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Abstract: Electromagnetic interference is considered a serious threat to electrical devices, the envi-
ronment, and human beings. In this regard, various shielding materials have been developed and
investigated. Graphene is a two-dimensional, one-atom-thick nanocarbon nanomaterial. It possesses
several remarkable structural and physical features, including transparency, electron conductivity,
heat stability, mechanical properties, etc. Consequently, it has been used as an effective reinforcement
to enhance electrical conductivity, dielectric properties, permittivity, and electromagnetic interfer-
ence shielding characteristics. This is an overview of the utilization and efficacy of state-of-the-art
graphene-derived nanocomposites for radiation shielding. The polymeric matrices discussed here
include conducting polymers, thermoplastic polymers, as well as thermosets, for which the physical
and electromagnetic interference shielding characteristics depend upon polymer/graphene interac-
tions and interface formation. Improved graphene dispersion has been observed due to electrostatic,
van der Waals, π-π stacking, or covalent interactions in the matrix nanofiller. Accordingly, low
percolation thresholds and excellent electrical conductivity have been achieved with nanocomposites,
offering enhanced shielding performance. Graphene has been filled in matrices like polyaniline, poly-
thiophene, poly(methyl methacrylate), polyethylene, epoxy, and other polymers for the formation of
radiation shielding nanocomposites. This process has been shown to improve the electromagnetic
radiation shielding effectiveness. The future of graphene-based nanocomposites in this field relies
on the design and facile processing of novel nanocomposites, as well as overcoming the remaining
challenges in this field.

Keywords: graphene; nanocomposite; dispersion; interaction; conductivity; EMI shielding

1. Introduction

Graphene is a remarkable nanocarbon nanomaterial [1–3]. It possesses a unique struc-
ture and technically significant properties for polymeric matrices [4]. Adding very small
amounts of graphene to polymers may cause significant improvements in their physical
characteristics [5]. Graphene and derived nanomaterials have been applied in the fields of
electromagnetic interference (EMI) shielding equipment, electronics and microelectronics,
sensors and actuators, printing devices, energy devices, and other methodological and
industrial applications [6]. Polymer/graphene nanocomposites have been found to be
effective in overcoming the challenging aspects of electromagnetic wave interference [7]. In
this regard, the amount, dispersion, and morphology of graphene and modified graphene
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nanostructures in polymers are recognized as important variables. Moreover, superior
interactions, compatibility, and interface formation between the polymer and graphene
can enhance the effectiveness of the electromagnetic interference shielding (EMI SE) [8].
Functional graphene can effect excellent physical or covalent interfacial interactions [9,10].
The synergetic effect between polymers and graphene has been found to enhance the phys-
ical properties of such nanocomposites. Furthermore, interpenetrating networks have been
developed in polymer/graphene nanomaterials, enabling superior electron mobilization
and thereby improving the electromagnetic protection features.

This review stresses the essentials, design, and properties of EMI shielding polymer-
and graphene-derived nanocomposites. The EMI shielding mechanism, mutual interac-
tions, and interface formation are considered important factors in controlling the overall
radiation protection performance of nanocomposites. Several conducting thermoplastics
and thermosets have been applied in the fabrication of radiation defense materials with
graphene. Accordingly, graphene, graphene oxide, and modified graphene have been
used to improve EMI protection for polymers. This paper is a literature overview; it is
intended to support the future development of innovative graphene-based materials for
EMI shielding.

