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Abstract: Beta regression models are a class of supervised learning tools for regression problems with
univariate and limited response. Current fitting procedures for beta regression require variable selection
based on (potentially problematic) information criteria. We propose model selection criteria that take
into account the leverage, residuals, and influence of the observations, both to systematic linear and
nonlinear components. To that end, we propose a Predictive Residual Sum of Squares (PRESS)-like
machine learning tool and a prediction coefficient, namely P? statistic, as a computational procedure.
Monte Carlo simulation results on the finite sample behavior of prediction-based model selection criteria
P? are provided. We also evaluated two versions of the R? criterion. Finally, applications to real data are
presented. The new criterion proved to be crucial to choose models taking into account the robustness of
the maximum likelihood estimation procedure in the presence of influential cases.
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1. Introduction

The class of nonlinear beta regression models was proposed by [1] and extended to situations in which
the data include zeros and/or ones by [2,3]. Shortly thereafter, [4] developed for the class of nonlinear beta
regression model residuals and measures of local influence. Local influence proposed by [5] is a decisive
scheme to select the model that fit well a dataset, takes into account that the estimation process is robust
in influential cases. Indeed, the final conclusion about model selection should consider the analysis of
influence. The model selection is a crucial step in data analysis, since all inference performance is based on
the selected model. [6] evaluated the behavior of different model selection criteria in a beta regression
model, such as the Akaike Information Criterion (AIC) [7], Schwarz Bayesian Criterion (SBC) [8] and
various approaches based on pseudo-R2.

However, it is common for models selected by the usual selection criteria to present poorly fitted
or influential observations. Indeed, the best models selected by the usual criteria do not always present
residual plots that validate the goodness-of-fit. Also, current fitting procedures for beta regression
are infeasible for high-dimensional data setups and require variable selection based on (potentially
problematic) information criteria. Furthermore, the usual selection criteria do not offer any insight about
the quality of the predictive values. In this context, [9] proposed the PRESS (Predictive Residual Sum of
Squares) statistic, which can be used as a measure of the predictive power of a model. [10] proposed a
coefficient of prediction based on PRESS, namely P? that is similar to the R? approach. The P? statistic can
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be used to select models from a predictive perspective [11]. Moreover, the PRESS statistic presents a close
relationship with the Cook distance [12] and local influence measures [5], as we shall present here. Hence,
the P? statistic is a selection criterion that takes into account the impact of the observations poorly fitted by
the model, observations with atypical residuals, and cases that exert a disproportional effect on the model
estimation process, even affect the inference conclusions, influential cases.

Our main goal is to introduce a PRESS-like machine learning tool and its associated P? statistic, as a
coefficient of prediction for the class of nonlinear beta regression models. The P? statistic is used as a
selection criterion for beta regression. We carried out Monte Carlo simulations to evaluate the behavior of
the P2 measure, as well as the behavior of two usual R?-like criterion, namely: the R% z [6] and R%—"C [13].
We considered a variety of simulation scenarios, as different ranges for the response mean, several sample
sizes and values to the precision parameter, five link functions and different model misspecifications.
Finally, we present and discuss two applications to real data.

The simulation and application data set results showed that small values of the new criterion are
an indication that the robustness of the maximum likelihood estimation procedure of the model in the
presence of influential points is worthy of further investigation. This information could not be accessed
by usual selection criteria. However, the issue about variability is still better accessed by R?-like criteria.
Thus, the best machine learning strategy is to use the three criteria discussed here to choose the best model,
once each one holds on different information.

2. P2 Criterion

Consider the linear model Y = Xp + ¢ as the supervised learning procedure, where Y is a vector n x 1
of the responses, X is a known matrix of covariates (measured features) of dimension n X p of full rank,
B is the parameter vector of dimension p x 1 and ¢ is a vector n X 1 of errors. We have the least-squares
estimators: B = (X' X) !XTy, the residual r; = y; — x; B and the predicted value 7j; = x; B, where
xtT = (xp1,---, xtp), and t = 1,...,n. Notice that we found these quantities in one shot, without doing
any sort of iterative optimization. Let B(t) be the least-squares estimate of B without the tth observation
and 7y = x; B(t) be the predicted value of the case deleted, such that r(;) = yt — ¥4 is the prediction
error. Thus, for multiple regression, the classic Predictive Residual Sum of Squares statistic named here as
PRESS( is given by

n n 2
PRESSc = Y-8y = 1o 710 = (125 ) )
t=1 t=1 t
where ¢ is the ordinary residual obtained by regressing y on X and hy; is the tth diagonal element of the
projection matrix X(X ' X)~1XT of this regression.

