
Citation: D’Amore, A.; Grassia, L.

The Fatigue Response’s Fingerprint

of Composite Materials Subjected to

Constant and Variable Amplitude

Loadings. J. Compos. Sci. 2024, 8, 11.

https://doi.org/10.3390/jcs8010011

Academic Editor: Jacques Lamon

Received: 15 October 2023

Revised: 15 November 2023

Accepted: 14 December 2023

Published: 27 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The Fatigue Response’s Fingerprint of Composite Materials
Subjected to Constant and Variable Amplitude Loadings
Alberto D’Amore * and Luigi Grassia

Department of Engineering, Università della Campania “Luigi Vanvitelli”, Via Roma 19, 81031 Aversa, Italy;
luigi.grassia@unicampania.it
* Correspondence: alberto.damore@unicampania.it

Abstract: This paper discusses the theoretical and experimental correlations between fatigue and
static strength statistical distributions. We use a two-parameter residual strength model that obeys
the qualitative strength-life equal rank assumption (SLERA) for guidance. The modeling approach
consists of recovering the model’s parameters by best fitting the constant amplitude (CA) fatigue data
at a given stress ratio, R, and the experimental Weibull parameters of the static strength distribution
function. An extensive set of fatigue life and residual strength data for AS4 carbon/epoxy 3k/E7K8
Plain Weave Fabric with [45/−45/90/45/−45/45/−45/0/45/−45]S layups, obtained at different
stress ratios, R, have been analyzed. The modeling approach consists of recovering the model’s
parameters from pure tension or compression fatigue data at R = 0.1 and R = 5, respectively. Once
the parameters are fixed, the model’s capabilities, potential, and limits are discussed by comparing
its predictions with residual strength and fatigue life data obtained at stress ratios with mixed
tension/compression loadings, namely R = −0,2 and R = −1. Moreover, from a preliminary analysis,
the theoretical extension of the model’s capabilities to variable amplitude loadings is conceptualized.
The application of Miner’s rule is also discussed and compared with a new damage rule to analyze
the fatigue responses under variable amplitude loadings.

Keywords: fatigue; residual strength; stress ratio; damage rule

1. Introduction

The general responses of composite structures to in-service loadings depend on the
environmental conditions (temperature and humidity), the loading rate, the frequency, and
the loading sequence. Modeling procedures to simultaneously cover all these variances is a
difficult task. Moreover, the diversity of the material configurations coming from different
fiber reinforcing systems, matrices, process technologies, and lamination sequences, makes
each composite structure a unique material requiring extensive mechanical tests. Also, sta-
tistical treatments based on large data sets under static or cyclic loading conditions become
mandatory as the mechanical properties of polymer composites are broadly scattered. The
scatter is attributed to the accumulation of diffuse damage mechanisms that synergistically
develop at different lengths and time scales and are eventually triggered by existing defects,
including voids, fiber misalignments, and residual stress from the production process.

Thus, the mechanical characterization of composites still represents one of the more
expensive activities in structural applications, a requirement for which some industrial
compartments do not have the resources or time. Depending on the unicity of each com-
posite structure, the different origins and locations of the damage mechanisms, rather than
the propagation of a single crack, prevent any possibility of establishing sound inspection
and maintenance criteria, as in metals [1]. Therefore, reliable simulation techniques may
significantly reduce testing procedures. Two substantial approaches have been followed
over the years. Mechanistic/hierarchical models are based on specific failure criteria de-
pending on the length scales and the sequence/interaction of the damage mechanisms [2–6].
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However, the intricacy of damage accumulation mechanisms forces researchers to develop
phenomenological models [7–14] without providing any information about the damage
mechanisms, the events being predicted based on empirical criteria involving macrostress
components. The mechanistic and phenomenological approaches are not in contrast; the
latter are addressed to supply analytical tools to perform reliability and scatter analysis
on large databases of specific categories of composites subjected to particular loading
conditions of fully developed structures. Reifsnider’s “Critical Element Model” [3,4], based
on micromechanical representations of strength at increasing length scales, and the “Gener-
alized Material Property Degradation Model” implemented by Shokrieh and Lessard [5],
belong to the same model category, representing an intermediate level of modeling the
fatigue process between phenomenological and mechanistic approaches. In both cases, the
phenomenological models from the macro level are combined with failure criteria and prop-
erty degradation rules. However, neither Reifsnider’s nor Shokrieh and Lessard’s models
account for the highly stochastic behavior observed in the fatigue life of composites, a
prerogative of some phenomenological modeling approaches. The argument was discussed
comprehensively by Vassilopoulos and Keller [9] and Philippidis and Passipoularidis [10],
where several models tested on the same set of fatigue life and residual strength data
revealed that the statistical predictions at various stress levels and life fractions were largely
unreliable. As a guide, this paper considers fatigue’s stochastic nature in composites using
a two-parameter formulation, inherently obeying the strength-life equal rank assumption
(SLERA), and explicitly accounting for the stress ratio, R [15,16].