2. Graphene, Modified Forms, and Derived Nanocomposites

Graphene is an exceptional carbon nanoparticle material or nanocarbon nanomate-
rial. Single layer graphene has a one-atom-thick nanostructure made up of hexagonal
carbon atoms [11–13]. The sp2 hybridized C-C linking gives rise to π-electron orbitals
in graphene [14–16]. The material was discovered in 2004 [17]. After that, numerous
top-down and bottom-up methods have been investigated for graphene synthesis [18–21].
Some commonly used graphene synthesis techniques include graphite mechanical cleav-
age, graphite exfoliation, organic synthesis, chemical vapor deposition, and several other
methods [22–25]. Graphene has excellent transparency properties, allowing around 97–98%
of the light it receives to pass through it [26,27]. Due to its delocalized nanostructure,
graphene possesses an electron mobility of about 200,000 cm2 V−1 s−1 [28]. Its thermal con-
ductivity has been found to be in the range of 3000–5000 W/mK [29]. Moreover, graphene
has a tensile strength and a Young’s modulus of 130 GPa and 1 TPa, respectively [30].
Consequently, graphene is 200–300 times stronger than steel. Van der Waals forces usually
occur between graphene layers [31–33]. The outstanding structural and physical properties
of graphene give rise to technical applications in high performance nanocomposites and
in the energy, electronics, civil, and aerospace fields [34]. Among the various functional
forms of graphene, graphene oxide is considered especially important [35]. Graphene
oxide has surface functional groups such as hydroxyl, epoxide, carbonyl, carboxyl acid, etc.
Various approaches have been used for the functionalization of graphene [36]. Important
techniques for non-covalent modification [37] and covalent functionalization [38] have
been reported. In this paper, hydrothermal [39], solvothermal [40], electrochemical [41],
electrophoresis [42], and physical deposition approaches [43] are discussed. Non-covalent
functionalization usually incorporates inorganic or organic groups through aromatic stack-
ing or electrostatic or hydrophobic linking on the graphene surface [44]. The covalent
modification of graphene may involve the click chemistry mechanism [45], atom trans-
fer radical polymerization [46], or an in situ chemical deposition of nanoparticles on the
nanosheet surface [47]. Graphene oxide and reduced graphene oxide are especially impor-
tant chemically modified forms of graphene [48]. For the formation of graphene oxide, a
chemical or liquid phase exfoliation of graphite is commonly used. In the Brodie method, a
mixture of potassium chlorate/nitric acid is used to form graphene oxide from graphite [49].
In the Hummers and Offeman method, potassium permanganate, sodium nitrate, and
sulfuric acid are used to obtain graphene oxide from a graphite precursor [50]. Reduced
graphene oxide is a further modified form of graphene oxide. In this context, chemical as
well as thermal approaches have been used to convert graphene oxide to reduced graphene
oxide [51]. Both graphene and its adapted forms have been studied in order to achieve
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superior electrical conduction, thermal conduction, heat stability, and mechanical strength
of nanomaterials [52–54].

Graphene has been amalgamated with polymers to form polymer/graphene nanocom-
posites, applied for electronics [55,56], sensors [57,58], energy devices [59], etc. Vari-
ous straight forward and effective methods have been used to form polymer/graphene
nanocomposites [60]. The solvent casting or mixing technique has been commonly applied
to form the polymer/graphene nanocomposites [61]. It is a facile and cheap technique in
which polymer is dissolved in solvent. Graphene is also dispersed in solvent and mixed
with the polymer solution. Then, solution casting and evaporation lead to the formation of
nanocomposites. The solution method has been used in order to achieve fine dispersion in
thermoplastic and thermosetting matrices [29]. The melt blending or extrusion technique
has also been recognized for significantly manufacturing polymer/graphene nanocompos-
ites [62–64]. This method is simple and solvent free. Polymer and graphene are usually fed
into an extruder. In this method, a high shear rate and temperature conditions are applied.
The melt casting of nanocomposites may enhance nanofiller dispersion and nanocomposite
properties [65,66]. In situ polymerization was found to be efficient for graphene dispersion
and interaction with polymers [67]. In this method, monomers are polymerized in situ
with graphene nanofiller [68]. Examples include polystyrene, polyaniline, polypyrrole,
etc. [69–71].

3. EMI Shielding

Harmful electromagnetic fields have been continuously generated by electronic de-
vices [72]. To protect the surroundings from harmful radiations, materials with excel-
lent magnetic permeability properties have been found indispensable [73]. Traditionally,
metal and alloys have been used as electromagnetic defensive shields. However, metals
have key disadvantages of weight, formability, and corrosion, thereby, improvements are
needed to attain commercial use. Consequently, the research has shifted towards polymer-
and nanomaterial-based electromagnetic defense materials [74]. Polymeric nanocompos-
ites have advantageous physical features in order to achieve efficacy of electromagnetic
shields [75,76]. Figure 1 shows the EMI shielding mechanism. Three especially important
mechanisms may lead to radiation effectiveness, i.e., the absorption of incident radiations,
reflection of radiations, and multiple internal reflections.

