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Abstract: The nanocrystalline bismuth oxide (Bi2O3) was produced utilizing a green combustion
process with Mexican Mint gel as the fuel. The powder X-ray diffraction (PXRD) method proved the
nanocrystalline nature and Bi2O3 nanoparticles (BONPs) in α phase and the average crystalline size
of BONPs nanoparticles has been found to be 60 nm. The spherical-shaped structure with bright
dot-like spots in the center of the selected area diffraction (SAED) is confirmed by the scanning
electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDAX) in conjunction with
the transmission electron microscopy (TEM) and high-resolution transmission electron microscopy
(HRTEM) demonstrating the crystalline behavior of green NPs. The Kubelka-Monk function was
used to analyze diffuse reflectance spectra, and the results revealed that BONPs have a band gap
of 3.07 eV. When utilized to evaluate the photocatalytic capabilities of NPs, the direct green (DG)
and fast orange red (F-OR) dyes were found to be activated at 618 and 503 nm, respectively. After
120 min of exposure to UV radiation, the DG and F-OR dyes’ photodegradation rate reduced its
hue by up to 88.2% and 94%, respectively. Cyclic voltammetry (CV) and electrochemical impedance
techniques in 0.1 N HCl were used to efficiently analyze the electrochemical behavior of the produced
BONPs. A carbon paste electrode that had been enhanced with BONPs was used to detect the glucose
and uric acid in a 0.1 N HCl solution. The results of the cyclic voltammetry point to the excellent
electrochemical qualities of BONPs. Bi2O3 electrode material was found to have a proton diffusion
coefficient of 1.039 × 10−5 cm2s−1. BONP exhibits significant potential as an electrode material for
sensing chemicals like glucose and uric acid, according to the electrochemical behavior.

Keywords: Bi2O3 nanoparticles; Mexican Mint; green combustion; cyclic voltammetry; glucose; uric acid

1. Introduction

Bismuth is a p-block transition metal, a non-hazardous naturally occurring environ-
mentally friendly element. When it comes to human health, bismuth has a number of
positive impacts. Bismuth salts are used to treat diarrhea, peptic ulcer disease, and gas-
trointestinal diseases. The unique properties exhibited by α-Bismuth Oxide nanoparticles
(α-BONPs) render them highly significant to the field of nanomaterials. α-BONPs are an
appealing choice for a range of applications due to their environmental-friendliness and
non-toxicity, in contrast to other hazardous materials Additionally, the combination of
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bismuth with other nanomaterials or the development of bismuth-based composites could
enhance its performance in some applications. Due to the aforementioned use, researchers
are drawn to concentrating emphasis on this component in the field of nanomaterials. It
can be incorporated into nanocomposites with other nanomaterials to enhance or impart
specific properties due this bismuth oxides may be suitable for photo degradation of dyes
and sensing applications.

This may include combinations with other metals, metal oxides, or carbon-based
nanomaterials to improve electrical, catalysis, and energy storage devices [1]. The multi-
functionality of α-BONPs is underscored by their utilization in nanocomposites, includ-
ing ZnO/MgO/Fe2O3, which demonstrates their efficacy in the process of adsorption
to eliminate pollutants. This development has far-reaching implications for the field of
nanotechnology, including but not limited to environmental remediation and advanced
technological applications. Several nanomaterials such as Zno, TiO2 and Mn + Cu bimetallic
composites have been studied for photocatalytic and electrochemical sensing [2,3].

Bismuth oxide is a versatile material that works effectively for a wide range of sig-
nificant applications, which include catalysts, energy storage, gas sensors, optical coating,
solar cells, antibacterial, anticancer, antioxidant, antifungal, and enzyme inhibitory charac-
teristics. Their outstanding biological applications [4–6] are due to their unique electrical,
catalytic, magnetic, and optical capabilities [7–11]. There are six polymorphic forms of bis-
muth oxide, which are known as Bismuth oxide α-Bi2O3 (monoclinic), β-Bi2O3 (tetragonal),
δ-Bi2O3 (face-centered cubic) γ-Bi2O3 (body-centered cubic) ω-Bi2O3 (orthorhombic) and
Bi2O3 (triclinic) [12,13].

The community of oxides like ZnO/MgO/Fe2O3 nanocomposites used as a remarkable
adsorbent material to remove harmful metal particles from polluted water had a significant
impact on the environment. These nanocomposites are activated by UV-light [14]. Bi2O3
is considered to be of the semiconductor catalysts that demonstrate efficient catalytic
characteristics for the breakdown of environmental pollutants due to its distinctive structure
and physical properties; Bi2O3 offers a high refractive index, less toxicity, wide band-gap,
high dielectric properties, and high photoconductivity enzyme inhibition properties [15–17].
The direct optical band gaps of BONPs, which range from 2.96 to 3.96 eV, make them an ideal
photocatalyst for the breakdown of pollutant dye when exposed to UV light [18,19]. Bi2O3,
a heterogeneous semiconductor, has long been recognized as one of the most efficient
photocatalysts, playing a pivotal role in modern solid-state technology. Notably, this
semiconductor generates highly reactive species that initiate oxidation reactions, leading to
the degradation of dyes [20].

