing, high electron conduction, and the formation of π ring stack-
ing, dipole-dipole interactions, and hydrogen bonding with nanofillers [79]. Here, graphene
has been used as an efficient nanofiller for polythiophene and its derivatives. Accordingly,
the inclusion of graphene has been found to improve the optical, electrical, electrochemical,
and several other physical characteristics of polythiophene nanocomposites [80]. Nayebi
and co-researchers [81] prepared a polythiophene and graphene-based nanocomposite. The
structure and mechanical stability features of the polythiophene/graphene nanocomposite
were investigated. Simulation studies were performed on the polythiophene/graphene
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nanocomposite. Inherent defects were observed on the graphene surface, which were
increased upon doping with the polymer. More atoms were removed from the graphene
nanosheet due to the doping effect of the polythiophene chains. The stress–strain analysis
of the nanocomposite revealed that the nanofiller loading increased the tensile stress and
modulus of the nanocomposite up to a 20 wt.% graphene loading level. The enhanced
mechanical features were attributed to the synergistic effects of the polythiophene and
graphene in the nanocomposite form.

Hsieh and co-workers [82] produced a polythiophene and graphene-based nanocomposite.
The nanomaterial revealed fine performance for field-effect transistors [83]. Liscio et al. [84]
used poly(3-hexylthiophene), a polythiophene derivative, combined with reduced graphene
oxide nanofiller to form a nanocomposite. The material was applied in field-effect tran-
sistors. Gemayel and co-workers [85] also applied a poly(3-hexylthiophene) derivative
with graphene nanoribbon nanofiller. The poly(3-hexylthiophene)/graphene nanoribbon
nanocomposite had semiconducting properties and fine potential for field-effect transis-
tors [86]. Alvi et al. [87] reinforced the polythiophene and poly(3,4-ethylenedioxythiophene)
matrices with the graphene nanofiller. The in situ polymerization method was used
to form the polythiophene/graphene and poly(3,4-ethylenedioxythiophene)/graphene
nanocomposite [88]. The nanocomposite was effectively used for a supercapacitor electrode.
Moreover, poly(3-phenylthiophene) is a significant phenyl derivative of polythiophene [89].
Poly(3-phenylthiophene) can also establish secondary linkages with the graphene nanofiller.
Furthermore, a poly(9-butyl-3,6-di(thien-2-yl)-9H-carbazole) and graphene oxide nanocom-
posite has been prepared using in situ polymerization [90]. The nanomaterial had a suffi-
ciently high specific capacitance of 296 F g−1 for supercapacitor application. In addition, an
important use of polythiophene is as a template for graphene synthesis [91]. Thus, graphene
developed using the polythiophene template has been applied in electronics [92,93].

Shamsayei and co-researchers [94] developed a polythiophene and graphene oxide-
derived nanocomposite. The electro-deposition method was used to deposit the nanocom-
posite material over the surface of the electrochemical electrode. The nanomodified elec-
trode was used for solid-phase microextraction application. Molaei [95] reported the
simultaneous copolymerization of pyrrole and thiophene monomers over the modified
graphene oxide surface. In this context, SiO2 nanoparticle-coated magnetic graphene oxide
was prepared. The copolymerization of pyrrole and thiophene monomers on the nanofiller
surface led to the formation of a polypyrrole/polythiophene and magnetic graphene
oxide/SiO2-derived nanocomposite. The unique nanomaterial structure was investigated
for the solid-phase extraction of chromium, cadmium, lead, zinc, copper, and other toxic
metals from water. Wang et al. [96] doped a reduced graphene oxide surface with thiophene
monomer and sulfur. The polythiophene/sulfur/graphene oxide nanocomposite revealed
enhanced electrical conductivity due to sulfur doping. Consequently, the nanocompos-
ite was found to be efficient for dye-sensitized solar cells. In addition, the sulfur-doped
nanomaterial was found to be more effective than the nitrogen-doped nanocomposite in
enhancing conductivity and solar cell performance [97].

