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Abstract: Finite element analyses of the propagation of damage such as fiber compressive failure
and delamination have greatly contributed to the understanding of failure mechanisms of fiber-
reinforced plastics owing to extensive studies on methodologies using Continuum Damage Mechanics
and Fracture Mechanics. Problems without the need for consideration of inertia, such as Double-
Cantilever Beam tests, are usually solved by implicit FE solvers, and explicit FE solvers are appropriate
for phenomena that progress with very high velocity such as impact problems. However, quasi-
static problems with unstable damage propagation observed in experiments such as Open-Hole
Compression tests are still not easy to solve for both types of solvers. We propose a method to enable
the static FE solver to solve problems with unstable propagation of damage. In the present method,
an additional process of convergence checks on the averaged energy release rate of damaged elements
is incorporated in a conventional Newton–Raphson scheme. The feasibility of the present method
was validated by two numerical examples consisting of analyses of Open-Hole Compression tests
and Double-Cantilever Beam tests. The results of the analyses of OHC tests showed that the present
method was applicable to problems with unstable damage propagation. In addition, the results from
the analyses of DCB tests with the present method indicated that mesh density and loading history
are not significantly influential to the solution.

Keywords: fiber-reinforced plastics; damage; finite element; unstable propagation

1. Introduction

Fiber-reinforced plastics have been widely used as structural materials in many in-
dustries such as aerospace, automotive, and marine due to its advantages of mechanical
characteristics such as high specific stiffness and strength. However, the multi-phased
nature of the materials’ structure leads to vulnerability to damage. Typical modes of
damage in unidirectional fiber-reinforced plastics can be classified as fiber tension, fiber
compression, matrix tension, matrix compression, and delamination [1–3]. The material
under tensile loading in the fiber direction shows stages of deformation including elastic
deformation of both fibers and matrix, plastic deformation of matrix, slight plastic de-
formation of fibers, and the fracture of the fiber followed by fracture of the composite
material [1]. Under compressive loading in the fiber direction, on the other hand, the mode
of failure is micro buckling of fibers. As a consequence of the micro buckling, a band of
local shear deformation of the matrix called a kink band is formed. It is reported that
initial imperfections of the fibers play an important role in this failure mode [4,5]. Tensile
failure of matrix typically usually occurs at a plane normal to the loading direction, but
compressive failure of the matrix is observed as shear failure of the matrix at an angle with
the loading direction [4]. Because the material is made of different plies stacked together,
delamination occurs, which is the failure of resin-rich region at the interface between the
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plies. Delamination tends to accelerate tensile and compressive failures of plies because
delaminated plies are no longer supported by neighboring plies [2,3].

In real structures of the material, the combination of these modes makes the failure
more complex. Therefore, numerous experiments are required to obtain design allowables
to assure structural integrity of the products. In particular, the strength of specimens with a
hole is important as allowables on the safe side because it is significantly lower than that of
non-hole specimens. Accordingly, the strength of specimens with a hole has been actively
studied via methods such as the Open-Hole Compression test [4–9]. Unstable propagation
of the damage is one of the important factors to understand the damage mechanism. It is
difficult to experimentally observe the unstable progress of the damage since the failure
event is instantly occurred [10].

Since the material is used as a laminate, the effect of anisotropy on the above-mentioned
failure modes must be considered. The most fundamental failure criterion is the maximum
stress/strain criterion in which failure occurs when the stress/strain in each of longitudinal
and transverse direction of the lamina reaches to its critical value [1]. In this criterion, a
lamina is considered as an orthotropic material with the material principal axes aligned to
the fiber. σL, σT, and τLT are stresses in longitudinal and transverse direction to the fiber
and in-plane shear stress, respectively. For tensile stresses, the maximum stress criteria are
expressed as

σL
Xt

= 1
σT
Yt

= 1 (1)

For compressive stresses,
σL
Xc

= 1
σT
Yc

= 1 (2)

And for shear stress,
|τLT |

S
= 1 (3)

In the above Equations, X and Y are the strength in the fiber and matrix direction,
and S is strength related to in-plane shear. The maximum strain criterion can be written in
similar form with strain components.

Since the interaction between stresses/strains in the longitudinal and transverse
direction are not considered in these criteria, the Tsai-Wu criterion was developed by
rewriting Hill’s anisotropic yield criterion for metals in following tensor form [1].