Bi2O3’s capacity to oxidize dye and generate superoxide and highly reactive oxide
radicals accounts for its photocatalytic activity. Additionally, Bi2O3 has distinctive char-
acteristics at the nanoscale that could be targeted during manufacture to improve usage
in many fields [21–23]. Several existing analytical techniques are used to detect hetero-
cyclic compounds and antioxidants such as spectrophotometer [24], colorimetry [25], and
HPLC [26]. But a low-cost, highly sensitive, and user-friendly analytical method is much
needed. The electrochemical method gives high sensitivity and selectivity, compared to
other traditional methods. An electrochemical detection technique offers a variety of ben-
efits, one of the industries with the quickest growth sensors technology. Amperometric
sensors utilize the process of oxidizing or reducing an electroactive species to measure
the voltage difference between a working electrode and a reference electrode [27–30]. An
electrode alteration is typically required for a sensitive thorough examination of ascorbic
acid and uric acid concentrations in whole blood or urine samples [21,31]. For this purpose,
a carbon electrode modified with BONPs has been used. By employing modified electrodes,
it is possible to determine the sensitivity and selectivity of ascorbic acid and uric acid
substantially superior outcomes [32].

Plenty of researchers have presented several techniques for the preparation of nanopar-
ticles, by epitaxial growth [33], magnetron sputtering [34], chemical precipitation [35], solid-
state reaction [36], sonochemical route [37], hydrothermal [38] and green synthesis [39].
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In the present work preparation of Bismuth oxide utilizing Mexican Mint gel as a green
fuel in solution combustion technique is superior compared to various approaches for the
reason that it is simple to process, uses relatively low temperatures, makes it simple to
control particle size, which reduces reaction times, produces very pure and crystalline
products, and produces nanosized powder with a high specific surface area. Plant extracts
are frequently employed as sustainable and environmentally acceptable stabilizing and
reducing agents [40]. The impact of Mexican Mint gel on the characteristics of α-Bismuth
Oxide nanoparticles (α-BONPs) is an important element that deserves investigation. The
gel, when used as a green fuel in the solution combustion approach, ha60s the potential to
add distinctive organic components, surface properties, or stabilizing effects during the
production of nanoparticles. They can lower the synthesis process’s negative environmental
effects by taking the place of conventional chemical reagents. Bioactive substances found
in plant extracts have the ability to function as reducing agents, assisting in the combustion
process of metal ions into nanoparticle-sized metal particles. Furthermore, these substances
have the ability to act as stabilizing agents, which avoid agglomeration and guarantee the
stability of the resultant nanoparticles.

The widespread utilization of uric acid and glucose as model analytes in the devel-
opment and evaluation of electrochemical sensors led to their selection as analytes for
electrochemical investigations. Glucose and uric acid are frequently selected as diagnostic
and medical indicators due to their wide-ranging utility. One application of sensors that
integrate these analytes is in the monitoring of blood glucose levels in diabetics, as well
as in a wider range of medical diagnostics. In biological fluids, elevated concentrations
of uric acid and glucose may be indicative of particular medical conditions. Therefore, in
clinical diagnostics, electrochemical sensors for these analytes are indispensable because
they enable rapid and sensitive identification and quantification of the substances in blood,
serum, or urine.

The objective of this research endeavor is to perform a comprehensive evaluation of
the photocatalytic, electrochemical, and sensor characteristics of α-Bi2O3. This investiga-
tion will yield significant knowledge regarding the potential uses of the material, with a
particular focus on its implications in the field of medical diagnostics.

Moreover, the research emphasizes the significance of discussing potential interfer-
ences and the electrode’s selectivity in the context of uric acid and glucose detection. In
order to improve selectivity, emphasis should be placed on the selection of electrode mate-
rial, surface modifications, and incorporation of particular recognition elements. Potential
interferences in practical applications and the strategies employed by the sensor design to
address or mitigate these concerns should be explicitly addressed in the study. Enhancing
selectivity may be achieved through the incorporation of Bismuth Oxide nanoparticles into
the carbon electrode and analyzing the distinct electrochemical signatures of glucose and
uric acid. By conducting a comprehensive examination of potential interferences and the
electrode’s selectivity, the electrochemical sensor’s credibility and practicality in detecting
glucose and uric acid can be significantly improved.