In nanocomposites, the type of nanofiller, amount, and dispersion was found to be
significant for superior shielding interference [77]. In this context, the electromagnetic
shielding mechanism is investigated in the literature [78]. The shielding phenomenon
was found to be comprised of reflections and multiple reflections [79]. The uniform
nanocomposites have excellent radiation absorption properties, as compared to the ran-
domly scattered nanoparticle-based nanomaterials. The complex shielding phenomenon is
observed in the non-homogeneous nanocomposites [80–82]. Figure 2 displays the timeline
of the step-wise adopting of carbon materials for radiation protection [73]. Carbon black
was used to achieve a radiation defense during World War II. From 1941 to 1945, rubber
filled with carbon black and Aluminum flakes were used to achieve an EMI SE of 15–20 dB
in X-band [83]. Till the 1990s, graphite and carbon black were applied followed by the
use of carbon nanotubes [84]. Subsequently, since 2010, graphene has been applied as an
emergent shielding material [85]. EMI shielding nanocomposites have been efficiently used
in technological industries such as the electronics, energy devices, sensors, engineering,
automobile, aerospace, and biomedical fields [86,87].
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Figure 2. Historical background of the carbon material used in electromagnetic shielding applica-
tions [73]. Reproduced with permission from Elsevier.

The carbon nanoparticles were found to be effective in enhancing the radiation pro-
tection of polymeric nanomaterials [88]. Among these nanoparticles, graphene, graphene
oxide, carbon nanofibers, carbon nanotube, carbon black, etc., have been recurrently used
in order to achieve superior EMI shielding [89]. Magnetic nanoparticles and inorganic
and metal nanoparticles have also been used to improve the radiation defense of the
polymer-based nanocomposites [90,91]. The performance and efficiency of nanocomposite-
based radiation shielding materials is found to be directly dependent upon an improved
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nanofiller dispersion in the matrices for superior radiation absorption [92]. Moreover,
the radiation shielding mechanism usually depends on a consistent network formation
between polymers and nanoparticles, thereby enabling excellent electrical conduction [93].
Other superior nanocomposite properties are indispensable to attain high performance
nanocomposite shields, including superior heat stability, strength, as well as anti-corrosion,
for industrial applications [94].

4. Graphene Nanocomposites for EMI Shielding

Electronic devices and equipment generate harmful electromagnetic fields for sur-
roundings, living beings, and environments [95–97]. Consequently, not only the en-
tire ecosystem is disturbed, but electronic device performance is also hindered. Con-
sequently, polymer and nanocomposite materials have been developed for electromagnetic
defense [98–100]. Conducting as well as non-conducting polymers were reinforced with
nanocarbons and inorganic nanoparticles in order to achieve superior radiation shield-
ing [101,102]. In this context, the nanocarbon nanofillers were found to be more effective to
improve the EMI SE, compared with that of the inorganic nanoparticles. One major role
of nanoparticles is to increase the electrical conductivity of polymers, thereby effecting
the EMI shielding efficiency of nanocomposites [103–105]. Among carbon nanoparticles,
graphene was found to be effective to develop radiation protection shields of polymeric
nanocomposites [106,107].