Fiσi + Fijσiσij = 1 i, j = 1, 2, . . . , 6 (4)

where Fi and Fij are strength tensors for the second and fourth rank, respectively. For an
orthotropic lamina under plane stress condition, the equation is reduced to(

1
Xt

− 1
Xc

)
σL +

(
1
Yt

− 1
Yc

)
σT +

σ2
L

XtXc
+

σ2
T

YtYc
+

τ2
LT

S2 + 2F12σLσT = 1 (5)

where F12 represents interaction between stress components in fiber and matrix direction.
In spite of the fact that microscopic failure occurs independently in the fibers and

matrix, the previous criteria only consider the failure of the whole lamina as a homogenized
orthotropic material. Hashin proposed failure criteria in which the failure of the fiber and
matrix is independently evaluated [11]. In the criteria, the failure of fibers in tension is
evaluated by (

σL
Xt

)2
+

1
S2

(
τ2

LT − τ2
ZL

)
= 1 (6)

For the fiber compression failure,

|σL|
Xc

= 1 (7)
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The tensile failure of matrix is evaluated by

1
Y2

t
(σT + σZ)

2 +
1

S2
LT

(
τ2

LT + τ2
ZL

)
+

1
S2

TZ

(
τ2

TZ − σTσZ

)
= 1 (8)

For the matrix compression failure,

1
Yc

{(
Yc

2STZ

)2
− 1

}
(σT + σZ) +

1
4S2

TZ
(σT + σZ)

2 +
1

S2
LT

(
τ2

LZ + τ2
ZL

)
+

1
S2

TZ

(
τ2

TZ − σTσZ

)
= 1 (9)

Pinho et al. proposed the LaRC04 criterion [12], which adopts mean-field homogeniza-
tion theory such as Eshelby’s eigen strain problem to derive stress field in the matrix [13].
In Eshelby’s eigen problem, stresses in a solid and an inclusion can be analytically obtained
by considering an elliptical inclusion embedded in an homogeneous infinite solid. This
theory can be applied to unidirectional fiber-reinforced plastics by letting the aspect ratio
of the elliptic inclusion approach infinity. Nonlinear response of shear deformation due
to matrix’s visco-elastic-plastic characteristics is effectively incorporated in this model by
treating the fibers and matrix separately. In this failure criteria, the existence of a crack
inside the matrix is also considered by using the theory by Laws [14]. In LaRC04, the failure
criterion of matrix tension mode is expressed as

(1 − g)
σT
Yc

+ g
(

σT
Yt

)2
+

Λo
TZτ2

TZ + χ(γLT)

χ(γLT)
= 1 (10)

where g is the ratio of the normal mode of critical energy release rate to that of the shear
mode. Λij are components of the crack tensor that transform stress at infinity to strain
at the interface of the phases, and χ(γLT) is the in-plane shear internal energy. For the
compressive failure of the matrix, the criterion is(

τT
ST − ηTσn

)2
+

(
τL

SL − ηLσn

)2
= 1 (11)

where σn is the normal stress at the potential failure plane that can be obtained from the
Mohr–Coulomb theory, and τT and τL are two components of shear stress at the failure
plane, respectively. ηL and ηT are friction coefficients that represent effect of the normal
stress on the failure plane to shear strengths. The failure of the fiber in tension is simply
evaluated by

σL
Xt

= 1 (12)

For compressive failure of the fiber, it is assumed that the fibers are significantly
affected by its misalignment. The kink-band is assumed to be formed in a plane in which
tensile normal stress in the matrix is maximized, which is called kink-plane. After the
kink-plane is defined, the stresses are rotated to the misalignment frame. With the stress
components in the misalignment frame σ2m2m and τ1m2m, the criterion for the compressive
failure is expressed as

|τ1m2m|
SL − ηLσ2m2m

= 1 (13)

Numerical analyses have advantages that can reproduce phenomena that cannot be
experimentally observed. For numerical modeling of damage in fiber-reinforced plastics,
theories of Continuum Damage Mechanics and Fracture Mechanics are mainly adopted [15–22].
Although the initiation of damage can be evaluated by failure criteria based on stress
state of constituents of the composite, the criteria are not necessarily sufficient to simulate
development of the damage after the initiation. Therefore, Continuum Damage Mechanics
(CDM) is often adopted to express development of the damage by expressing degradation
of the material to carry load as reduction in its stiffness [23]. Intra-laminar damage such
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as matrix cracks and fiber failures are effectively modeled by this methodology [24–26].
Fracture Mechanics is widely used to evaluate conditions of crack propagation such as
matrix cracks and delamination. Virtual Crack Closure Technique (VCCT) proposed by
Shivakumar is one of the most widely used numerical methodologies to evaluate energy
release rates at a tip of the crack [27,28]. The energy release rate can be simply evaluated
by nodal reaction forces and crack opening displacements in a finite element analysis.
Delamination is effectively modeled by the Cohesive Zone Model (CZM) in many studies
such as Camanho et al. [29]. In CZM, a process zone of the damage is modeled by evaluating
tractions between two interfaces as a function of their relative displacements. In the
methodologies mentioned above, the mesh pattern of the finite element model must
be created so that boundaries of the elements match edges of the cracks. An extended
finite element method (XFEM) was proposed to cope with these kinds of problems [30].
The discontinuity of displacements at the cracks in the element is modeled by extended
interpolation function with a step function in XFEM, so the cracks located inside elements
can be expressed without the modification of the mesh pattern [31]. A methodology that
combines CDM and XFEM has been proposed recently by Higuch et al. [32].