Additionally, an in-depth assessment of the photocatalytic, electrochemical, and sensor
properties of α-Bi2O3 is made. Lastly, this study looks for ways to improve α-Bismuth Oxide
nanoparticles’ photocatalytic activity even more. This could include investigating new
green synthesis techniques, maximizing the size of nanoparticles, and adding co-catalysts to
increase the effectiveness of environmental remediation and pollutant degradation. Expand
the use of α-Bismuth Oxide nanoparticles in biomedical sensing even further. Examine their
possibilities for physiological glucose and uric acid detection while taking into account
aspects like biocompatibility, stability, and repeatability for application in wearable or
implantable biosensors.
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2. Materials and Methods
2.1. Synthesis of α-BONPs

The synthesis of BONPs by using a green fuel, Mexican Mint latex, was conducted
through the combustion method. The Mexican Mint leaves were collected from the nearby
nursery, in Saudi Arabia and 5 g of the cleaned and chopped Mexican Mint leaves were
used to create the gel, which was then dissolved in 10 mL of double-distilled water and
agitated for 30 min to create the solution. The obtained solution was used as Mexican
Mint plant-extracted fuel. In these studies, 10 mL of Mexican Mint was used as fuel, and a
stoichiometric ratio of bismuth nitrate (Sigma Aldrich St. Louis, MO, USA) was added. For
15 min, the mixture was finely agitated with a magnetic stirrer. The mixture was heated
in a muffle furnace to 250 ◦C for two hours, the gel transformed into white foam, and the
foam caught fire. The sample combustion spread throughout the volume quickly, and it
generated a yellowish powder residue. The entire process was accomplished within 5 min.
To make use of structural and other studies, the resultant product was calcined at 600 ◦C
for 2 h. Graphical representation of synthesis of BONPs is shown in Figure 1.
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Figure 1. Graphical representation of synthesis of BONPs.

Fabrication of Working Electrode

The working electrode were fabricated after about 30 min of manual grinding with
an agate mortar, graphite powder, silicon oil, and synthesized nanoparticles (α-BONPs)
in the ratio of 70:15:15 resulting the graphite in paste form. A handmade Teflon tube is
filled with the resultant graphite paste, and the tube’s surface is polished by rubbing it
against weighing paper [40]. In order to create an electrode that interacts selectively with
glucose and uric acid, we picked graphite powder in varying percentages. We then select
an optimal amount of graphite powder, which is then modified with Bi2O3 NPs.

For the electrochemical investigations, a three-electrode configuration was employed,
with a composite material consisting of 70% graphite, 15% silicon oil, and α-BONPs as the
working electrode. To measure the cyclic voltametric characteristics the electrodes were
fabricated of these composite materials and are subjected to a voltage range of −0.6 V
to +0.2 V. The oxidation and reduction potentials linked to the α-BONPs were identified
within this range. The voltage at which the oxidation reaction takes place on the surface of
the working electrode was determined to be the oxidation potential for the BONPs, which
is −0.201 V. This potential is the amount of energy needed to take electrons out of BONPs so
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that oxidized species can develop. Likewise, −0.518 V was found to represent the reduction
potential for the BONPs. The tendency of a chemical species to acquire electrons and go
through reduction at the working electrode is measured by the reduction potential. It
stands for the energy needed to give BONPs an additional electron so that reduced species
can develop.

2.2. Characterization

The crystal structure of the nanomaterial was determined using a Shimadzu X-ray
diffractometer, Nakagyo-ku, Kyoto, Japan operated at 50 kV and 20 mA with CuK radiation.
To explore its morphological properties, a JEOL JEM-2100 TEM analyzer Akishima, Tokyo,
Japan was employed. The absorption properties were studied using a Shimadzu UV-2600
instrument Nakagyo-ku, Kyoto, Japan. Additionally, the material’s optical characteristics
were analyzed using a Horiba spectrometer Minami-ku, Kyoto, Japan) at room temperature,
with a 450 W Xe-lamp (Horiba Ltd., Minami-ku, Kyoto, Japan) as the light source. Photo-
catalytic testing was conducted using a mercury vapour lamp UV light source (Horiba Ltd.,
Minami-ku, Kyoto, Japan) with a pressure of 125 W and a spherical glass reactor (Horiba
Ltd., Minami-ku, Kyoto, Japan) with a surface area of 176.6 cm2. 60 mg of the photocatalyst
sample BONPs was dissolved in 250 mL of a concentrated dye solution containing 20 ppm
double-distilled water and agitated during the experiment. In the open air, the reaction
mixture was illuminated from a distance of 23 cm. There was no obstruction of alternative
light wavelengths by any filters. Following a designated time interval of 15 min, 5 mL
of the reaction mixture was withdrawn from the dye mixture and an external magnet
was employed to eliminate the catalyst particles [41,42]. The CV tests were conducted
using a CHI608E potentiostat (De Zaale 11 5612 AJ Eindhoven The Netherlands) and a
three-electrode system consisting of a platinum wire electrode, a carbon paste electrode
(De Zaale 11 5612 AJ Eindhoven The Netherlands) (1 mm surface area), and Ag/AgCl as
the working, counter, and reference electrodes, respectively, in 0.1 N HCl at scan rates of
10, 20, 30, 40, and 50 mV/s. The potential variation from the platinum wire electrode to
the Ag/AgCl electrode ranged from −1.2 to 0.2 V. AC amplitude of 5 mV was utilized
throughout the frequency range of 1 Hz to 1 MHz for the EIS investigations.