Conducting polymer and graphene-based nanocomposites have the capability to im-
prove radiation absorption and electromagnetic radiation shielding properties [108,109].
Advanced electronics, microelectronics, as well as optoelectronic devices, have been de-
signed using polymer/graphene nanocomposites to achieve a strong EMI defense [110–112].
Polyaniline, polypyrrole, and polythiophene are often used as important conducting poly-
mers. Polyaniline is the most frequently used conjugated polymer for EMI shielding.
Several research efforts were performed on polyaniline- and graphene-based nanocom-
posites [113]. For example, a moderately high EMI SE of 20 dB has been reported for
these nanocomposites [114]. Shen and researchers [115] fabricated polymer/graphene
nanocomposite design for superior radiation shielding properties. The EMI dB of ≥20 dB
was observed in the frequency range of 5.4 to 59.6 GHz. Superior electromagnetic inter-
ference shielding properties were achieved due to the high electrical conductivity and
matrix-nanofiller associations. Khasim [116] and colleagues reported para-toluene sul-
phonic acid-doped polyaniline and graphene nanoplatelet-based nanocomposites. The
para-toluene sulphonic acid-doped polyaniline/graphene nanoplatelet nanocomposite
revealed excellent shielding efficiency of >95% at 10 wt.% nanofiller addition. The material
thickness was adjusted at ∼1.5 mm. The modified polyaniline and graphene nanoplatelets
developed interconnecting network structures due to π-π stacking, thereby enabling high
electron mobilization, charge density, and radiation shielding properties. The doping of
polyaniline also improved the electron conduction of polyaniline by many folds. Figure 3
displays the variations in electrical conductivity versus the changing frequency. High
nanofiller contents possess more graphene nanoplatelet galleries for incorporating aniline
monomers, thereby causing in situ polymer formation. Consequently, the electrical conduc-
tivity of the nanocomposites was improved with nanofiller loading. Figure 4 illustrates the
influence of nanofiller on real and imaginary parts of the dielectric constant of radiation
shielding material. Accordingly, the complex permittivity real part was increased from 18.4
to 23.2, and the complex permittivity imaginary part was improved from 14 to 21.8.
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Polythiophene has also been applied to form EMI shielding materials due to superior
electrical conductivity properties [117–119]. However, it is a less explored polymer than the
polyaniline and polypyrrole matrices. The polythiophene-derived nanocomposites had an
EMI shielding efficiency of ~44 dB, along with 99% absorption at 11.65 GHz. The EMI shield-
ing efficiency of polythiophene-based materials was improved due to conducting compo-
nents in the nanocomposite, thereby resisting the undesirable radiations [120]. Furthermore,
the thickness, magnetic features, as well as the electrical permittivity/permeability of poly-
thiophene based shields were considered especially significant factors [117]. The shielding
mechanism was found to be dependent on the absorption of incident radiation via magnetic
or electric dipole formation. Guo and co-workers [121] reported polythiophene/graphene
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nanocomposites having excellent EMI shielding properties. In these nanocomposites, inter-
actions and interface development among conducting polymer and graphene influenced
the EMI shielding behavior of the resulting materials.

In addition to conjugated polymers, non-conducting materials have gained research
interest in achieving high performance EMI shielding properties [122–124]. Especially, ther-
mosets (such as epoxy resin) and a range of thermoplastics have been investigated for radi-
ation shielding applications [125–127]. Hence, non-conducting polymers have been applied
to enhance material properties using nanofillers [128]. In this context, nanofillers were indis-
pensable to generate conductivity and shielding properties in the matrices. Wei et al. [129]
developed poly(methyl methacrylate-butyl acrylate)- and poly(styrene-butyl acrylate)-
based nanocomposites reinforced with sulfonated graphene nanofiller. The poly(methyl
methacrylate-butyl acrylate)/sulfonated graphene nanosheets and poly(styrene-butyl acry-
late)/sulfonated graphene nanosheets nanocomposites have π-π stacking, thereby en-
abling a well-compatible interface. Transmission electron microscopy images of sulfonated
graphene nanosheets, poly(methyl methacrylate-butyl acrylate)/sulfonated graphene
nanosheets, and poly(styrene-butyl acrylate)/sulfonated graphene nanosheet nanocompos-
ites are shown in Figure 5. The 3 wt.% nanofiller reinforcement was used in the nanocom-
posites. Neat sulfonated graphene nanosheets revealed a homogeneous structure, along
with few micro-wrinkles. On the other hand, poly(methyl methacrylate-butyl acrylate)
and poly(styrene-butyl acrylate) matrices can be seen coated on the sulfonated graphene
nanosheet surface in the nanocomposite samples. The polymer layering on nanofiller
nanosheets was attributed to π-π stacking interactions and interface formation. Figure 6
demonstrates the EMI SE of a poly(styrene-butyl acrylate)/sulfonated graphene nanosheet
nanocomposite reinforced with 25 wt.% nanofiller contents. The EMI SE was increased
with the changing material thickness. The 0.05-mm-thick nanocomposite nanosheet caused
an EMI SE of 21.5 dB (11.35–12.35 GHz). Consequently, increasing the shield thickness to
1.8 mm significantly improved the EMI SE, up to 80 dB.
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Figure 5. TEM images of (a) S-GNS; (b) P(St-BA)/S-GNS-3 wt.% nanocomposite latex [129].
S-GNS = sulfonated graphene nanosheets; P(MMA-BA) = poly(methyl methacrylate-butyl acrylate);
P(St-BA) = poly(styrene-butyl acrylate); red arrows = wrinkled structure of graphene; blue dotted
circles = latex particles. Reproduced with permission from Elsevier.