Commercially available FE solvers used for analyses of the damage can be generally
categorized to implicit and explicit solvers. This categorization is originated by schemes of
the time integral of dynamic problems. One of the most famous implicit methods is the
Newmark-β method, and that of explicit methods is the Euler method. Implicit solvers
have the advantages of a phenomenon that progresses with relatively low velocity. In
implicit solvers, a mechanical equilibrium is precisely achieved by solving a matrix of
an equation system even when a relatively large time step is used. A phenomenon that
progresses with a very low velocity, such as delamination in a Double-Cantilever Beam test,
is analyzed as a quasi-static problem by implicit solvers without consideration of inertia. In
this case, the solver is called an implicit static solver. A phenomenon that progresses with
very high velocity such as an impact problem is difficult to solve without explicit solvers.
In explicit solvers, unknown displacement vectors are obtained without solving large size
of matrix of an equation system. They are simply calculated by explicitly substituting
known vectors in previous steps to a linear equation to obtain the displacement in the
next time step. Computational costs for a single step are significantly reduced by this
scheme. However, there is a limitation of time steps that leads to converged solutions in an
explicit dynamic scheme, known as Courant–Friedrichs–Lewy condition [33]. The solution
is diverged with time steps larger than the limit defined by this condition. Therefore, an
explicit dynamic solver requires a huge number of time steps in the analyses in many cases.
Since the limitation if the time step is related to velocity of stress wave in the material,
the mass scaling technique, in which a virtual mass larger than that of realistic materials
is used, is often adopted to increase the limit [32]. A wide variety of damage-related
problems in fiber-reinforced plastics have been successfully solved either by implicit or
explicit FE solvers. However, quasi-static problems with unstable damage propagation
observed in experiments such as Open-Hole Compression tests are still not easy to solve
since the problem itself is quasi-static, but the failure event instantly occurs. Although an
explicit dynamic solver was chosen from the beginning, in some cases, when abundant
computational resources were available, a hybrid approach that combines implicit and
explicit solvers was proposed, as already mentioned [32].

In the present study, an implicit static scheme with a special treatment on damage prop-
agation is proposed to effectively solve the problems with unstable damage propagation by
a commercial implicit FE solver. This paper is organized as follows. First, a methodology
including the program flow and formulation of a finite element method is described in
Section 2. Then, numerical examples to validate the feasibility of the methodology are
presented, and results of the examples are discussed in Section 3. Concluding remarks are
given in Section 4.
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2. Numerical Method
2.1. A Method of Failure Path Tracking

When damage such as a crack is initiated, stress is concentrated at a tip of the damaged
region, so the damage propagation is supposed to occur at the tip of the damaged area.
This behavior can be naturally expressed by an explicit dynamic FEA solver since it uses
very small increments of time. However, it is difficult for an implicit static FE solver to
correctly express this behavior because of the following reasons.

Stress concentration around a hole in a plate under compressive loading is shown
in Figure 1a. When critical stress for initiation of damage under compressive loading is
−1850 MPa, the potential region of damage is the blue area at the horizontal edge of the
hole. In an implicit static FE analysis, load and/or displacement increment is usually set to
relatively large value. Therefore, failure criteria are satisfied at a group of elements in the
blue area during a single step of the analysis, but all these elements are not necessarily at
the tip of the damaged region. If all elements in this area are degraded according to the law
of Continuum Damage Mechanics, a wide region is incorrectly treated as failed.
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In addition, the damage can unstably propagate. In some conditions, stress intensity
at the tip of the damaged region does not decrease with propagation of the damage, and
the damage keeps propagating until the material has completely failed. Explicit dynamic
solvers can cope with this situation by considering the effect of inertia. Implicit static solvers
usually have capability to automatically reduce load and/or displacement increment when
the solution is difficult to converge. However, when the damage is unstably propagating,
no state of mechanical equilibrium exists during the step of the analysis, no matter how
much the increment of the load is reduced. Therefore, the analysis prematurely exits in
this case.