3. Results and Discussion
3.1. PXRD Analysis

The synthesized α-BONPs were subjected to PXRD analysis at a low scan rate of
2◦ min−1 to investigate their crystal structure and the purity of the nanomaterial, the
outcomes of this analysis are illustrated in Figure 2. The obtained PXRD peaks show
2θ values of 19.74◦, 25.92◦, 27.09◦, 27.5◦, 33.4◦, 35.2◦,37.0, 46.45◦, 52.57◦, 54.9◦are correlated
to monoclinic α-Bi2O3 (020), (002), (111), (120), (200), (212), (121), (041), (−321), (−241)
highly matched with the monoclinic structure and in accordance with JCPDS card number.
71-2274 lattice planes [43]. The lattice parameters for the monoclinic structure of α-BONPs
were found to be 5:8499A◦, 8:1698 A◦, 7:5123 A◦ for a, b c respectively. In addition, α, β, γ
were found to be 90◦, 112:988◦, and γ = 90◦ respectively [44]. By substituting the values for
λ, β and θ in Debye—Scherrer’s formula (Equation (1)) [45] the crystallite size for α-BONPs
was calculated and it was noted to be ~60 nm.

D =
0.9λ

βcosθ
(1)

In the equation above, λ is the wavelength of X-rays, β represents the full width at
half maximum (FWHM) of XRD peaks.
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3.2. FTIR Analysis

FTIR spectral measurements determine the purity of a compound, as well as its
physical and chemical properties and several vibrational modes of the functional groups
of -BONPs were observed between 400 and 400 cm−1 (Figure 3). Typically, the metal-
oxygen (M-O) bending vibrational modes were discovered within a fingerprint area
(1500–400 cm−1). Peak 3655 cm−1, which is a medium-broad peak of the group O-H
extending, 1132 cm−1 is medium broad peak of group O-H bending [46]. 1359 cm−1 indi-
cating metal-oxygen bonding of (Bi-O) of the strong peak of S=O stretching, 1264 cm−1

and 1104 cm−1 strong peak of C-F stretching, and 832 cm−1 was mainly due to the Bi-O-Bi
vibration and 592 cm−1 created are due to the stretched Bi-O vibrations which shows that
metal ions were coordinating in the nanoparticles [47].

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 7 of 22 
 

 

 
Figure 3. FTIR-transmittance spectrum of α -BONPs. 

3.3. DRS Studies 
The optical properties of crystalline and nanostructured α-BONPs were investigated 

in various spectral regions between 200 and 800 nm using a UV-Vis spectrometer. The 
spectrometer beam was positioned towards the specimen’s surface in a way that the light 
can be reflected, dispersed, and transmitted through the material to be analyzed, which 
determines its optical properties. The optical properties of the α-BONPs obtained through 
UV-Vis DRS are shown in Figure 4a. 

 

Figure 3. FTIR-transmittance spectrum of α -BONPs.



J. Compos. Sci. 2024, 8, 47 7 of 21

3.3. DRS Studies

The optical properties of crystalline and nanostructured α-BONPs were investigated
in various spectral regions between 200 and 800 nm using a UV-Vis spectrometer. The
spectrometer beam was positioned towards the specimen’s surface in a way that the light
can be reflected, dispersed, and transmitted through the material to be analyzed, which
determines its optical properties. The optical properties of the α-BONPs obtained through
UV-Vis DRS are shown in Figure 4a.
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The high amount of light diffusion and high thickness of the powder sample make it
difficult to understand the absorption spectra. Applying the Schuster—Kubelka—Munk
(SKM) equation to establish a connection with the reflectance spectra, is employed to get
the absorption coefficient [48]:

F(R) =
(1 − R)2

2R
(2)

where F(R) indicates the Kubelka—Munk function, the absolute reflectance of the sample
was denoted by R and hυ represents the light energy.

F(R)hυ = A(hυ− Eg) (3)

‘A’ refers to the absorption coefficient which is given by 4πk/λ (k is the absorption
index or absorbance).