Bora et al. [98] developed a polythiophene and graphene oxide-derived nanocomposite
using the interfacial polymerization technique. The thermal stability of neat polythiophene
and the polythiophene and graphene oxide-based nanocomposite was examined. The
thermogravimetric studies showed maximum thermal decomposition temperatures of
240 ◦C for pristine polythiophene and 248–260 ◦C for the polythiophene/graphene oxide
nanocomposite (1–3 wt.%). On the other hand, the initial decomposition temperatures
for pristine polythiophene and the nanocomposite were observed around 200 and 300 ◦C,
respectively. A higher decomposition temperature for the polythiophene/graphene ox-
ide nanocomposite was observed due to nanofiller reinforcement and the rigidity of the
polythiophene chains towards heat exposure. Consequently, this effect was attributed
to mutual matrix–nanofiller interactions in the nanocomposite. The electrical conductiv-
ity and resistivity behaviors of the unfilled polythiophene and polythiophene/graphene
oxide nanocomposite were also analyzed (Table 2). Here, the resistivity value of neat
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polythiophene was high (i.e., 4.9 Ωcm), with a corresponding electron conductivity of
5.8 × 10−5 S cm−1. The addition of graphene oxide nanoparticles considerably decreased
the resistivity value to 1.97 Ωcm (3 wt.% nanoparticles). Similarly, the electrical conductiv-
ity value for the 3 wt.% nanocomposite was enhanced to 2.7 × 10−4 Scm−1, relative to neat
polythiophene and 1 and 2 wt.% nanoparticle addition. Increased electrical conductivity
and decreased resistivity were attributed to the formation of π-π stacking interactions
between the polythiophene and graphene nanosheets. At 3 wt.% nanofiller inclusion, the
graphene nanoparticles developed a percolation threshold and interconnecting networks
to facilitate electron transportation through the nanocomposite system. Optimum electrical
conductivity values also led to a reasonable specific capacitance of 99 F g−1.

Table 2. Electrical conductivity and resistivity of pristine polythiophene and polythiophene nanocom-
posites filled with graphene oxide from 1 to 3 wt.% loading [98]. Reproduced with permission
from Wiley.

Sample Resistivity
(Ω cm)

Conductivity
(S cm−1)

Polythiophene 4.90 5.8 × 10−5

Polythiophene with graphene oxide 1 wt.% 2.80 0.8 × 10−4

Polythiophene with graphene oxide 2 wt.% 2.36 1.2 × 10−4

Polythiophene with graphene oxide 3 wt.% 1.97 2.7 × 10−4

Li et al. [99] formed a graphene oxide nanosheet-filled nanocomposite with an important
derivative of polythiophene, i.e., poly [3-(2-(2-(2-(2-(diethanolamino)ethoxy)ethoxy)ethoxy)
ethoxy)thiophene]. Covalent grafting was observed between the polymer matrix and graphene
oxide nanosheets. Grafting occurred due to the modification of graphene oxide to acyl chloride
functional graphene oxide using thionyl chloride. Then, the esterification reaction was observed
between the acyl chloride functionalities of the modified graphene oxide and the hydroxy
groups of the polythiophene derivative. Figure 3 shows a schematic for the formation of the poly
[3-(2-(2-(2-(2-(diethanolamino)ethoxy)ethoxy)ethoxy) ethoxy)thiophene]-graft-graphene oxide
nanocomposite. Transmission electron microscopy (TEM) was applied to study the morphology
of the nanocomposite. Figure 4A,B shows the wrinkled morphology of the nanocomposite
in micrographs. Higher magnification micrographs depict the development of a well-defined
interface in the polymer-grafted nanofiller (Figure 4C,D). At the interface, poly [3-(2-(2-(2-(2-
(diethanolamino)ethoxy)ethoxy)ethoxy) ethoxy)thiophene] developed a layer that was a few
nanometres thick. The polymer layer was clearly distinguished from the crystalline graphene
nanosheet surface. Due to covalent grafting, better graphene dispersion and less nanosheet
aggregation were observed.