Now, let y1,...,y, be independent random variables, such that each y;, for t = 1,...,n, is beta

distributed denoted by y; ~ B(u¢, ¢1), i.e., each y; has density function given by

T _
fye pe, dr) = F(]/lt(Pt)F(((qblt)— ]/lt)(Pt)yilt(pt 1(1 —yt)(lfm)%fl, 0<yr <1, 2

where 0 < yy < 1and ¢ > 0. Here, E(y;) = pt and Var(y;) = V(pr)/ (1 + ¢1), where V(ue) = pe(1 — pe).
Ref. [1] proposed the class of nonlinear beta regression models in which the mean of y; and the precision
parameter can be written as

glu) == fi(x[;B) and h(gr) =1t = falz!, ), t=1,....n, ®)

where B = (B1,...,Br) and v = (71,...,74)" are, respectively, k x 1 and g x 1 vectors of unknown
parameters (B € RK; v € RY), #1; and #y; are the nonlinear predictors, xt—r = (x4, . ..,xtkl) and th =
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(za, - -rth1) are vectors of covariates (i.e., vectors of known variables), t =1,...,n,k; <k, g1 < gand
k+¢q < n. Both g(-) and h(-) are strictly monotonic and twice differentiable link functions. Furthermore,
fi(+), i = 1,2, are differentiable and continuous functions, such that the matrices J; = 951/9p and
Jo = 912 /97 have full rank (their ranks are equal to k and g, respectively). The model’s parameters can be
estimated by maximum likelihood (ML). In the Appendix, we present the log-likelihood function, the score
vector and Fisher’s information matrix for the nonlinear beta regression model. Model (2)-(3) embodies
the beta regression linear model with varying dispersion when the predictors are linear functions of the
parameters. In this case, g(ut) = 71; = x/ B and h(¢:) = z, 7. If, in addition, the predictor for y; is linear
and ¢ is constant through the observations, we arrive at the beta regression model defined [13].

The beta regression likelihood is inherently nonlinear and there are no closed form expressions for the
ML estimators, and their computations should be performed numerically using a nonlinear optimization
algorithm for machine learning, e.g., some form of iterative Newton’s method (Newton-Raphson, Fisher’s
scoring, BHHH, etc.). To propose a PRESS-like statistic for beta regression, we shall explore the relationship
between the Fisher iterative ML scheme and a weighted least square regression. This regression considers
pseudo variables as proposed [14] to build a Cook-like distance that have been used in several classes of
regression models. Fisher’s scoring iterative scheme used for estimating 8, both to linear and nonlinear
regression model, can be written as

‘B(m-i-l) _ ﬁ(m) + (Ké"g))—lu(m)(ﬁ), @

where m = 0,1,2,... are the iterations which are carried out until convergence. The convergence happens
when the difference |8("+1) — B(")| is less than a small, previously specified constant.

From Appendix’s expressions (A1), (A2) and from (4), it follows that the mth scoring iteration for j,
in a class of nonlinear regression model is defined as

B = B+ (T @WL) T @T(y" — i), 5)
where the tth elements of the vectors y* and y* are

yi =log{y:/(1—yr)} and pi =o(pepr) — (1 —pe)pe), t=1,...,n, (6)

® = diag(p1,...,¢n), T = diag(1/¢ (u1),...,1/¢ (un)) J1 = 01 /0B, W = diag(wy, ..., wy), wr given in
Appendix, expression (A3). Furthermore, ®, W, J;, T and p* are evaluated at .
Ref. [14] suggests that we rewrite the iterative process in (5) by defining the following vector

ugm) = ]1,8(’”) + W’lT(y* — u*) such that the equation in (5) becomes
Bt — (Towy) e wul™. (7)

Upon convergence, we may write the ML estimator of j as

-~

ENYY -15 AT r} ~S—1la %
B=(J]OWJ) '®]{ Wuy, where u; =J1g+W T(y* —i*). ®)