It is evident that as the wavelengths were increased, the samples’ diffused reflectance
also increased. The excitation of electrons from the valence band to the conduction band,
which is represented in Tauc relations in Equation (2), is the cause of the optical band gap
in the sample. A direct permitted transition results from n = 2, but an indirect allowed
transition results from n = 1/2 [49]. The linear portion of the curve was extrapolated to
demonstrate that the energy band gap Eg for α-BONPs is (3.07 ev) in Figure 4b, which suits
photocatalytic processes that involve irradiation. The electronic band structure influences
the sensitivity of a material by utilizing different analytes in sensor applications. A specific
band gap can affect the material’s responsiveness to certain types of molecules such as
glucose and uric acid in an acidic medium [50].

3.4. SEM Analysis

Figure 5a displays SEM micrographs of α-BONPs. The morphological information
of NPs reveals non-spherical shapes, porous and agglomerated particles, together with
significant voids, which is evidence that the synthesis method employed for the preparation
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of nanoparticles was the solution combustion method [33]. The existence of multiple
elemental compositions, such as bismuth and oxygen, as shown by SEM EDAX in Figure 5b,
serves as evidence for the purity of prepared α-BONPs.
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3.5. TEM Analysis

The α-BONPs that have large agglomeration and are close to spherical nanocrystals
(50 nm) which are confirmed by the TEM images and the same is presented in Figure 6a
is evidence for the nanostructure formation of crystalline size range (30–60 nm). The
agglomeration is observed for a variety of reasons, including the process of preparing
samples for TEM, which requires thinning the specimen to allow electrons to pass through.
Particles or components in the sample may cluster together during this process. There
are various attraction interactions between particles that cause them to be near together.
Particles can stick together due to surface forces. These forces can cause agglomeration,
especially in nanoscale materials with more strong surface effects. And the crystallite
boundary is clearly discernible from the HRTEM image Figure 6b picture shows a series
of crystal gaps spaced (d) the d = 0.43 nm apart, revealing the surface of the densely
packed (102) flat crystal surface of α-BONPs [40]. The selective area electron diffraction
(SAED) pattern shown in Figure 6c for the synthesized α-BONPs represents the distant
rings of different planes that conform polycrystalline nature of α-Bi2O3 [51]. Overall, these
characteristics provide valuable insights into the nanostructure formation, crystalline size
range (30–60 nm), and crystallographic features of the synthesized α-BONPs.
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3.6. Photocatalytic Studies

The DG and FOR dye degradation experiment was conducted separately in the sun-
light, and it was measured by UV absorption spectroscopy. In the procedure, round glass
reactors with a surface dimension of 176.6 cm2 were filled with 20 ppm of a 250 mL aqueous
solution of the DG and FOR dye and 20 mg of photocatalysts. The experiment took place in
a sunny environment with continual stirring using a magnetic stirrer around the hours of
11 a.m. to 2 p.m. During these periods, the variations in sunlight intensity were negligible,
and no discernible alterations in the sunlight could be observed in the month of May. To
prevent errors brought on by variations in sun intensity, the trials were run concurrently.
The evaluation was done to determine the absorbance of collecting dye solutions every
15 min up to 120 min of analysis. We use the same experimental procedure as mentioned
above when exposing samples to UV light by keeping the distance between the filament
and the sample to 15 cm−1 at standard pressure and temperature.

Figure 7a,b shows the absorbance spectrum of DG dye when exposed to sunlight and
UV light with a maximum band at 618 and 619 nm. Figure 8a,b is the absorbance spectrum
of FOR dye exposed to sunlight and UV light with maximum absorbance band at 503 and
507 nm. The spectra reveal that the intensity of the absorbance spectra reaches its maximum
at 0 min and continues to decrease over time [52].
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Figure 9a,c and Figure 10 illustrate the decay rate of DG and FOR dyes over time when
exposed to both sunshine and UV rays. Significantly, DG dye has a half-life of 54.2 min and
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76.12 min when exposed to sunlight and UV light, respectively. In comparison, FOR dye has
half-lives of 25.87 min and 48.18 min under the same conditions. Figure 8b,d illustrates the
percentage deterioration of DG dye and FOR dye concentration after 120 min of exposure
to sunlight and UV light. The results show that DG dye experienced a degradation of
66.08% and 88.02%, while FOR dye concentration degraded by 67.95% and 94.20%. Table 1
highlights that the enhanced photo-degradation observed under UV light, as opposed
to sunshine, is mainly due to partial size differences and the specific synthesis technique
used [53,54]. The subtle variations in degradation performance emphasize the susceptibility
of α-Bismuth Oxide nanoparticles (α-BONPs) to different light sources and emphasize the
necessity for a thorough examination of the diverse results reported under sunlight and
UV light settings.