In addition, polythiophene has been combined with functional graphene or func-
tional graphene oxide nanosheets to form nanocomposites [100]. In this regard, iron oxide
(Fe3O4) nanoparticles have been decorated on graphene nanosheets using the solvother-
mal technique [101]. Mehdinia et al. [102] filled modified graphene and Fe3O4-based
nanoparticles in a polythiophene matrix. Primarily, Hummer’s method was applied for
the development of graphene oxide. Here, the in situ polymerization technique was
used for the formation of the polythiophene and graphene/Fe3O4 nanocomposite. TEM
studies were carried out for the morphological investigation of the graphene/Fe3O4 and
polythiophene/graphene/Fe3O4 nanocomposite. TEM micrographs of the graphene/Fe3O4
nanofiller showed graphene nanosheets with finely decorated Fe3O4 nanoparticles. In
contrast, the polythiophene/graphene/Fe3O4 nanocomposite revealed a polymer-coated
nanocomposite nanoparticle morphology. Hence, simple synthesis routes were adopted for
the development of the graphene/Fe3O4 and polythiophene/graphene/Fe3O4 nanocom-
posite. The graphene/Fe3O4 and polythiophene/graphene/Fe3O4 nanomaterial were
tested for solid-phase extraction of polycyclic aromatic hydrocarbons. The nanomaterial
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revealed a detection limit of 0.009–0.020 µg L−1, showing fine extraction properties for
polycyclic aromatic hydrocarbons.
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Figure 4. Characteristic TEM images of (A,B) single-layer structure of PD4ET-g-GO with lateral dimen-
sions; and (C,D) showing an interface between PD4ET and GO in the PD4ET-g-GO nanocomposite at mag-
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Poly(3,4-ethylenedioxythiophene) (PEDOT) is an important derivative of graphene [103].
Inclusion of graphene in PEDOT has led to enhanced mechanical, conducting, sensing, and
other physical properties [104,105]. Mainly, PEDOT and graphene-derived nanocomposites
are synthesized using in situ polymerization, the blending technique, vapor phase polymeriza-
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tion, etc. [106,107]. Tung et al. [108] fabricated a PEDOT and reduced graphene oxide-based
nanocomposite for a chemical sensor application. The sensor showed high selectivity, sen-
sitivity, and rapid response towards trace analyte vapors. Tung et al. [109] developed a
poly(3,4-ethylenedioxythiophene) and N-doped reduced graphene oxide-derived nanocom-
posite for a sensing application. The interfacial interactions and synergistic effects between the
poly(3,4-ethylenedioxythiophene) and N-doped reduced graphene oxide led to superior prop-
erties. The nanocomposite had high conductivity and low sheet resistance (0.56 Ω/square)
properties. The mechanical resistance of the nanocomposite was also maintained even af-
ter 1000 bending cycles. Fine electrical, mechanical, and sensing performances have been
suggested to be useful for advanced, non-metallic, flexible electronic devices.

In addition, the different morphologies of polythiophene and graphene have been ap-
plied in nanocomposite forms such as nanoparticles, nanofibrils, nanowires, etc. [110–112].
These morphologies have led to high surface areas, improved properties, and performance
benefits of the resulting nanocomposites. Tran et al. [113] developed nanoparticles of poly(3-
hexylthiophene-2,5-diyl) using the mini-emulsion technique and formed nanocomposites
with graphene. The development of an interface between the poly(3-hexylthiophene-2,5-
diyl) nanoparticles and graphene led to intermolecular charge transfer to accelerate the
oxygen reduction reaction and the nanocomposite was employed as a low-cost electrocata-
lyst in sustainable fuel cells. Tran et al. [114] developed a poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate nanofibrils and graphene-based nanocomposite. The nanomaterial
was formed using the direct ink writing technique and possessed high electrical con-
ductivity of ∼630 S m−1. The poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
nanofibrils/graphene-derived nanocomposite was used to form 3D-printed supercapacitor
electrodes with fine durability and a power density of 11.3 kW kg−1. Nanowire-like patterns
of polythiophene and graphene-based nanomaterials have also been reported [115]. The
self-assembled patterns have optical and electronic properties for optoelectronic devices.