Here, W, dAD, T and Tl are the matrices W, ®, T and J;, respectively, evaluated at the ML estimators of
and . We note that § in (8) can be viewed as the least-squares estimator of  obtained by regressing the
pseudo observation vector

y+ = @1/2W1/2u1 on ;' = &Dl/zwl/zh. 9)
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Since we had the expression of B in (8), several quantities related to the pseudo regression in (9) may
be obtained, as the ordinary residual, the projection matrix, the ;) and the prediction error. Following [14]
we have that

Buy =P — (U W) ugt 201 201/ (1 — hyy), (10)

in which ]|} is the tth row of the J; matrix, hj; and rf , are respectively, the tth diagonal element of the
projection matrix H* = (W®)1/2];( ]1<IA>W]1)_1]1T (®W)/2 and the tth ordinary residual of the pseudo
regression in (8) given by

B _ 21/251/2 1/2 A1/2]1tﬁ _ — B 11)

r, = W, UL —
t t t , \/> ’
Ot

where 1, ; the tth element of the vector u; and v; are given in (8) and (A3-Appendix), respectively. We note
that yu* = E(y* ) = Var(y;) and rf in (11) is the standardized weighted residual 1 [15]. In what follows we
able to define ¥/, y( H= 1/ 2 Al/ 2 ]ltﬁ and the prediction error

T’Ert) =yl - l/(t) = 1/2 1/2 Uyt — Al/zAl/zhtﬁt (12)

Plugging (10) quantity in (12) we then obtain that rELt) is

TSN 17 a1/251/2,p
f o4 /24172 512012 ~ A} PW) " ey "W, "y }
Yo = t/ wt/ U — / /]1t{18_

G (1)
oy ~ ~1/2
201 2, , — G121/ {01701 21 U OW )~y @} 1]}
Tt t 1t — ]ltﬁ (1 _ h?t)

=P (L= hgy) =P 71— ).

Finally, for the nonlinear beta regression models, the PRESS-like statistic becomes as

2
n N n rﬁ
PRESS = Y (v} — 91" = 1 (1—th> | o
t=1 t=1 t
It is noteworthy that based on (11) the expression in (13) may be written as
B 2
(1)
_ p.t

PRESS = t; i (14)
in which .

T’ﬁ Ye — W (15)

PV = hy)

It is important to emphasize that r + in the PRESS expression given in (14) is the standardized weighted
residual 2 proposed by [15] which outperforming the others beta regression residuals in their numerical
evaluation. In special, outperforming the ordinary residual (y; — i) /+/Var(y:). The weighted residuals
are constructed using the difference between the logit of the responses and their fitted means, the main
qualities of beta distribution. The same holds to the proposal for the PRESS-like statistic to the class of
beta regression.
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Indeed, the PRESS also has relationships with influence measures [16]. Ref. [12] use a version
of the likelihood displacement [17] to build the Cook’s distance that measures the impact of a given
observation on the parameter estimates of the mean sub-model by removing it from the data. Based on
approximations for the likelihood displacement, the Cook-like distances have been proposed for several
classes of regression models. Focus on beta regression models [18] obtain an approximation for the version
of likelihood displacement to build the Cook’s distance given by

() . (h)? Lp,

LD; = = 1
BT S A te
plugging (16) measure in (13) we thus obtain that
", LD
PRESS = , 17
5 )

in which LD; is the Cook-like distance to the class of beta regression. Furthermore, Ref. [19] shown that
LD; =~ Cy in which C; is the total local influence of observation t, defined in (A4). Thus, PRESS ~ Y} , I%,
which clarify the relationship of this statistic with the local influence measures. Ref. [19] also suggest
that observations such that C; > 2Y /' ; C;/n can be taken to be individually influential. We shall take
the same threshold pattern to highlight influential observations on the index plots of Cook-like distances.
When the predictors in (3) are linear functions of the parameters, i.e., ¢(u:) = x/ g and h(¢:) = z/ 7,
the expression in (17) also represents the PRESS-like statistic for the class of the linear beta regression
models with p = k 4 g unknown regression parameters.

Considering the same approach to build the determination coefficient R? in linear models, Ref. [10]
define a prediction measure based on the PRESSc statistic in (1) as P(Z: = 1 — PRESS:/S ST,
where SST(;y = Y1 () — 0 )2, with Y1) being the arithmetic mean for n — 1 values of y;.