The SLERA states that if a sample of components could be tested for static strength
and fatigue life expectancy, each member would occupy the same rank in the strength and
life data sets. However, despite its potential powerfulness, the SLERA cannot be proved
from one side, and its application to notched specimens is debated.

Based on the literature data, the reliability of the modeling procedure in predicting
the fatigue life and the residual strength kinetics of open-hole (OH) laminates will be
verified [17]. Then, its robustness is further explored for variable amplitude loadings.

2. Experimental Data

In this paper, we analyze a large set of fatigue life and residual strength data for AS4 car-
bon/epoxy 3k/E7K8 Plain Weave Fabric with [45/−45/90/45/−45/45/−45/0/45/−45]S
layups. The experimental data belong to a series of extensive campaigns under the Federal
Aviation Administration (FAA) aegis, where 384 specimens of the same material with
different geometries were subjected to various loading conditions [1].

Here, we analyze the fatigue data sets obtained on specimens subjected to tension-
tension (OHT) at R = 0, prevailing tension (OHT) at R = −0.2, pure compression (OHC) at
R = 5, and tension/compression (OHTC) at R = −1.

As a common practice in the aerospace industry, the experimental characterization
included approximately twenty-one fatigue tests performed at three stress levels, six static
and three residual strength tests, at a given stress ratio, R [1].

The OH test methods were designed to produce tensile or compressive strength
data for allowable structural design. Deeper details on materials and specimen geometry
(including hole diameter, diameter-to-thickness ratio, and width-to-diameter ratio) can be
found in Ref. [1].

The model presented in [15,16] will be recalled in what follows. Then, the procedure
for determining carbon fiber-reinforced composites’ residual strength and fatigue life is
illustrated.

3. Model Description

Our approach is based on a formulation that fulfills the following assumptions:

(i) A two-parameter Weibull distribution function represents the composites’ static strength;
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(ii) The fatigue limits seem unlikely in composite materials or irrelevant in the cycles
encountered in practical applications. Thus, every load cycle potentially damages a
composite structure and should be considered in life prediction calculations;

(iii) The residual strength, that is, the strength measured on a sample subjected to cyclic
loading under a given loading condition, slowly degrades in the first cycle’s decades
and suddenly drops toward the maximum applied stress within a narrow cycle interval.

Moreover, the model obeys the strength-life equal rank assumption (SLERA) formu-
lated by Hahn and Kim [14] and then Chou and Croman [7]: “A specimen of a certain rank
in the fatigue life distribution is assumed to be equivalent in strength to the specimens of
the same rank in the static strength distribution”.

In addition, the fatigue formulation described below simultaneously analyzes fatigue
and static strength data, provided the loading rates used to measure the static strength are
comparable with those in fatigue. This aspect will be discussed in what follows.

Our fatigue life formulation that was first developed was:

σ0 = σmax

[
α(1− R)(Nβ − 1

)
+ 1
]

(1)

where N is the number of cycles to failure, σmax the maximum applied cyclic stress,
R = σmin

σmax
, σ0 is the static strength, and α and β are the model’s parameters obtained

by best fitting the fatigue data through Equation (1), which is rearranged as follows:

σmax =
σ0[

α
(

Nβ − 1
)
(1− R) + 1

] (2)

We recall that the monotonic material strength, σ0, is well represented by a two-
parameter Weibull distribution. Therefore, the probability of finding a σ0 value ≤ x is
given by:

Fσ0(x) = P(σ0 ≤ x) = 1− exp
[
−
(

x/γ)δ
]

(3)

where γ is the scale parameter or the characteristic strength and δ is the shape parameter.
Indeed, in Equations (1) and (3), the original strength of the virgin samples, fatigued

until failure at cycle N, can be recovered, and it should coincide with the statistical distribu-
tion of static strength, σ0.