Hamidinejad and co-workers [130] investigated the design of a polyethylene/graphene
nanoplatelet nanocomposite through an injection molding method. The nanocomposites
were found suitable for EMI shielding. The inclusion of a graphene nanoplatelet in the
matrix improved the interfacial interactions, thereby enhancing the particle dispersal. Con-
sequently, a low percolation threshold and excellent electron conduction, as well as EMI SE,
were observed. The electromagnetic shielding was observed due to multiple reflections
in the dispersed graphene nanoplatelet nanocomposites. Accordingly, superior interfacial
interactions between the polyethylene and graphene nanoplatelet improved the electrical
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conductivity and dielectric properties, as well as the permittivity of the nanocomposites.
Consequently, these effects enabled a considerably high EMI SE of 31.6 dB for 19 vol.%
graphene nanoplatelet-filled nanocomposites.
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Figure 6. (a) EMI SE values of P(St-BA)/S-GNS-25 wt.% nanocomposites with different thickness;
(b) SE Total, SEAbs, and SERef or various thickness at 9 GHz [129]. P(St-BA) = poly(styrene-butyl
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Anderson and co-workers [131] investigated epoxy/graphene nanoplatelet nanocom-
posites. Superior electrical conductivity, dielectric, and permittivity features of the nanocom-
posites were found to be dependent on the formation of a compatible interface and mu-
tual interactions. These properties were studied using numerical solutions to Maxwell’s
equations. Moreover, interactions between the matrix and nanofiller directly affected
the nanofiller dispersion. Superior nanofiller dispersion developed interfacial areas in the
nanocomposite. Consequently, the EMI shielding properties of the ensuing nanocomposites
were significantly enhanced.

Pavlou and colleagues [132] fabricated poly(methyl methacrylate) and graphene
nanolaminate-derived nanocomposites. The mutual interactions and interface develop-
ment improved the EMI SE of the nanocomposites. Figure 7 shows the radiation shielding
effectiveness of the poly(methyl methacrylate) nanocomposite, with 0.33 vol.% graphene
nanolaminates. The nanocomposite, developed with a 33 µm thickness, gives rise to an
EMI SE of 60 dB at a 2 THz frequency. According to the research, the enhancement in
thickness shields enabled an excellent EMI SE of the nanocomposites. Consequently, the
EMI SE was enhanced up to 3 × 105 dB. Hence, the significantly high value of shielding
effectiveness obtained was comparable to the metallic shields for radiation defense.

Lakshm et al. [133] fabricated the poly(vinyledene fluoride) and graphene quantum
dot-derived nanomaterials. Pristine poly(vinyledene fluoride) had an EMI SE of 0 dB, which
considerably improved to 31 dB (at 8 GHz) in the poly(vinyledene fluoride)/graphene
quantum dot nanocomposite. The radiation protection mechanism was found to be de-
pendent upon the efficient reflection and absorption of radiation caused by the electrical
charge flow at the compatible interface. Accordingly, a superior dielectric constant and
EMI SE were observed due to fine graphene quantum dot dispersion. Table 1 presents
poly(methyl methacrylate) [134], poly(dimethyl sulfoxide) [135,136], poly(vinylidene fluo-
ride) [137], polyaniline, polyimide/polyaniline [138,139], polyurethane [140], epoxy [140],
and graphene nanofiller-based systems for EMI SE performance. All these nanomate-
rial systems possess fine nanofiller dispersion and interface formation, thereby enabling
excellent electrical conductivity and radiation shielding properties of the nanocomposites.
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Table 1. Electrical conductivity and electromagnetic interference shielding of graphene-derived
nanocomposites.

Matrix Nanofiller Electrical
Conductivity

Electromagnetic Interference
Shielding (EMI SE) (dB) Ref.