Based on this idea, for beta regression models we must use the pseudo regression procedure defined

in (9) to build the P?-like coefficient as

p2_q_ PRESS a8
ST},

where SS T(th) =YY",y - y{t))z, with y{t) being the arithmetic average for n — 1 values of the vector

yt = &Dl/zwl/zul by excluding the tth observation. It can be shown that SST(th) = (n/(n—p))?SSTT,
wherein p is the number of model parameters and SST is the Total Sum of Squares for the full data. For the
class of nonlinear beta regression models, SST = Y7, (yf — 7")2, where 3" is the arithmetic average of
they!, t = 1,...,nand p = k + q. Please note that P? given in (18) is not a positive quantity. Indeed,
the PRESS/SS T+(t) is a positive quantity, thus the P? take values in (—o0; 1]. The closer to one, the better
is the predictive power of the model.

To compare the behaviors of the P? defined in (18) and R?-like criteria we consider at the outset
two versions of pseudo—R2 based on the likelihood ratio. The first one was proposed by [20] as R% R=
1— (Lyu/L fit)z/ ", where L, is the ML achievable (saturated model) and Ly;; is the likelihood achieved
by the model under investigation. The second version is a proposal of [6] that takes into account the
inclusion of covariates both in the mean and in the precision sub-models, is given by: R? R =1-(1-

1
R?:) (n_(l +o¢)nk:1(1—a)q1) , where « € [0,1] and § > 0. Based on simulation presented by the authors
we chose a = 0.4 and 6 = 1. We also consider the R2, which is defined as the square of the sample
coefficient of correlation between g(y) and 7 [13], and its penalized version based on [6] given by

R%CC =1-—(1—R3:)(n—1)/(n— (k1 +q1)), where ki and ¢; are, respectively, the number of covariates
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of the mean and dispersion sub-models. By analogy, we define the penalized version of P? given by
PE=1-(1-P)(n=1)/(n— (ki +q)).

3. Simulation Study

The Monte Carlo experiments present in this section were carried out using both fixed and varying
dispersion beta regressions as data generating processes, as well as linear and nonlinear models.
All simulations were carried out using the 0x matrix programming language [21]. The number of Monte
Carlo replications is 10,000. Our goal is simultaneously to assess the performance of the P2, RZ- and R?
criteria, and, additionally, which values, on average, these statistics could assume under different data
settings and features of the regression model. To that end, at the outset, we present the average values of
the statistics as the arithmetic mean of the Monte Carlo replicas. Also, we provide information about the
distributions of the statistics by a boxplot analysis.

Since the upper limits of all statistics are equal to one, a performance evaluation criterion for these
measures is that their values go to one if the model is correctly specified and far from one otherwise.
The mean values of the statistics are especially useful when the scenarios considered in the simulations
occur in the real data analysis.

3.1. Linear Setting: Fixed Dispersion, Omitted Covariates and Link Functions

Table 1 shows the mean values of the statistics obtained by simulation of the constant dispersion beta
regression model that involves a systematic component for the mean given by

log (1?;“) =B1+Brxp+PB3xiz+Paxu+Psxs, t=1,...,n, (19)

that is based on logit link function. The covariate values were independently obtained as random
draws of the following distributions: X;; ~ U(0,1), i = 2,...,5 and were kept fixed throughout the
experiment. The precisions, the sample sizes and the range of mean response are, respectively, ¢ =
(20,50,150,400,1000), n = (40,80,120,400), » € (0.005,0.12), u € (0.90,0.99) and u € (0.20,0.88).
Under the model specification given in (19) we investigate the behavior of the statistics by omitting
covariates. In this case, we considered the Scenarios 1, 2, and 3, in which are omitted three, two, and one
covariate, respectively. In a fourth scenario, the estimated model is correctly specified.

The results in Table 1 show that the mean values of all statistics increase as important covariates are
included in the model and the value of ¢ increases. On the other hand, as the size of the sample increases,
the model misspecification is evidenced by lower values of the statistics (Scenarios 1, 2, and 3). It shall be
noted that the mean values for all statistics are considerably larger when u € (0.20,0.88). Additionally,
their values approach one when the estimated model is closest to the true model. For instance, in Scenario
4 for n = 40, ¢ = 150 the values of P? and R?}; are, respectively, 0.936 and 0.947.