Furthermore, by coupling Equations (1) and (3), one obtains:

FN(N
*) = P

(
N* ≤ N

)
= 1− EXP

−
σmax

[
1 + α

(
Nβ − 1

)
(1− R)

]
γ

δ
 (4)

Equation (4) represents the probability of finding an N* ≤ N; namely, the Weibull
distribution of cycles to failure at a given σmax and R, the scatter in fatigue life exhibited
by different samples conforms to the variability in monotonic strength. Thus, in principle,
Equation (4) obeys the strength-life equal rank assumption (SLERA) [7,14] and accounts for
the stochastic nature of strength and fatigue life. By solving Equation (3) for N*, one obtains:

N = β

√
1 +

1
α(1− R)

{
γ

σmax

∣∣∣ln[1− FN

(
N*
)]∣∣∣ 1

δ − 1
}

(5)

where the classical S-N curve for a fixed probability of failure FN(N∗) can be calculated
given the stress ratio, R.
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Concerning the residual strength, once the parameters α, β, γ, and δ are known,
according to the developments already shown in [18], the following distribution function
can represent the strength evolution with cycles:

F
[
σ(n) ≥ σ

(
N*
)]

=
σni − σmax

σONi − σmax
= EXP

−
[
σmax

[
1 + α

(
nβ − 1

)
(1− R)

]
γi

]δ (6)

In Equation (6), σni is the strength of a sample fatigued n ≤ N cycles under a given
σmax and R; σONi is the virgin strength of the sample with a given rank in the nominal
static strength distribution function. Thus, Equation (6) describes the residual strength
of a generic sample, σni , as it degrades progressively from its virgin value, σONi, to the
maximum cyclic stress, σmax, where failure occurs. Equation (5) can also be used to describe
the statistics of the residual strength experimentally obtained at a given number of cycles,
n, given σmax and R.

Incidentally, rearranging Equation (5), when σn ∼= σmax and n ∼= N, namely in the
vicinity of failure, Equation (1) is recovered as follows:

[
−ln

σni − σmax

σONi − σmax

] 1
δ

=
σmax

[
1 + α

(
Nβ − 1

)
(1− R)

]
γ

∼= 1 (7)

Equation (7) confirms that the fatigue life predictions, namely Equations (1) and (2),
can be regarded as an extreme case of the residual strength model, according to Chou and
Croman [7].

4. Results and Discussion

The fatigue life data of open-hole tension (OHT) and compression (OHC) samples at
different stress ratios, R, are reported in Figure 1. The data at R = 0 and R = 5 are analyzed
using Equation (1), allowing, by least square methods, the calculation of the two model’s
parameters under pure tension and compression; namely, αt = 0.074 and βt = 0.160 and
αc = 0.127 and βc = 0.174, respectively.

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 4 of 13 
 

 

F σ(n) σ(N∗) = = EXP −   ( )
   (6)

In Equation (6), 𝜎  is the strength of a sample fatigued n ≤ N cycles under a given 𝜎  and R; 𝜎  is the virgin strength of the sample with a given rank in the nominal 
static strength distribution function. Thus, Equation (6) describes the residual strength of 
a generic sample, 𝜎   , as it degrades progressively from its virgin value, 𝜎  , to the 
maximum cyclic stress, 𝜎  , where failure occurs. Equation (5) can also be used to 
describe the statistics of the residual strength experimentally obtained at a given number 
of cycles, n, given 𝜎  and R. 

Incidentally, rearranging Equation (5), when 𝜎   𝜎   and n ≅ N, namely in the 
vicinity of failure, Equation (1) is recovered as follows: −ln =   ( )

 1  (7)

Equation (7) confirms that the fatigue life predictions, namely Equations (1) and (2), 
can be regarded as an extreme case of the residual strength model, according to Chou and 
Croman [7].  