Due to these behaviors, it is difficult for an implicit static FE solver to track correct
failure paths in some cases of analyses with Continuum Damage Mechanics. To overcome
this problem, the present method incorporates a special treatment on propagation of the
damage based on Fracture Mechanics into the conventional method with Continuum Dam-
age Mechanics. The energy release rate in potential region of damage is evaluated based on
stress state, as shown in Figure 1a, and only the element at the tip of the region of damage
where the energy release rate exceeds its critical value is degraded with a constitutive law
of Continuum Damage Mechanics. Then, redistribution of stress is calculated according to
the degradation of the element at the tip of the damaged region. The numerical solution is
iteratively calculated until propagation of the damage during a load step of the analysis is
completed, as shown in Figure 1b. This procedure requires modification of program flow
of implicit static FE code by user subroutines, which is described in the next section.
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2.2. Modification of Program Flow of a Finite Element Code

In the present study, the subroutines were implemented in Marc 2017 (MSC Software,
Inc., Newport Beach, CA, USA). The flow of the program was implemented as shown in
Figure 2. In an implicit static FE code such as Marc, the following incremental form of
equilibrium equation is solved.

Kδu = δF (14)

where K, δu, and δF are global stiffness matrix, incremental displacement vector, and
incremental load vector, respectively.
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Since solution of the equation is nonlinear, the equation is iteratively solved with a
Newton–Raphson procedure until specified convergence conditions are satisfied. Conver-
gence is usually evaluated by residual vectors defined as

R = F −
∫

V
BTσdV (15)

where R and B are the residual vector and a matrix that defines relationship between strain
and nodal displacements. σ is stress tensor expressed as a column vector. In Marc, the
solution is recognized to be converged when the following condition is satisfied.

∥R∥∞
∥Fr∥∞

< T (16)

where the norm operator means the maximum value in the model. Fr and T are reaction force
in the model and threshold constant, respectively [34]. This condition means that ratio of
the maximum residual to the maximum reaction force is lower than the specified threshold.
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In addition to the above criterion, convergence of maximum energy release rate in the
model is evaluated in the present method. The energy release rate is calculated in a user
subroutine UPROGFAIL, and its convergence is evaluated with following criteria.

∥G∥∞ < Gc (17)

where G represents the energy release rates of all damaged elements in the model, and
Gc is the fracture toughness of the material. This means that the iterative calculation is
continued until the maximum energy release rate in the model becomes lower than its
critical value. Evaluation of this condition is conducted in a user subroutine USELEM.
Numerical calculation of energy release rate is discussed in detail in the next section.

2.3. Constitutive Models of the Material

In the present method, a lamina in elastic region is simply treated as an orthotropic
material as similarly assumed in the classical lamination theory [1]. The orthotropic
material is assumed to be linear elastic until initiation of damage. The initiation of damage
is evaluated by one of stress-based failure criteria mentioned in Section 1. After that, moduli
Eij of the material are modified by stiffness reduction factors rij according to degradation of
the material as

E∗
ij = rijEij (18)

where summation convention is not used.
To express development of the damage, the energy release rate averaged in an element

is evaluated and compared to mesoscopic fracture toughness of a lamina in the present
method based on an idea that complex interactions between damage of constituents are
detected as averaged apparent mesoscopic properties. It is reported by Pinho et al. that
dependency of the solution on mesh density becomes small when smeared formulation, in
which averaged energy release rate in an element is calculated, is adopted [24]. When the
energy release rate in an element exceeds the fracture resistance of the material, the element
is recognized as having failed, and rij of related failure mode is set to zero. We consider
three principal planes of potential failure in L, T, and Z directions, which correspond to
longitudinal direction to the fiber, transverse direction to the fiber, and thickness direction,
respectively, as shown in Figure 3. Each component of energy release rate is calculated from
components of strain energy density related to the planes of potential failure as follows.