The behavior of the statistics for finite sample size changes substantially when i € (0.90;0.99). It is
noteworthy the reduction of its mean values, in special to the P? criterion when y =~ 1 revealing the
difficulty in fitting the model in this range of . Even under true specification (Scenario 4) the P? criterion
identifies unmistakably some problem in the model-fitting when u ~ 1. For instance, when n = 80 and
¢ = 50, we have P? = —0.007 and R%RC = 0.542. The same feature occurs when p € (0.005,0.12).
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Table 1. Mean values of the statistics. True model versus misspecification models (omitted covariates
(Scenarios 1, 2, and 3)). The model estimated correctly: Scenario 4.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Estimated g(ue) = B1+Paxrn  g(ut) =P1+Paxn  g(pt) =P1+Baxnn () = P1+ Paxpp+
model +B3 x13 +B3x3+ Paxyy  Baxiz+ Paxy + Bsxis

ue€(020,088); B=(-191210,1.1,13).
no ¢ 20 50 150 20 50 150 20 50 150 20 50 150
P2 0307 0363 0393 0393 0463 0502 0506 0.602 0.656 0.694 0.847 0.936
P2 0270 0329 0361 0342 0418 0461 0450 0557 0.617 0.649 0825 0.927
RZ, 0296 0358 0391 0394 0473 0515 0518 0.620 0.675 0.723 0869 0.947

0 R%RC 0.258 0.324 0.358 0.344 0429 0475 0463 0.577 0.638 0.682 0.849 0.939
P2 0.286 0.346 0.379 0368 0.445 0488 0506 0584 0.643 0.666 0.833 0.930
p? 0.267 0.329 0.363 0.343 0423 0468 0450 0.561 0.624 0.643 0.821 0.925
80 R%R 0.291 0.356 0.391 0.385 0.468 0513 0.518 0.614 0.672 0.706 0.860 0.943

R?, 0273 0339 0375 0361 0447 0494 0463 0593 0655 0.686 0851 0939

u € (090,099); p=(18121,11,09).
noo¢— 20 50 150 20 50 150 20 50 150 20 50 150
P2 0119 0061 0.071 0139 0062 0072 0171 0072 0.156 0.149 0.089 0.213
P2 0071 0010 0021 0.067 —0.016 —0.006 0.076 —0.034 0.059 0.023 —0.045 0.097
RZ, 0164 0196 0243 0221 0266 0336 0271 0374 0466 0444 0593 0.774

0 R%RC 0.119 0.153 0.203 0.157 0.205 0.281 0.188 0.303 0.405 0.362 0.533 0.741
P2 0.093 0.036 0.044 0.112 0.038 0.046 0.149 0.045 0.120 0.123 0.056 0.175
P? 0.070 0.011 0.019 0.077 0.000 0.008 0.103 —0.006 0.073 0.063 —0.007 0.119
80 R%R 0.158 0.190 0.240 0.211 0.253 0.327 0.268 0.356 0.451 0416 0.571 0.760

R?, 0136 0169 0221 0180 0224 0301 0229 0321 0422 0376 0542 0744

u € (0.005,012); B=(-15-12,-1.0,—1.1,-13).
no ¢ 20 50 150 20 50 150 20 50 150 20 50 150
P2 0128 0063 0.056 0.108 0059 0028 0.153 0.070 0202 0.149 0.090 0212
P2 0.081 0013 0005 0.033 —0.020 —0.053 0.056 —0.036 0.111 0.023 —0.044 0.09%
RZ, 0199 0215 0254 0265 0349 0379 0326 0415 0548 0442 0595 0.774

0 R%RC 0.156 0.172 0.214 0204 0295 0327 0249 0348 0496 0360 0.535 0.741
p? 0.105 0.040 0.032 0.083 0.043 0.012 0.128 0.038 0.165 0.123 0.057 0.174
p? 0.081 0.015 0.006 0.047 0.005 —0.027 0.081 —0.013 0.121 0.064 —0.007 0.119
80 R%R 0.197 0.211 0.251 0253 0340 0372 0.311 0.394 0534 0416 0.572 0.760