Table 1. The rate constant (k) and percentage degradation for DG and FOR under sunlight and
UV light.

Rate Constant (k) min−1 % Degradation

DG (sunlight) 0.00849 66.08

DG (UV light) 0.02102 88.02

FOR (sunlight) 0.01067 67.95

FOR (UV light) 0.02562 94.20
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Rate kinetics are a crucial factor in degradation investigations. The best suitable kinetic
model for photocatalytic degradation was pseudo-first-order kinetic model, hence it was
used to assess the rate constant of DG and FOR [55]:

ln
(

c
c0

)
= −kt (4)

c and c0 are concentrations of DG and FOR dye at 0 min, and k is pseudo-first-order
kinetic. The higher the degradation, the higher the rate constant which is shown in Table 1.

Under UV and sunlight, the concentration of dyes has played a significant impact on
photocatalytic degradation. For the dye optimization, the dye concentration was varied
from 10 to 30 ppm. Consequently, with an increase in dye concentration, there is a reduction
in the number of dye molecules binding to the surface of the photocatalyst the obtained
results are depicted in Figure 11a–d. The dye concentration at 20 ppm demonstrates
improved photodecolorization activities [56,57].
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The dye decolorization mechanism examines DG and FOR dyes with exposure to
sunlight and UV light as follows and the same is shown in Figure 12. Photosensitization
of the DG and FOR dye is demonstrated by the effect of sunlight and UV light on the
synthesized catalyst surface. When light energy strikes a dye and catalyst surface, an
electron and hole pair are produced, as presented in Equation (5). The number of holes
that remain in the valence band is equal to the number of electrons that get excited to the
conduction band. Oxygen free radicals, also known as superoxide radicals, are produced
when an electron is in the conduction band due to adsorbed oxygen, the same is presented
in Equation (6). The left-out holes in the valence band play a crucial role in the breakdown
of dyes; these holes interact with water molecules to create hydroxyl radicals, presented in
Equation (7). These superoxide radicals and the hydroxyl radical degraded the dyes which
is given in Equation (8) [58,59].

αBi2O3 + (hγ) →
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h+ + e−

)
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O2 + e− → O2•−(Superoxide radical) (6)

OH + h+ → OH•−(Hydroxyl radical) (7)(
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+ α − Bi2O3 → degraded water (8)
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Figure 12. Mechanism of DG dye and FOR dye decolorization in UV light and sunlight.

The catalyst (α-BONPs) is checked for reusability and stability under light illumination
along with degrading the dye. The DG and F-OR dyes concentration of 20 ppm is subjected
to 5 cycles run in sunlight and UV light irradiation under the same condition. After the first
cycle, the remaining catalyst is recovered and washed with double distilled water, heated
for 50◦C for 30 min then reused for the next cycle. The synthesized α-Bi2O3 nanoparticles
show a high photostable nature retaining the same degradation efficacy up to the three
consecutive cycles after a negligible change in percentage degradation of less than 5% in all
four conditions, as shown in Figure 13a–d [40,60,61].
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3.7. Electrochemical Analysis

Figure 14a displays the Bi2O3 nanoparticles’ CV curve. It is important to note that
the measured capacitance in the CV curve does not resemble an electrical double-layer
capacitance in the traditional rectangular form [62]. Rather, a distinct pattern of action
suggested by a redox process is indicated by the curve. An anodic peak appears on the CV
curve, signifying the oxidation of Bi2O3 nanoparticles into Bi3+ ions. On the other hand,
the reduction of Bi3+ ions back into Bi2O3 nanoparticles is represented by the cathodic peak.
The fact that a quasi-reversible electron transfer process has been seen suggests that there
is some degree of reversibility to the electron transfer reaction in question. Put differently,
whereas the transfer of electrons during oxidation and reduction reaction is not totally
irreversible, it is also not totally reversible [63]. A CV measurement records the current
response that occurs when the applied voltage is changed cyclically. The structure and
properties of the CV curve reveal important details about the material’s electrochemical
redox activity. The measurements of CV offer significant understanding of the electrodes’
redox reaction, charge-discharge behavior, and charge transfer efficiency.
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Figure 14. (a) Cyclic voltammetry of Bi2O3 electrode at variable scan rates V/s Ag/AgCl electrode.
(b) Nyquist plot & Equivalent circuit (inset) of the Nyquist plot of an impedance measurement
of Bi2O3 electrode. (c) A plot of Peak current v/s square root of Scan rate (d) Bode diagram of
Bi2O3 electrode.