UL =
∫
(σLdεL + τLTdγLT + τLZdγLZ) (19)

UT =
∫
(σTdεT + τLTdγLT + τTZdγTZ) (20)

UZ =
∫
(σZdεZ + τLZdγLZ + τTZdγTZ) (21)
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The averaged energy release rate is calculated by dividing the strain energy by area of
the potential failure plane as

Gi =
∂

∂Ai

∫
V

UidV ≒
∆Ui
∆Ai

(i = L, T, Z) (22)

∆Ui =
∫

Ve
UidV (23)

∆Ai =
∫

Se
dS (24)

In finite element analyses, volume integral is numerically conducted by Gauss integral
with respect to element coordinate system. The volume integral of the strain energy is
expressed as

∆Ui =
∫

V
UidV =

y
Uidxdydz (25)

=
y

Ui|J|dξxdηdζ (26)

where J is Jacobian matrix defined as

J =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 (27)

The potential failure planes are generally inclined with arbitral angle from axes of
reference coordinate system. The area of the potential failure planes is expressed as a
function of θ, which is the angle from the first axis of reference coordinate system to the
orientation of fibers, as shown in Figure 4a. For example, the area of the potential failure
plane L is written as

∆AL =
x

dldz =
x √

1 + tan2θdydz (28)

Figure 4. Numerical Integration in an element coordinate system.

The following relationships are used in the above equation.

dl =
√

dx2 + dy2 =

√
1 +

(
dx
dy

)2
dy =

√
1 + tan2θdy (29)
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It is useful to express the area integral with respect to the element coordinate sys-
tem when it is numerically calculated by Gauss integral. The integral is expressed with
components of the Jacobian matrix as

∆AL =
√

1 + tan2θ
∫ 1

−1

(∫ ξ2

ξ1

∂y
∂ξ

dξ +
∫ η2

η1

∂y
∂η

dη

)
∂z
∂ζ

dζ (30)

The following relationships are used in the above equation. It is assumed that direction
of ζ axis is same as that of z axis. Therefore, x and y do not vary in ζ direction, and z does
not vary in ξ and η direction.

dy =
∂y
∂ξ

dξ +
∂y
∂η

dη +
∂y
∂ζ

dζ =
∂y
∂ξ

dξ +
∂y
∂η

dη (31)

dz =
∂z
∂ξ

dξ +
∂z
∂η

dη +
∂z
∂ζ

dζ =
∂z
∂ζ

dζ (32)

The areas of potential failure planes in other directions are similarly obtained.
In the case of an 8-noded hexahedral element with low-order interpolation functions,

the numerical integration in element coordinate system is conducted at 8 integration points
shown in Figure 4b.

3. Numerical Examples

In order to confirm feasibility of the present method, two problems were chosen as
numerical examples described in following sections. Open-Hole Compression tests were
calculated to test the applicability to unstable damage propagation. Double-Cantilever Beam
tests were calculated mainly to test dependencies on mesh density and loading history.

3.1. Open-Hole Compression Tests
3.1.1. FEA Model

The present method was applied to the analyses of Open-Hole Compression tests
conducted in our previous study [35]. Specimens were made with P2352W-19-305 prepreg
composed of T800S-24K fibers with 65% of volume fraction and #3900-2B epoxy as matrix
(Toray, Inc., Tokyo, Japan). Material properties shown in Table 1 were obtained from tensile
experiments of unidirectional laminates. The linear-elastic response was assumed for
components other than LT components. The nonlinear stress–strain relationship of the
LT component due to visco-elastic-plastic characteristics of the matrix was obtained from
iosipescu shear tests and defined in the analyses by Swift law with F = 200, b = 4000, and
n = 0.26, as follows.

τLT = F(b + γLT)
n (33)

Table 1. Mechanical properties used in the FE analyses.

EL ET EZ νLT νLZ νTZ GLT GLZ GTZ

153 GPa 8.00 GPa 8.00 GPa 0.340 0.344 0.544 4.82 GPa 3.56 GPa 2.30 GPa

Quasi-isotropic specimens with stacking sequence [45/0/−45/90]2s were modeled
with dimensions shown in Figure 5. Each lamina was stacked with respect to the angle
from the longitudinal axis of the specimen, which is the same as the loading direction.
Half model was created with 8-noded hexahedral elements according to the symmetricity
in the thickness direction. Each ply of the specimens was modeled with a different set
of elements. The principal coordinate systems of an orthotropic material are defined for
the plies. Analyses were conducted for cases with consideration of damage only in the L
direction and that with damage in the L and T directions to investigate interaction between
damage in the L and T direction.



J. Compos. Sci. 2024, 8, 130 10 of 18

J. Compos. Sci. 2024, 8, x FOR PEER REVIEW 10 of 19 
 

 

elements. The principal coordinate systems of an orthotropic material are defined for the 
plies. Analyses were conducted for cases with consideration of damage only in the L di-
rection and that with damage in the L and T directions to investigate interaction between 
damage in the L and T direction. 

 
Figure 5. FEA model of an Open-Hole Compression Test. 

Table 1. Mechanical properties used in the FE analyses. 