R%RC 0.176 0.191 0.231 0223 0314 0347 0274 0362 0509 0376 0.543 0.743

In what follows, we shall investigate the empirical distributions of the statistics: pP?, PC2, R% R R% R
R2. and R%CC under the correctly specified modeling (scenario 4) in Table 1, for n = 40 and ¢ = 150.
These results are shown using boxplots of 10,000 values of the statistics obtained from the Monte Carlo
simulations (Figure 1). The mean value of the statistic replications is represented by a dot on the side of
each boxplot. In panels (a), (b) and (c) we present the boxplots for i ~ 0, u scattered on the standard unit
interval and for y ~ 0, respectively.
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Correct specification Correct specification Correct specification
pe (0.01,0.20) pe (0.20,0.88) we (0.80,0.99)
* * * 3 & - - - - - - + 2
B B 5 ¢ i R T B & 5
Ao R A i o B
ol b (| i . H B H H H ol | i 11 i
o | B‘ 37 H ! : 2 E’
R Sy T
I %— wn
3 ' S I ] § 1
T g © H
T

T T T T T T T T T T T T T T T T T
2 2 2 2 2 2
Pt P% Rl Ria RE FRic, Pt P% REy Rin REc Ric, Pt P% Ry Rin R Rec,

(a) (b) (©

Figure 1. Correct specification: g(pit) = B1 + B2 X2 + B3 X3 + Ba Xpa + B5 x5, n = 40, ¢ = 150. (a) p =~ 0;
(b) u scattered on the standard unit interval; (c) u ~ 1.

Figure 1 shows that the means and medians of all statistics are close, thus the mean values of the
statistics adequately represent their behavior in these scenarios. We also notice that both P? and R?
criteria are so small, for models correctly specified when y is close to the boundaries of the standard unit
interval (Figure 1). However, it is noteworthy how the P? values are substantially smaller than the R2-like
criterion values.

When the mean response is concentrated on the boundaries of the standard unit interval, even when
the model is correctly specified, the statistic of prediction assumes negative values, panel (a) and panel (c).
Based on panel (b) (4 € (0.20,0.88)), it can be seen that when the response mean response is scattered on
the standard unit interval, the behavior of the prediction statistic is very different, with values much more
concentrated nearby one. The same behavior occurs for the goodness-of-fit measures. RZ. and R? .

In Figure 2 we consider a misspecification problem (three omitted covariates). For illustration,
we consider only ¢ = 50 and n = 40, 80,120,400, u € (0.20,0.88). We notice that when three covariates are
omitted, with the increasing of sample size, the replication values of the statistics tend to concentrate at
small values, as expected due to the misspecification problem.

We notice that typically the mean and the median of the 10,000 values of the statistic is closed,
confirming the usefulness of the mean values to describe these measures. When n = 400 (panel
d), the values of all statistics tend to concentrate around a value far from 1, i.e., around 0.3, and 0.4.
It behaves noteworthy as the prediction and determination coefficients behave equally in this scenario
(1 € (0.20,0.88)).

In Figure 3 we consider p € (0.01,0.20) and the model is estimated correctly, n = 40 and ¢ =
(50,150,400, 1000). We notice that the values of the R2-like statistics become more concentrated and closer
to one as the value of ¢ increases. Nonetheless, the behavior of P? statistics is quite different. Even when
¢ = 400 this measure displays negative values (panel(c)). These observations that present P> negative
values are cases, poorly fitted by the model and potential influential cases. It is noteworthy that cases
poorly fitted by the model can befall in despite of that ¢ = 1000 (Figure 3d). The statistics present the same
feature when y ~ 1.
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Incorrect specification
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Incorrect specification
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Figure 2. Omitted covariates. Estimated model: g(j;) = B1 + B2 4. Correct model: g(p;) = B1 + B2 X2 +
B3 x13 + Ba xpq + Bs xs5; u € (0.20,0.88); ¢ = 50. (a) sample size n = 40; (b) sample size n = 80; (c) sample
size n = 120; (d) sample size n = 200.
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(b) ¢ = 150; (c) ¢ = 400; (d) ¢ = 1000.
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To summarize, at the outset, we shall consider the response mean around 0.5. When the model is
correctly specified, the P2 have their values close to one, especially when the model precision or sample size
increases. When the proposed model omits important covariates, the P? values tend to depart considerably
of one and stay below 0.5. The measure R%- and R?, present similar behavior. On the other hand,
when the mean of the response is concentrated near zero or one, the P? values differ considerably from
one, taking negative values even when the model is correctly specified, revealing as it is difficult make
prediction close to the boundaries of the unit interval.