4. Results and Discussion 
The fatigue life data of open-hole tension (OHT) and compression (OHC) samples at 

different stress ratios, R, are reported in Figure 1. The data at R = 0 and R = 5 are analyzed 
using Equation (1), allowing, by least square methods, the calculation of the two model’s 
parameters under pure tension and compression; namely, αt = 0.074 and βt = 0.160 and αc = 

0.127 and βc = 0.174, respectively.  

 
Figure 1. Model predictions of fatigue life at different loading ratios, R, as indicated in the inset. The 
experimental data are taken from Ref. [1]. 
Figure 1. Model predictions of fatigue life at different loading ratios, R, as indicated in the inset. The
experimental data are taken from Ref. [1].



J. Compos. Sci. 2024, 8, 11 5 of 12

According to the proposed procedure, the fatigue data under prevailing tension,
namely R = −0.2, are predicted with the model’s parameters αt and βt. Moreover, de-
spite the arithmetic symmetry of the stress ratio, the compression damage mechanisms
developing at R = −1 prevail, with higher loading severity in compression, given that the
distance from the static strength in compression is lesser than the counterpart in tension.
Consequently, the data at R = −1 will be predicted with the parameters already obtained
under pure compression, namely αc and βc.

In Figure 1, the model predictions at R = −0.2 and R = −1 show that the fatigue data
fall reasonably on the predicted curves. As shown above, Weibull’s and model parameters
are easy to obtain and remain fixed in predicting fatigue beyond the experiments. Thus, no
adjustments will be allowed in what follows. We only mention that the stress ratio, ROHC,
is normalized in modeling compression-dominated fatigue data. For instance, at ROHC = 5,
R = 1

ROHC
= 0.2 in Equation (1).

The deterministic nature of Equation (1) was converted to its statistical counterpart by
applying the strength-life equal rank assumption (SLERA); namely, a longer fatigue life
belongs to specimens exhibiting a higher static strength. To substantiate this statement,
Equation (1) was solved for σ0 in Ref. [15]:

σ0 = σ0N = σmax

[
α(1− R)(Nβ − 1) + 1

]
(8)

Equation (7) states that the static material strength, labeled by the symbol σ0N to
identify the calculated virgin strength, which can be evaluated from the fatigue data,
coincides with the Weibull distribution of the measured strength, namely σ0 = σ0N. Thus,
in Equation (8), the nominal static strength distribution, σ0N, of the samples subjected to
fatigue until failure can be recovered and reported in Figure 2 for OHT at R = 0 and OHC
at R = 5. The corresponding experimental static strength data set, also reported in Figure 2,
appears well described in both cases. According to a two-parameter Weibull statistical
distribution, the nominal strength’s scale and shape factors are γt = 302 MPa and δt = 53
and γc = 281 MPa and δc = 61, respectively.
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It is worth mentioning that the application of Equation (7), namely the superposition
of the experimental and calculated static strength, as shown in Figure 2, is subjected to well-
defined conditions [17]. The literature frequently reports that static strength is measured
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at loading rates much lower than fatigue, or no information is given on the loading rates
adopted to measure it. In those cases, the fatigue life model’s parameters, Equation (1), are
obtained by excluding the static data. This argument has been largely debated so far [18].
The discussion is of primary importance in polymer-based composites where the matrix’s
viscoelastic nature is dominant at low fiber content. The loading rate also influences the
kinetics of damage accumulation since higher loading rates give rise to higher strength and
longer life expectancy. Therefore, scaling procedures are needed when high frequencies
are used to minimize the experimental characterization time to predict the responses of
composite structures eventually subjected to lower in-service loading frequencies. This
aspect is strictly connected with the random loading that composite structures may suffer
during their service life. From above, it comes out that the complexity of fatigue response
under CA loadings, including the SLERA assumption, can only be managed with coherent
data sets and that models predicting the VA response have far to come [19,20]. For instance,
the loading rate, LR, in fatigue can be approximated by the following equation:

LR = 2 ∗ ∆σ ∗ f = 2∗σmax(1− R) ∗ f (9)

where f is the loading frequency. To roughly illustrate, σmax = 250 MPa, R = 0, and f = 10 Hz
results in LR = 5000 MPa/s. Therefore, the static tests under load control for samples with
a cross-section of 12 mm2 require the application of 60,000 N/s. If the elastic modulus
along the direction of the applied load is 25,000 MPa then, under displacement control,
the strain rate is

.
ε = 0.2 s−1, and the static strength of samples with a length L = 100 mm

should be measured at a cross-head speed of 120 mm/s. However, when dealing with
high-performance carbon fiber composites, the stacking sequence consists of layers oriented
along the load direction. In those cases, the strength sensitivity to the loading rate is very
low [18–20]. For instance, the strength of unidirectional carbon fiber composites shows
negligible loading rate dependence. In all the other cases, measuring the strength as a
function of the strain rate is mandatory.

A further implication of the modeling procedure is described in Equation (4), which
shows the statistics of failure cycles given σmax and R. With the model’s parameters already
found, the experimental data at R = 0 and σmax = 240, 225, and 195 MPa, and the model’s
predictions are reported in Figure 3.
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With the relatively narrow data set available, we consider satisfying the predictions.
Not reported here, the model’s capability to replicate the experimental distribution of fa-
tigue data was verified at different stress ratios, R, with the same quality. Thus, Equation (4)
establishes a robust analytical correlation between the static strength and the fatigue distri-
bution functions.

Moreover, based on Equation (6), the statistical distribution of residual strength can
be predicted under different loading conditions. To illustrate, let us first recall that given
the loading conditions, namely, σmax and R, stronger samples will fail at a higher number
of cycles, according to the strength-life equal rank assumption (SLERA). Accordingly,
the residual strength data should remain confined between the strongest and weakest
samples’ strength degradation curves routinely taken from the extreme tails of the static
strength’s cumulative distribution function, namely when F = 0.95 and 0.05, respectively.
To this end, Figures 4–6 report the model predictions for (OHT) at R = 5, R = 0, and
R = −1, respectively. As expected, the residual strength data taken after a million cycles
are well within the domain confined between the boundaries referred to as upper and
lower bounds, describing the strength degradation kinetics of the weaker and stronger
samples. Furthermore, at R = −1, the substantial degradation mechanisms are debited
to macrostresses acting in compression and tension. However, it should be mentioned
that even if the nominal cyclic loading severity in tension and compression is the same
(|σmax| = |σmin|), the damage accumulation and strength degradation kinetics result in
compression failure. In the framework of our approach modeling, it is evident that given
σmax and R, the strength degradation kinetics depend on the “distance” from the virgin
strength, which is lower in compression than in tension for the laminate under study.
Thus, the predictions at R = −1 use the scale and shape factors, γ and δ, of the cumulative
distribution function coming from the calculations based on Equation (1) applied to the
pure compression data, namely R = 5. Such deliberate approximation is proof of the
approach’s robustness, even if deeper insight can be obtained by recovering the shape and
scale factors from the data at R = −1 using Equation (8). Herein, we are proposing a general
procedure that at first glance appears promising. Furthermore, it is worth mentioning that
in Equation (6), describing the continuous upper and lower bound curves in Figures 4–6
delimiting the pertinent residual strength domain, the parameters αc, βc, γc, and δc are
already fixed and come from a different data set, while n is the running variable. Thus, the
procedure so far illustrated is entirely predictive.
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In summary, the fatigue life, the statistical distribution of cycles to failure, and the
residual strength can be managed simultaneously through a single set of parameters,
namely α, β, γ, and δ, provided that the sign of the prevailing macrostress is recognized.
For instance, in composites, the dominant fracture occurs in compression when R = 5 and
R = −1, where both tension and compression stresses are in play.