5. Technological Potential of Polythiophene and Graphene-Derived Nanocomposites

Graphene has been found to be potentially applicable in supercapacitors [116–118]. In
addition, polythiophene has sufficient charge mobility and pseudocapacitance for super-
capacitor applications [119,120]. Consequently, polythiophene and graphene-derived
nanocomposites have revealed applications in supercapacitors [121]. Owing to bet-
ter polythiophene–graphene interactions and interface formation, superior interfacial
charge transference and charge/discharge features of nanocomposites have been ob-
served [122]. These properties resulted in fine capacitance performance for important
technical utilizations [123,124]. Like polythiophene, polythiophene derivatives have also
been applied as supercapacitive nanomaterials. Consequently, the resulting nanocom-
posites from poly(3,4-ethylenedioxythiophene) and graphene oxide have been found
to be functional in high efficiency supercapacitors [125,126]. A specific capacitance
of ~300–600 Fg−1 was observed for a poly(3,4-ethylenedioxythiophene)/graphene ox-
ide nanocomposite-based supercapacitor. According to Li et al. [99], a poly [3-(2-(2-
(2-(2-(diethanolamino)ethoxy)ethoxy)ethoxy) ethoxy)thiophene]-grafted graphene oxide
nanocomposite-based supercapacitor device has been designed. The covalent linking
between the poly [3-(2-(2-(2-(2-(diethanolamino)ethoxy)ethoxy)ethoxy)ethoxy)thiophene]
and graphene oxide and interface development led to high electrical conductivity and a
specific capacitance of 971 Fg−1 (1 Ag−1). The single solid-state supercapacitor device and
devices connected in series and parallel were analyzed by cyclic voltammetry to study
the capacitive performance curves of the nanomaterial (Figure 5a). Moreover, the gal-
vanostatic charge–discharge performance was studied for the single and series-connected
devices (Figure 5b). The supercapacitor devices in series showed an output potential of
about 0.9 V (Figure 5c). In addition, the designed supercapacitor was applied in lighting
a red light-emitting diode with a working potential of 2.2 V (Figure 5d). Hence, mod-
ified graphene-filled polythiophene derivatives exhibit fine potential for the design of
high-performance supercapacitor devices.
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An important application of graphene has been observed in solar cells [127]. The
nanocomposite of polythiophene and graphene revealed fine potential for high efficiency
solar cells [128,129]. In nanocomposite form, polythiophene and graphene have donor-
acceptor interfaces for charge transport, which are beneficial for application in solar
cells [130,131]. The polythiophene derivatives behave as active electron donors, while
graphene behaves as an electron acceptor for solar cell applications [132]. For example,
poly-(3-hexylthiophene) and graphene-based nanocomposites have been designed for bulk
heterojunction solar cells [133–135]. Stylianakis and co-workers [136] developed phenyl
isothiocyanate modified graphene oxide and filled in poly(3-hexylthiophene) for bulk
heterojunction solar cell application. The nanocomposite was processed using the solution
method and ultrasonication technique. The resulting bulk heterojunction photovoltaic
device is presented in Figure 6A. In this device, poly(3-hexylthiophene) behaves as an
electron donor while graphene oxide-phenyl isothiocyanate functions as an electron ac-
ceptor. The development of a donor–acceptor complex is responsible for superior solar
cell performance.
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structure ITO/PEDOT:PSS/P3HT:GO-PITC/Al [136]; and (B) plots of sensitivity of neat RGO
and PEDOT/RGO nanocomposites toward different gases [137]. Al = aluminum; ITO = indium
tin oxide; PEDOT:PSS = polystyrene sulfonate/poly(3-hexylthiophene); P3HT:GO-PITC = poly(3-
hexylthiophene):graphene oxide with phenyl isothiocyanate; ITO/PEDOT:PSS/P3HT:GO-
PITC/Al = indium tin oxide/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate/poly(3-
hexylthiophene):graphene oxide with phenyl isothiocyanate/aluminum; RGO = reduced graphene
oxide; RGO/PEDOT = reduced graphene oxide/poly(3,4-ethylenedioxythiophene). Reproduced
with permission from ACS.

Table 3 illustrates the photovoltaic features of the poly(3-hexylthiophene)/graphene
oxide-phenyl isothiocyanate-derived bulk heterojunction device. Adding 20 wt.% of
nanofiller was found to improve photovoltaic device parameters such as power conversion
efficiency (1.02%), fill factor (0.46%), open-circuit voltage (0.51 V), and short-circuit current
density (4.34 mA cm−2). Thus, the combination of polythiophene derivatives and graphene
has revealed fine potential for photovoltaic devices.

Table 3. Device performance of photovoltaic devices based on P3HT:GO-PITC nanocomposites
with different GO-PITC contents [136]. GO-PITC = graphene oxide with phenyl isothiocyanate;
P3HT:GO-PITC = poly(3-hexylthiophene):graphene oxide with phenyl isothiocyanate. Voc = open-
circuit voltage; Jsc = short-circuit current density (Jsc); FF = fill factor (FF); η = power conversion
efficiency. Reproduced with permission from ACS.

GO-PITC (wt.%) Jsc (mA cm−2) Voc (mV) Ff η (%)