The direction and spontaneity of redox reactions in electrochemical cells are mostly
determined by the potential difference between the oxidation and reduction potentials
(EO − ER). Electrons move from the lower oxidation potential species to the bigger reduc-
tion potential species when the potential difference is positive (EO > ER), indicating that
oxidation is more likely to occur in this reaction. On the other hand, if the potential differ-
ence is negative (EO < ER), electrons flow from species with a higher oxidation potential to
those with a lower reduction potential, making the reaction more favorable for reduction.
A larger degree of reversibility is suggested by a smaller difference [64] and it also confirms
that it is a photocatalytically active material.

It is clear from Figure 14a that the sample obtained by the combustion approach has
a larger difference across both oxidation and reduction peaks when it comes to Bi2O3
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electrodes. The difference between EO and ER was calculated, and the result was −0.317 V,
respectively. The evolution of oxygen during the oxidation process gets simpler when the
gap between EO and ER is less. As a result, the electrode’s electrochemical reaction is more
reversible, the active material is better utilized, and charge efficiency is raised [65].

An Ag/AgCl electrode was used to measure the stable condition of electrochemical
impedance measurements within the frequency ranging from 1 Hz to 1 MHz having 5 mV
AC amplitude. Nyquist plots of Bi2O3 electrodes are shown in Figure 14b.

In an electrochemical system, an electrode’s total impedance (Z) can be written as follows:

Z(w) = Z′ + jZ” = ZRe + jZIm = R + jX (9)

j =
√
−1 (10)

The real and imaginary components of the impedance were denoted as Z′ or ZRe and
ZC′ or ZIm, respectively [65].

The Bi2O3 electrode’s impedance spectra show higher impedance values, which denote
more resistance to the flow of current. This higher impedance is caused, among other
things, by the Bi2O3 layer and the electrochemical processes occurring at the electrode-
electrolyte interface.

The presence of a capacitive element in the system is indicated by the observation of a
depressed semicircle in the high-frequency portion of the EIS spectrum. A more realistic
description of the electrochemical system can be produced by adding the constant phase
element (Q1) to the equivalent circuit. This will enable a better fit of the experimental data
collected via methods like electrochemical impedance spectroscopy (EIS).

ZCPE =
1

Y(jω)n (11)

The angular frequency (rad s−1) is represented by the symbol ω in the equation, and
the adjustable parameters Y and n are connected to the constant phase element (Q1). In fact,
the constant phase element (Q1)’s value of n can be 1, 0, or 0.5, which correspond to several
electrochemical phenomena: When ‘n’ is set to 1, double-layer capacitance (Cdl) behavior is
present. If ‘n’ is equal to 0, then resistance (R) is present in the system. In the case when ‘n’
takes a value of 0.5, Warburg diffusion (W) behavior is present.

An equivalent circuit used to show the Nyquist plots obtained from impedance mea-
surements on the α-Bi2O3 electrode is included in the inset of Figure 13b. The high-
frequency area where the real axis and the semicircle of the Nyquist spectrum intersect is
represented by the solution resistance (Rs) in this circuit, which is typically correlated with
resistance at the electrode-electrolyte interface. Plotting shows semicircular patterns due
to either polarization resistance (Rp) or interfacial charge transfer resistance (Rct), which
are connected in parallel to the double-layer capacitance (C). Overall, the presence of a
Warburg element is indicated by the observation of a straight line in the low-frequency area
of the Nyquist plot, highlighting the significance of the diffusion processes investigated in
the electrochemical system. The presence of a plane line in the lower frequency range of the
Nyquist plot indicates that bismuth ions and electrons are dispersed into tiny pores in the
outermost layer of the α- Bi2O3 electrode, and that this behavior has a significant influence
on the electrochemical behavior of the system as a whole [66]. The electrical double layer’s
capacitive activity and the charge transfer process’ resistive behavior interact to produce the
semicircle shape. The charge transfer resistance (Rct) and semicircle diameter are correlated;
larger semicircles indicate greater resistance levels. The charge-transfer resistance (Rct),
leakage resistance (Rl), and constant phase element (Q) are connected in parallel within the
equivalent circuit [67].

The relationship between the square root of the scan rate (v1/2) and the peak cathodic
current (ip) of an α-Bi2O3 electrode is shown in Figure 13c. According to [67], the more
linear relationship between ip and v1/2 indicates that hydrogen diffusion limits the Bi2O3
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electrode’s electrode reactivity. The value of 1.039 × 10−5 cm2 s−1 is the hydrogen diffusion
coefficient of the α-Bi2O3 electrode, as calculated by sloping the fitted line in Figure 13c.

The Bode diagram in Figure 13d explains the phase angle and frequency relation-
ship. It is evident that at −53◦, the phase angle is nearly at the ideal value of −90◦ for a
capacitor [68].