EL ET EZ νLT νLZ νTZ GLT GLZ GTZ 
153 GPa 8.00 GPa 8.00 GPa 0.340 0.344 0.544 4.82 GPa 3.56 GPa 2.30 GPa 

It is reported by Camanho et al. that the fracture toughness Gc for compressive fiber 
failure of the lamina can be experimentally evaluated [9], but it is not available for the 
material system used presently. Therefore, two reference values GcL = 10.0 kJ/m2 and 20.0 
kJ/m2 were used in the present example. The fracture toughness for failure in transverse 
direction of the lamina was set as GcT = 2.0 kJ/m2. For the initiation of damage, any stress-
based failure criterion mentioned in Section 1 fits the present method. Because of nearly 
uniaxial stress state in 0-degree layers where the damage is initiated first, the maximum 
stress criterion with Xc = 1850 MPa was adopted in this example. Nodes in the clamped 
area were rigidly connected to a representative node with MPCs as shown as red lines in 
Figure 5, and the boundary conditions of fixed displacement were defined to the repre-
sentative nodes to apply the compressive load. 

3.1.2. Results and Discussion 
The distribution of damage in 0-degree and 45-degree layers in the analysis with GLc 

= 10.0 kJ/m2 are shown in Figures 6 and 7, respectively. Typical damage of specimens in 
OHC tests conducted in our previous study is shown in Figure 8. It is important to note 
that the loading direction of the specimen in the picture is the horizontal direction, but 

Figure 5. FEA model of an Open-Hole Compression Test.

It is reported by Camanho et al. that the fracture toughness Gc for compressive fiber
failure of the lamina can be experimentally evaluated [9], but it is not available for the
material system used presently. Therefore, two reference values GcL = 10.0 kJ/m2 and
20.0 kJ/m2 were used in the present example. The fracture toughness for failure in trans-
verse direction of the lamina was set as GcT = 2.0 kJ/m2. For the initiation of damage,
any stress-based failure criterion mentioned in Section 1 fits the present method. Because
of nearly uniaxial stress state in 0-degree layers where the damage is initiated first, the
maximum stress criterion with Xc = 1850 MPa was adopted in this example. Nodes in the
clamped area were rigidly connected to a representative node with MPCs as shown as red
lines in Figure 5, and the boundary conditions of fixed displacement were defined to the
representative nodes to apply the compressive load.

3.1.2. Results and Discussion

The distribution of damage in 0-degree and 45-degree layers in the analysis with
GLc = 10.0 kJ/m2 are shown in Figures 6 and 7, respectively. Typical damage of specimens
in OHC tests conducted in our previous study is shown in Figure 8. It is important to
note that the loading direction of the specimen in the picture is the horizontal direction,
but that of the analysis is the vertical direction. It is observed in both the analysis and
experiment that compressive failure occurred from the transverse edge of the hole. Suemasu
et al. studied the progress of the damage in OHC tests of quasi-isotropic laminates with a
stacking sequence that is the same as that in the present example [10]. They reported that
the fiber compressive damage of 0-degree layers was initiated at the transverse edge of the
hole, and then it propagated a little in the circumferential direction. A similar trend was
observed in the present analysis, as shown in Figure 6a. The study reported that the crack
unstably propagated after a small amount of stable propagation of the damage, and the
specimen failed completely, similarly to the present result in Figure 6b. The tracked path
of failure in a 0-degree layer was slightly deviated from center line of the specimen due
to effect of neighboring ±45-degree layers. The experimental study reported that a band
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of damage with a zig-zag failure pattern consisting of small compressive fiber failure and
matrix cracks was observed in a region from the transverse edge of the hole in 45-degree
layers of the failed specimen. In the present analysis, a band of damage was created at the
same location as shown in Figure 7b, although the microscopic damage morphology was
not expressed.
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Figure 8. Typical damage of OHC specimen after failure.

Figure 9 shows the relationship between the nominal strain and nominal stress
obtained from the analyses with GLc = 10.0 kJ/m2 and 20.0 kJ/m2. Solid and dashed
lines indicate the results with consideration of damage in the L direction and that with
damage in the L and T directions, respectively. Points marked with (a) and (b) corre-
spond to the distribution of damage shown in Figures 5 and 6. The analytical results are
compared to the experimental results. The peak stress from the analytical results with
GLc = 10.0 kJ/m2 agreed with that in the experiment, i.e., the strength of the specimen,
although the stiffness is slightly different. The strengths of the specimen in the experiments
are in a range between the two peak stresses in the analyses.
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Figure 9. Relationship between Nominal Stress and Nominal Strain.