Polyaniline Graphene 490.3 S cm−1 21.3 [138]

Polyimide/Polyaniline Graphene 490.3 S cm−1 16.4 [134]

Polyimide/Polyaniline Graphene/Fe3O4 2.5 S cm−1 32.4 [139]

Polyamide 6 Graphene 29.6 S·m−1 41.8 [141]

Polyurethane Graphene 460.0 S cm−1 30.7 [140]

Poly(vinylidene fluoride) Graphene 0.015 S cm−1 32.5 [137]

Poly(methyl methacrylate) Graphene 0.013 S cm−1 47.5 [134]

Poly(methyl methacrylate) Reduced graphene 0.0292 S cm−1 43.4 [134]

Poly(methyl methacrylate) Reduced graphene 0.0015 S cm−1 26.2 [134]

Poly(dimethyl sulfoxide) Graphene/Fe3O4 25 S cm−1 249 [135]

Poly(dimethyl sulfoxide) Graphene 0.20 S cm−1 54.4 [136]

Epoxy Reduced graphene oxide 3.87 S cm−1 55.0 [140]

5. Interfacial Interactions in Polymer/Graphene Nanocomposites

Due to superior electron conduction properties, carbon nanoparticles such as
graphene [142,143] and carbon nanotube [144,145] have been applied as nanofillers in
EMI shielding materials. These nanofillers can easily form interconnecting networks in
the polymer matrices [146–148]. In addition, carbon nanofillers have fine dispersions in
the matrices due to interface formation, thereby enabling high electrical conductivity and
radiation shielding properties [149]. The formation of a compatible interface between
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the polymer and graphene was found to be useful for enhancing radiation protection
characteristics [150]. Covalent interactions between the matrix and nanofiller play an
especially important role in the formation of compatible nanocomposites [151]. In addition,
non-covalent interactions, such as π-π stacking and van der Waals forces, have also been
observed [152]. Due to the sp2 hybridized nanostructure, graphene developed π-π stacking
interactions with the polymers [153]. These interactions improved the electron conduc-
tion, radiation shielding, mechanical robustness, and heat stability properties. Ma and
co-workers [154] reported covalently linked polymer- and graphene-derived nanomaterials.
The covalent linking as well as the aromatic stacking interactions enabled compatible
interface formations, thereby improving the mechanical characteristics. Adding a graphene
nanofiller in polymer also improved Young’s modulus and fracture toughness by 84.6%
and 47.7%, respectively. Shen and researchers [155] developed epoxy/graphene oxide
nanocomposites and reinforced them in the polycarbonate matrix. The mutual interactions,
interface formation, and effect on the nanocomposite properties have been explored. In-
terfacial interactions between polymer and nanofiller have been considered important for
the formation of strong covalent bonding or crosslinking. Figure 8 demonstrates covalent
linking among the diglycidyl ether of bisphenol A and graphene oxide through a grafting
to approach. The covalent bonding was established between the epoxide functionalities
of epoxy resin and the carboxylic acid groups of graphene oxide, thereby enabling strong
interface bonding. The formation of a polycarbonate/epoxy/graphene oxide nanocom-
posite is given in Figure 9a. The epoxide and hydroxyl groups of epoxy/graphene oxide
developed covalent linking with the polycarbonate matrix. Consequently, the covalent
linking of epoxy to graphene oxide and polycarbonate gives rise to the formation of a
well-compatible interface and interfacial interactions. Figure 9b–d presents scanning elec-
tron microscopy micrographs of a polycarbonate/epoxy/graphene oxide nanocomposite.
Graphene oxide strongly interacted with the polymer matrix through interactions for fine
dispersion properties. Graphene oxide aggregation was supposed to prevent the interfacial
covalent interactions between polymers and graphene oxide. Accordingly, the significance
of interfacial interactions in polymer/graphene or graphene oxide has been analyzed.
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6. Value of Graphene Nanocomposites in EMI Shielding

Continuous research gives rise to the technologically advanced composite materi-
als [156]. Consequently, polymers and nanocomposites have been used to attain EMI SE
performance [157]. These polymeric materials and nanocomposites revealed fine mor-
phology, electrical conductivity, dielectric/magnetic features, mechanical strength, heat
stability, as well as corrosion resistance characteristics. The polymers were reinforced with
carbon nanofiller-like graphene, graphene derivatives, and carbon nanotubes to improve
the EMI shielding efficiency [158]. However, metal nanoparticles and inorganic nanofillers
have also been reported as polymer reinforcements for EMI SE features [159,160]. In this
context, it was essential to study and understand the mechanism of radiation shielding
materials [161].