Indeed, scenarios in which the model present large dispersion and a substantial concentration of
values on one of the boundaries of the standard unit interval tend to present influential observations.
In these situations, Ref. [22] argue that for the beta regression models the ML parameter estimation
based on the BFGS nonlinear optimization algorithm proved to be typically not robust in influential cases.
The P? criterion is based on the PRESS-like statistic which presents a relationship both with residuals
and influence measures. In this sense, this new criterion that we proposed for the beta regression models
outperforms the R? and R%. in identifying problems on fit the model when y ~ 0 or y =~ 1 and the
precision is not so large. However, this fact does not disable the use of R?-like statistics. The P? criterion
can be viewed as a measure of model bias whereas the R? is a quantifier of the model variance. What we
emphasize is that we must also consider the P? criterion to select the model that best fit a dataset. In the
applications we shall present results that show as the R? and P? criteria contain different and important
information about the model-fitting.

Another important question is the link function to the mean sub-model. All simulations, we carried
out until now were based on logit link function. In what follows, we present Monte Carlo simulation
results in which we consider other link functions, namely: probit, complementary log-log, log-log,
and Cauchy, respectively defined as g(u) = ®~!(u), g(4) = —log{—1log(u)}, (1) = log{—log(1 — u)}
and g(¢) = tan{7t(p — 0.5)}. It is important to emphasize that the same link function is used both to
generate the response observations and to fit the model. Our goal is to evaluate the performance of each
link function on different ranges of mean and dispersion response, in special we aim to identifying if the
link function is related to the problems in fitting the beta regression model when the response is close of
the boundaries of the standard unit interval. Thus, we must fit the model correctly.

The results presented in Table 2 showed that when the response mean is close to one, the use
of complementary log-log function leads to models with better predictive power as well as better
goodness-of-fit. On the other hand, if the mean is close to zero the best results are provided by the
log-log link function. When the mean is scattered on the standard unit interval both the probit and
logit functions perform well. The Cauchy model performance well only when i € (0.20,0.80). Thereby,
we can deduce that the link function is related with the small values the P? criteria when p = 0 and
u ~ 1 displayed in Table 1, since all scenarios were fitted by the logit model. Thus, the appropriate link
function can improve the robustness of the ML estimation procedure of the beta models in the presence of
influential points. It is noteworthy that these conclusions are supported on the P? criterion.
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Table 2. Mean values of the statistics. True model: g(y¢) = B1 + Ba X2 + B3 X3 + Pa Xta + P5 X5, Xpj ~
u(,1), i=2,3,4,5 t=1,...,nand ¢ constant across observations.

u— u € (0.005,0.12) u € (0.20,0.88) u € (0.90,0.99)
no ¢ — 20 150 400 20 150 400 20 150 400
Probit

P2 0281 0561 0759 0610 0913 0966 0282 0562 0.759
P2 0222 0525 0.739 0578 0905 0963 0222 0.525 0.739
R%R 0392 0.792 0910 0.599 0912 0966 0394 0.792 0910

0 R%RC 0.341 0.774 0903 0.566 0905 0.963 0.344 0.775 0.903
R%-. 0389 0791 0910 0599 0912 0965 0391 0.791 0.910
R%CC 0.338 0.773 0902 0.565 0905 0.963 0.340 0.773 0.902

C-Log-Log
P2 0109 0.195 0.343 0535 0.883 0953 0370 0.694 0.851
P?  0.035 0.128 0288 0497 0.873 0949 0317 0.668 0.839

10 R?, 0370 0780 0905 0574 0903 0962 0.333 0.741 0.884
R%RC 0.260 0.741 0.888 0.499 0.886 0.955 0216 0.696 0.863
R%. 0362 0773 0902 0574 0903 0962 0.327 0.739 0.883
R%CC 0.308 0.754 0.893 0.539 0.895 0.959 0271 0.717 0.873

Log-Log
P2 0370 0.694 0.851 0536 0.883 0953 0.109 0.196 0.342
P2 0318 0.668 0.839 0497 0873 0949 0.034 0.129 0.287

m R?. 0334 0742 0884 0574 0903 0962 0370 0.780 0.905
R%RE 0.279 0.720 0.874 0.538 0.895 0.959 0.318 0.762 0.897
R%. 0327 0739 0883 0574 0904 0962 0362 0.774 0.902
R%CC 0271 0718 0.873 0.539 0.896 0.959 0.308 0.755 0.893