The stress abruptly decreased at point (a) in Figure 9 when the damage unstably
propagated, as shown in Figure 6b. In analysis, cases with consideration of damage only in
the L direction, the stress started to increase again with an increase in strain because stiffness
related to the remaining T components. When the damage in both the L and T directions
are considered for more realistic situations, the nominal stress dropped to zero at the final
failure. However, the damage and nominal stress at the final failure of the specimens were
not significantly different between the analyzed cases with the consideration of damage
only in the L direction and that in L and T directions. This means that compressive failure
of fibers in 0-degree layers is dominant failure mode, and failure of matrix and fibers in
45-degree layers follows the failure of 0-degree layers due to stress redistribution.

Number of iterations and CPU time required for each analysis case is shown in Table 2.
Significant number of iterations was needed to solve a loading step at which unstable
damage propagation occurred. This is because hundreds of elements failed at this single
loading step and the failure of one of those elements was calculated with 1 or 2 iterations
in the present method. It is difficult to obtain converged solution at this step for the
conventional method.

Table 2. Comparison of computational costs for analyses of OHC with different conditions.

Analysis
Cases

Damage
Mode

GcL
(kJ/m2)

GcT
(kJ/m2)

Iteration
(Total)

Iteration
(Unstable)

CPU Time
(s)

1 L 10.0 N.A. 1 720 517 19,437.47
2 L 20.0 N.A. 1 2158 897 57,782.35
3 L, T 10.0 2.0 318 212 9014.30
4 L, T 20.0 2.0 552 443 14,796.60

1 Damage in transverse direction was not considered in cases 1 and 2.

3.2. Double-Cantilever Beam Tests
3.2.1. FEA Model

Finite element analyses with the present method were conducted to model Double-
Cantilever Beam Tests. The test is experimental method to evaluate fracture toughness for
delamination, but the present method can be applied to model it by enabling damage in
thickness direction. A theoretical result of relationship between load and displacement
is available for the test although it is based on an isotropic material [36]. The results
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from the analyses were compared to the theoretical result as a reference. Eight-noded
hexahedral elements were used to create the model shown in Figure 10. An orthotropic
elastic material with principal axis aligned to longitudinal direction of the specimen was
used. The same material properties in the previous example were used for this model.
Damage in z direction with reference value of fracture toughness GZc = 1.0 kJ/m2 was
considered to model delamination. Whole model is considered as a region of potential
failure, and an initial crack was modeled by setting damage parameters for elements located
at initial crack as failed status from the beginning of the analysis. Nodes at loading edges
were rigidly connected to representative nodes with MPC as shown as red lines in Figure 10,
and boundary conditions of fixed displacement were defined to the representative nodes
to apply crack opening displacement. Models with 3 different number of elements, 2700,
5500 and 10,200 were analyzed to test dependency of the solution on mesh density. Since
the results were supposed to be affected by not only number of elements but also aspect
ratio of the element, the aspect ratio for these models was kept as close as possible. Ratio of
element size in longitudinal direction to that in thickness direction was set to about 2.0 in
all models. To test dependency of the solution on loading history, 2 different number of
load steps for an analysis, i.e., time steps, were chosen, and models with 2 different length
of initial cracks, 30 and 60 mm were analyzed.
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3.2.2. Results and Discussion

Figure 11a,b show initial and deformed shapes of the model, respectively. Distributions
of damage are also shown in the figures. The damage propagated straight at center of the
specimen. A triangle-shaped band is seen between the beams after the propagation of
damage. This is due to failed elements remained in the model, but they no longer have
stiffness to contribute the results.
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Relationship between applied load and displacement from models with different
number of elements are shown in Figure 12. The numerical results became closer to the
theoretical result as the mesh density is increased. The difference between the analytical
and theoretical result is mainly caused by the reason that the theory is based on an isotropic
material although orthotropic material was used in the present analyses.
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Figure 13 shows relationship between applied load and displacement from analyses
with different number of steps and lengths of initial crack. Solid lines indicate results from
analysis with 100 steps, and diamond-shaped markers indicate results from analyses with
25 steps. The results with large load increment were almost same as that with the 1/4th of
load increment. Blue and Orange lines are results with different lengths of initial cracks.
Initial slope of load–displacement curve was constant, which means that the crack did not
start to propagate. The stiffness gradually decreased after the crack started to propagate.
The peak points were different for 2 lengths of initial cracks because of difference of initial
stiffness of the beams, but the same path was tracked during the crack propagation in the
2 analyses.
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Table 3 shows number of iterations and CPU time required for each analysis case. Iter-
ations required for analyses with different load steps were not significantly different when
number of elements were the same. For example, difference between number of iterations
in analysis cases 2 and 5 was about 8%. This is because 1 or 2 iterations were needed to
calculate failure of a single element regardless of the size of load steps. Therefore, similar
number of iterations were requited in analyses with the same number of failed elements.