It should be underlined that only two of the four parameters come from the fitting
procedure, namely α and β, while γ and δ come from the experimental statistical distri-
bution of strength data. In the framework of our approach, the four parameters represent
the material’s fingerprint, even limiting our discussion to the experimental data obtained
under constant amplitude loading. A different story and complexity emerge when random
loadings are in play. To this end, a preliminary approach is proposed to circumvent the com-
plexity of fatigue response under variable amplitude loadings. The discussion is confined to
the simplest case of two-block loading. The blocks have different durations, namely 50,000
and 5000 cycles, and loading is performed at constant amplitude at a given stress ratio, R,
and different maximum applied stress, σmax = 170 MPa and σmax = 152 MPa, respectively,
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as depicted in Figure 7, where the schematic of high-to-low (H–L) and low-to-high (L–H)
loading sequences is reported.
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The sequence is arbitrary, yet it allows discussing Miner’s rule for damage accumula-
tion in detail when variable amplitude loadings are in play. Symbolically, Miner’s rule can
be expressed as:

D = ∑i
ni

Ni
(10)

where ni is the number of cycles elapsed under a given CA loading condition and Ni is the
number of cycles to failure under the same loading condition. For the case under study,
the number of cycles to failure was N(σmax1) ≈ 105 and N(σmax2) ≈ 106, respectively, and
the damage calculated by Miner’s rule is D ≈ 0.1, regardless of the loading sequence, as
expected. In Figure 8, the strength degradation path for the H–L sequence is schematically
described. Starting from the normalized mean static strength, i.e., σr/σ0 = 1, the strength
degrades following the baseline degradation curve at higher applied maximum stress,
σmax1, until the end of the first loading block when n1 = 5000. The second block starts with
the strength reached at the end of the first block and from the adjourned number of cycles,
n′. The strength degradation proceeds for n2 cycles following the degradation curve at
lower stress, σmax2. Similarly, the response to the ascending L–H sequence is illustrated in
Figure 9.
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The effect of the loading sequence can be quantified employing the damage, D, accu-
mulated within the materials [18,19], defined as follows:

D = ∑k
i=1


(

σir − σ(i+1)r

)
(σ0 − σmaxi )

 (11)

where
(

σir − σ(i+1)r

)
is the residual strength variation under the i-th loading block charac-

terized by σmaxi and Ri, and (σ0 − σmaxi ) is the total degradation extent under the same
loading condition. The defined damage is compared with the one calculated by Miner’s
rule, and the data are reported in Table 1.

Table 1. The damage accumulation predictions based on Miner’s rule and Equation (10).

Miner’s Rule Equation (10)

H–L sequence 0.1 0.63

L–H sequence 0.1 0.65

Our results evidence the fault of Miner’s rule. First, it cannot discriminate the loading
sequence; secondly, the accumulated damage appears highly unconservative. Nonetheless,
Miner’s rule is still used in a series of commercial software and as a reference for predicting
the damage accumulation with different formulations [20]. Our approach discriminates
the loading sequence, and the predicted damage is at least more conservative regarding
Miner’s rule.

Finally, the utterly arbitrary loading sequence adopted herein allows the use of our
approach cycle-by-cycle for random loadings.

5. Conclusions

A statistical model is needed to predict the stochastic responses of composite materials
subjected to fatigue loadings. Based on strength degradation, a phenomenological two-
parameter model has been used to predict the residual strength and fatigue life of open-hole
(OH) carbon/epoxy laminates subjected to different loading conditions from pure tension
to compression and mixed tension/compression.
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The fatigue life data on samples subjected to tension and compression loadings were
used to fix the model’s parameters. Then, the procedure was applied to predict the fatigue
data under prevailing compression or tension loadings with the pertinent set of model
parameters. Predictions of fatigue life at different stress ratios and residual strength are
excellent, given the limited number of parameters in play.

• Our modeling approach allows for establishing an analytical correlation between the
statistics of static strength and the number of cycles to failure based on fixed parameters.

• Based on two-block loadings, it was highlighted that the damage accumulation mech-
anisms show different kinetics, depending on the loading sequence. This aspect
is reflected (even if not strictly correlated) in the strength degradation kinetics and
implies the possibility of considering our model parameters as the material fingerprint.

• The approach seems quite promising since under uniaxial loadings, a single set of
parameters is required in tension or compression and used at different loading ratios,
and R provides the dominant strength in tension or compression that is accounted for.

• Miner’s damage rule is critically discussed, highlighting our approach’s conservative
characteristics and reliability.
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