As discussed in the above sections, both conjugated and non-conjugated polymers
have been used to form nanocomposites with graphene and graphene derivatives. The con-
jugated polymers (polyaniline, polythiophene, etc.), thermosets (epoxy), and thermoplastic
polymers (polyethylene, poly(methyl methacrylate), etc.) have been used as matrices for
graphene nanofillers, thereby forming polymer/graphene nanocomposites [162]. The EMI
shielding properties of graphene-derived nanocomposites were found to be dependent on
the material design, electrical conductivity, matrix-nanofiller interactions, as well as the
fabrication method and parameters [163]. In high performance nanocomposites, polymer
and graphene together form an interconnected network, thereby improving the electron
mobility and radiation shielding [164]. The cooperative effect of graphene and polymer
matrices enabled high performance shielding materials. Functional graphene or modified
graphene usually has excellent compatibility with the polymer matrices. Graphene ox-
ide is a modified form of graphene effectively used with polymers to achieve improved
EMI shielding properties. The radiation defense can also be enhanced by using efficient
polymer-based designs, as well as through suitable synthesis approaches. Using modified
polymer and nanocomposite can improve the overall material performance. Furthermore,
the performances of polymer/graphene nanomaterials in EMI devices can be improved
through altering the design and processing parameters of these materials [165].
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The future of graphene-based materials depends upon understanding the EMI mecha-
nism, design and fabrication strategies, nanofiller modification, nanofiller amount, nanopar-
ticle dispersion, interactions, and morphological properties [166]. Consequently, controlling
these parameters can enable improved electromagnetic absorption features of the advanced
polymer- and graphene-based nanomaterials. The contents and dispersion of graphene
and graphene derivatives were found to be crucial to form homogeneous nanocomposites
enabling excellent conductivity and EMI shielding properties. Fine graphene dispersion
was found to be indispensable to attain advanced radiation defense nanomaterials. Us-
ing two or more polymer blends can also cause improved EMI SE performance. For
example, blends of conducting polymers with thermosets or thermoplastics have been ap-
plied [167]. Another important factor is the adjustment of the thickness of radiation shields
for superior electromagnetic protection features [168]. In this context, the formation of
three-dimensional graphene-based nanoarchitectures can also enhance electron transporta-
tion, radiation defense, and other physical properties of the nanostructures [169]. In the
future, advanced systems can be developed using eco-polymers and graphene nanofillers,
thereby forming environmentally friendly EMI shielding equipment [170]. In this manner,
highly efficient future polymer- and graphene-derived nanocomposites can be used for
superior electromagnetic shielding effects [171].

7. Conclusions

In this literature overview, polymer- and graphene-derived nanocomposites have
been discussed, ranging from their EMI shielding phenomenon to fundamentals, and
radiation shielding effectiveness. The polymer- and nanocarbon-based nanomaterials
were found to be excellent alternatives to metal-based radiation shields due to their low
density, fine durability, superior electrical conductivity, as well as their high radiation
protection. Both conducting and non-conducting matrices have been applied along with
graphene- and graphene derivative-based nanofillers. Furthermore, graphene-derived
nanocomposites possess fine processing, controllable thickness, and superior radiation
absorption properties. The polymer/graphene nanocomposites have been effectively
utilized due to their low price, excellent electrical conductivity, dielectric, permittivity,
as well as their EMI SE features. In this context, it is especially important to design a
polymer/graphene interface to improve the EMI shielding effectiveness. High performance
nanocomposites were produced due to the synergistic effects of graphene, graphene oxide,
and modified graphene with polymers and their mutual interactions. Moreover, significant
factors governing the electric, magnetic and shielding properties include the nanofiller
functionality, concentration, dispersion, overall material morphology, along with physical
properties (electrical, thermal, mechanical, corrosion). The synchronization between the
conductivity and permittivity of nanocomposites was found to be useful to enhance the
shielding properties. Hence, this article highlights the research and developments of
polymer- and graphene-based nanocomposites towards advanced EMI shielding materials.
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