Table 3. Comparison of computational costs for analyses of DCB with different conditions.

Analysis
Cases

Number of
Elements

Number of
Load Steps

Initial
Crack (mm) Iterations CPU Time

(s)

1 2700 100 30 1548 1855.68
2 5500 100 30 1455 3419.63
3 10,200 100 30 2213 9550.84
4 2700 25 30 1263 1354.59
5 5500 25 30 1569 3413.81
6 10,200 25 30 1463 6094.47
7 2700 25 60 840 925.51
8 5500 25 60 1128 2494.51
9 10,200 25 60 1182 4970.65

3.3. Discussion on Characteristics of the Present Methodology
3.3.1. Applicability to Unstable Damage Propagation

The present method was developed mainly to conduct analyses in which damage
unstably propagates such as Open-Hole Compression tests by an implicit static FE solver.
The objective was fulfilled as follows. In one of previously mentioned numerical studies,
implicit static FE solver was used to analyze tests of open-hole specimens [26]. In the
study, it is mentioned that converged solution was not obtained when damage unstably
propagated at final failure. Another study adopted hybrid solution scheme in which
solution scheme was changed from implicit scheme to explicit scheme when the solution
was not converged [32]. The study mentioned that this capability was invoked for analyses
of open-hole specimens. In the present study, damage started to propagate at point (a) in
Figure 9, and equilibrium state after the abrupt drop of the nominal stress was obtained at
point (b). After that, the stress started to stably increase again with the strain increment.
This result means that the unstable damage propagation during a step of an analysis was
successfully tracked with an implicit static solver, and a state of mechanical equilibrium
after the final failure of the 0-degree layer was successfully reached.
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3.3.2. Dependency on Mesh Density

In the present study, averaged energy release rate in an element is calculated to
evaluate condition of damage propagation with reference to the smeared formulation
proposed by Pinho et al. [24]. This method was adopted in the aim of a reduction in the
dependency of the solution on mesh density. The dependency in the present study was
expectedly small as the previous study reported. In Figure 10, the results became closer
to the reference results as mesh density was increased. However, the difference between
the results was small for the difference of number of elements as many as 2 times. The
difference in peak loads between the analyses with 2700 and 5500 elements was about 7%,
and that between the analyses with 5500 and 10,200 elements was about 1%. These results
indicate that the dependency is sufficiently small to apply the present method to analyses
with a wide variety of element sizes without losing accuracy.

3.3.3. Dependency on Loading History

Implicit FE solvers are computationally more effective than explicit FE solvers for
phenomena at a low velocity because it can use relatively large time steps without a
significant loss of accuracy [26]. With this reason, the hybrid scheme in the previously
mentioned numerical study uses an implicit scheme at first and changes to an explicit
scheme only when it faces convergence problems [32]. Therefore, it is advantageous if
implicit solvers can be used without worry of the convergence problems. The results in
Figure 11 showed that the size of load steps did not affect the solution of the present
method. In Figure, the result with a larger load step is the same as the result with a load
step as small as 1/4th of the larger one. The figure also shows that a single state of the
mechanical equilibrium was reached regardless of the different initial conditions. It is
observed from Table 3 that the total number of iterations does not significantly change with
respect to the size of load steps. These results indicate that the present method derives
the solution without dependency on loading history such as the size of the load steps and
initial conditions. This characteristic of the present method will contribute to a reduction in
computational costs.

4. Conclusions

A method for analyses of unstable damage propagation in fiber-reinforced plastics
with an implicit static FE solver was proposed. The algorithm and formulation were imple-
mented in commercially available code by user subroutines. The feasibility of the method
was validated by two numerical examples. The following conclusions were obtained from
the study.

• The method is applicable to the problems of unstable damage propagation, which are
usually difficult to solve by an implicit static FE solver.

• The dependency of solutions on mesh density with the present method is so small
that it is applicable to analyses with a wide variety of element sizes without losing
accuracy.

• A solution by the present method reaches a single state of mechanical equilibrium in
analyses without dependency on loading history.

• In further research, this method is going to be applied to analyses of Filled-Hole Com-
pression tests in which one of the major challenges is modelling the contact between
the hole and a fastener inserted in the hole. The present method will contribute toward
coping with this challenge because it enables an implicit FE solver to calculate unsta-
ble damage propagation with reasonable consideration of the contact conditions. In
addition, the mesoscopic constitutive law for fiber compressive damage at the contact
point is going to be further studied.
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