0 0.04 0.40 0.28 0.004

10 3.96 0.57 0.39 0.88

20 4.34 0.51 0.46 1.02
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Graphene has its own remarkable applications for gas sensors, electrical sensors, electro-
chemical sensors, and strain sensors [138]. Similar to graphene, polythiophene and graphene-
derived nanocomposites have been applied in sensing applications [139,140]. The polythio-
phene/graphene nanocomposites possessed high surface area and electrical conductivity
features, facilitating sensing performance [141,142]. These nanocomposites have been ef-
fectively applied as gas sensors [143]. Bai and colleagues [144] formed polythiophene and
ethylenediamine functionally reduced graphene oxide-derived nanomaterial. Including 5 wt.%
of functional nanofiller in the nanocomposite was found to be effective for sensing 10 ppm
of NO2 gas. Yang and co-researchers [137] intended the poly(3,4-ethylenedioxythiophene)
and reduced graphene oxide-derived nanocomposite for sensing various gases. Figure 6B
shows the performance of the poly(3,4-ethylenedioxythiophene)/reduced graphene oxide
nanocomposite in the presence of numerous gases. Here, NO2 gas was applied as a standard
for analyzing the sensor performance at the same concentration as the other gases. NO2 gas
at 2 ppm revealed higher sensitivity relative to the other analyte gases when analyzed with
the poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposite-based sensor.
For comparative analysis, a neat reduced graphene oxide-based senor was also tested for
sensing different gases. The performance of the poly(3,4-ethylenedioxythiophene)/reduced
graphene oxide nanocomposite sensor was found to be much higher than that of the neat
carbon nanostructure owing to synergistic effects and compatible interface formation [145].
Additionally, understanding the sensing mechanism was found to be essential in analyzing
the performance of the poly(3,4-ethylenedioxythiophene)/reduced graphene oxide-based
nanocomposite sensor.

In addition to supercapacitors and photovoltaics, polythiophene/graphene nanocom-
posites have been studied for photocatalytic degradation, antibacterial, and other biomedi-
cal applications. Noreen et al. [146] formed a polythiophene and graphene nanoplatelet-
derived nanocomposite using oxidative chemical polymerization. Here, various graphene
nanoplatelet contents (10–50 wt.%) were reinforced in the polymer matrix. The nanocom-
posite was found to be useful for the photocatalytic degradation of bromo phenol blue. The
nanocomposite with 50 wt.% nanofiller content led to a higher photocatalytic degradation
efficiency of 94.1%, relative to pristine polythiophene (31.3%). Moreover, the polythio-
phene/graphene nanoplatelet nanocomposite with 50 wt.% nanofiller had fine antimicro-
bial activity towards E. coli and S. aureus bacterial strains. The nanocomposite had a larger
inhibition zone of 18 mm for bacterial strains, relative to the neat polythiophene (5–9 mm
inhibition zone). Hence, the nanocomposite was not only effective for the photocatalytic
degradation of dye but was also a potential candidate for bacterial growth inhibition.
Mousavi et al. [147] applied a polythiophene/graphene nanocomposite for DNA detection.
These nanocomposites have appropriate binding sites to link with different biomaterials
for sensing purposes. Further advancements in this field may lead to a new generation of
biomedical devices for DNA or gene sensing.

6. Challenges and Conclusions

Polythiophene and graphene have been produced via non-covalent or covalent means
using facile techniques. Here, graphene dispersion, polythiophene solubility, and matrix–
nanofiller interactions have been found to significantly improve the physical properties
of the resulting nanocomposites. Especially, the effect of graphene nanofiller was found
to be essential to enhancing the microstructure, conductivity, heat conduction, strength,
and other related properties. Accordingly, these nanomaterials have been found to be
effective in the photovoltaic, supercapacitor, and gas sensing arenas. Important challenges
in using pristine graphene nanofiller are aggregation, poor dispersion, and poor miscibility
with matrices. Here, using advanced processing methods has been found to be significant
for developing compatible polythiophene nanocomposites. Moreover, using modified
graphene forms, such as graphene oxide, reduced graphene oxide, etc., along with poly-
thiophene derivatives with substituted moieties has been found to enhance physical as
well as chemical interactions and homogeneous dispersion. Functional graphene and
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modified polythiophene may be used to develop well-interconnected, high-performance,
advanced nanomaterials. Until now, polythiophene/graphene nanocomposites have been
used for solar cells, sensors, and supercapacitive devices. Nonetheless, several important
technical fields are still unexplored for these nanomaterials, such as the space and auto-
motive industries, radiation defense, tissue engineering, drug delivery, bio-imaging, and
many more.

In brief, this overview explains vital aspects of polythiophene and graphene-derived
nanomaterials. The consequences of graphene scattering, processing, and physical char-
acteristics on the performance of polythiophene/graphene have been thoroughly dis-
cussed. Pristine polythiophene and graphene-based nanomaterials as well as substituted
polythiophene and functional graphene-derived nanocomposites have been investigated.
Several exceptional physical properties have been observed for these nanocomposites.
Non-modified polythiophene and non-functional graphene have disadvantages of poor
dispersion, low miscibility, and interactions. Promising applications of these nanomaterials
have been observed so far in solar cells, supercapacitors, sensors, etc. However, future
research in this field may discover numerous additional design varieties and technical areas
for polythiophene/graphene nanomaterials.
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