The BONPs used to detect glucose and uric acid are presented in cyclic voltammo-
grams of Figure 15a–d. The shifting of oxidation and reduction peaks implies, indicates that
the BONPs combined carbon paste electrode is a very good material to sense the concen-
tration of glucose and uric acid ranging from 1 to 5 mM. The current response reaches the
steady state within 3 s, after the injection of 1 mM glucose or uric acid it takes over 50 s of
sampling time to attain a steady state. The anodic oxidation shifts from −0.2 V to −0.135 V.
It was also observed that an extra oxidation peak was obtained at 0.1511 V. It was found
that the cathodic reduction peak shifted from 0.815 V to 0.348 V and an extra reduction
peak obtained at −0.471 V for the detection of glucose sensor shown in Figure 14a, confirms
the prepared electrode is a better material for the detection of glucose. Similarly, oxidation
peaks at 0.2 V are shifted to −0.185 V and the reduction peak at −0.815 V splits in to two
extra peak at −0.225 V and −0.345 V during uric acid sensor shown in Figure 14b reveals
that the material capability for the uric acid detection. The CV of the BONPs electrode
in Figure 15c,d for glucose and uric acid sensor of 50 mV/s, demonstrating that adding
glucose or uric acid to the electrolyte causes a noticeable shift in the peak locations.
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Figure 15. Cyclic voltammogram of α-Bi2O3 electrode during detection of (a) Glucose and (a) Uric
acid, concentration range 1–5 mM. Cyclic voltammogram of Bi2O3 electrode with and without
(c) Glucose sensor and (d) Uric acid sensor.

Figure 16a,b show amperometric i-t curves for glucose and uric acid biomolecule
sensing at −0.6 V to 0.2 V potential sweep. The current response of the Bi2O3 electrode
at 0 mM concentrations of uric acid and glucose is shown in Figure 16c,d. Additionally,
following repeated injections of 1 mM glucose and uric acid at 50-s sampling intervals, the
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current response increased and achieved steady-state current in less than 3 s. This kind
of activity clearly shows the sensor’s quick amperometric response to the oxidation of
glucose and uric acid. It has been discovered that the currently manufactured sensor has a
sensitivity of 0.0102 amps for glucose and 0.0103 amps for uric acid [69].
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Figure 16. Amperometric–t curve Bi2O3 electrode for the sensing of (a) Glucose and (b) Uric acid
molecule. (c) Peak current vs. concentration of Glucose (d) Peak current vs. concentration of
Uric acid.

Figure 16c,d shows the amperometric current responses in relation to glucose and
uric acid concentration from 0 to 5 mM with fitted line (inset) with a correlation coefficient
of 0.998 and 0.999, respectively. The α-Bi2O3 electrode sensor shows an almost linear
trend with a rise of glucose and uric acid concentrations. This emphasizes even more how
sensitive the modified Bi2O3 electrode is to the electrochemical activity of the biomolecules
being investigated.

4. Conclusions

In this study, Bismuth Oxide Nanoparticles (BONPs) were synthesized using an envi-
ronmentally friendly combustion process, employing Mexican Mint gel as the fuel source.
Various analytical techniques were employed to characterize the synthesized nanopar-
ticles. X-ray Diffraction (PXRD) analysis revealed a crystallite size of approximately 55
nm for the nanoparticles. This size was further corroborated by Transmission Electron
Microscopy (TEM) analysis, which indicated a size of less than 55 nm. Through Diffuse
Reflectance Spectroscopy (DRS) analysis, the nanoparticles’ bandgap was determined to be
3.07 eV. The catalytic properties of the nanoparticles were explored through two avenues:
photocatalysis and electrochemical sensing. Photocatalytic degradation experiments were
conducted under both sunlight and UV light for a duration of 120 min. Significantly higher
degradation rates were observed under UV light, reaching 88.2% and 94% for the DG and
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FOR dyes, respectively. The nanoparticles were also assessed for their electrochemical
sensing capabilities. Notably, they exhibited excellent performance in detecting glucose
and uric acid in alkaline medium, as evidenced by cyclic voltammetry (CV) measurements.
Particularly striking was their rapid response to glucose and uric acid at concentrations
as low as 1 mM. Furthermore, the study highlighted the ease of manufacturing reliable
α-Bi2O3 electrode materials. Based on these compelling outcomes, the synthesized nanopar-
ticles emerge as candidates that are cost-effective and well-suited for photocatalytic and
sensor applications.

Further research directions may be explored in light of this study, such as refining
environmentally friendly synthesis methods for α-Bismuth Oxide nanoparticles (α-BONPs)
through the examination of precursor concentrations and reaction conditions. In order
to mitigate the observed agglomeration tendencies, subsequent research may investi-
gate potential approaches such as surface modifications or the application of stabilizing
agents. Further analysis focused on specific applications, such as photocatalysis and
electrochemical sensing, may yield valuable knowledge regarding the enhancement of
α-BONPs’ functionality.
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