Cauchy
P2 0.031 0158 0.330 0511 0.877 0951 0.031 0.158 0.330
P?  0.006 0.136 0313 0498 0874 0949 0.006 0.136 0.313
40 R?, 0183 0556 0769 0599 0913 0966 0.182 0557 0.768

R%RC 0.161 0545 0.763 0.588 0911 0965 0.161 0.546 0.762
R%C 0.080 0.460 0.702 0.561 0.905 0963 0.081 0.460 0.702
R%—‘Cc 0.057 0446 0.694 0549 0903 0962 0.057 0.446 0.694

3.2. Linear Setting: Varying Dispersion

In this section, we shall report simulation results to beta regression models with varying dispersion.
All results were obtained using 10,000 Monte Carlo replications. Under model misspecification,
the true data generating process considers varying dispersion, but a fixed dispersion beta regression
is estimated. We also used different covariates in the mean and precision sub-models. The sample
sizes are n = 40,80,120. We generated 40 values for each covariate and replicated them, once, twice,
and three times, respectively, to get covariate values for n = 80 and n = 120. Using this procedure,
the intensity degree of nonconstant dispersion A = max{¢1, ..., ¢, }/ min{¢1, ..., ¢, } remains constant as
the sample size changes. The numerical results were obtained using the following beta regression model:
g(‘lxlt) = log(yt/(l - }lt)) = B1 + Bi x4, and 10g(§bt) = Y1+ ViZti, Xti ~ U(O,l), Zyp ~ U(—0.5,0.5), i=
2,3,4,5,and t = 1,...,n under different choices of parameters (Scenarios): Scenario 5: f = (—1.3, 3.2)T,
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u € (0.22,0.87), [y = (353.0)T;A ~ 20], [y = (35,40)";A ~ 50] and [y = (3.5,5.0)";1 ~ 150].
Scenario 6: B = (—19,1.2,1.6,20)", u € (0.24,0.88), [y = (24,12,-1.7,1.0)";A ~ 20], [y =
(29,2.0,-1.7,2.0) ;A ~ 50] and [y = (2.9,2.0,—1.7,2.8) ;A ~ 150]. Finally, Scenarios 7 and 8
(Full models): B = (-1.9,12,1.0,1.1,1.3)T, u € (0.20,0.88), [y = (3.2,2.5,—-1.1,1.9,22) ;A =~ 20],
[y = (32,25,-1.1,19,32)";1 ~ 50|, and [y = (3.2,25,1.1,1.9,4.0)"; A ~ 200]. Please note that
Scenarios 7 and 8 present the same generation data process. However, in Scenario 7 the dispersion is
estimated as a constant (misspecification) and in Scenario 8 the dispersion is correctly modeled.

In Table 3, we present the mean values for 10,000 statistic replications. In this table, we report the
results only for n = 40. Next, we presented boxplots for the 10,000 statistic replications to other sample
sizes. We are considering p close to 0.5. We notice based on Table 3 that under model misspecification
the statistics display smaller values in comparison with Scenario 8 (correct specification), in which as
greater is A greater are the values of the statistics, as expected. When the dispersion is postulated
as fixed, as the intensity degree of nonconstant dispersion increases, the mean values of the statistics
decreases, which correctly points out for the model misspecification. It is noteworthy that under correct
model specification the values of three statistics are so different. In special the P? values are greater
than the values of R2-like criteria. Furthermore, the values of the R%_-C are considerably smaller than the
values of the R%R, in special when A increases. For example, taking A = 20,50,200, n = 40 we have
R?, = (0.796,0.816,0.840) and R%- = (0.649,0.627,0.500) (Table 3-Scenario 8). Figure 4 supports this
evidence. When A and the sample size increase, for example n = 80 and n = 120, the values of P? criterion
tend to concentrate close to one, whereas the values of R% r and R%C tend to concentrate below 0.8 and
0.6, respectively.

Table 3. Mean values of the statistics. Misspecified models, ¢ fixed: Scenarios 5, 6 and 7 versus Scenario 8
(correct specification), n = 40.

Scenario 5 Scenario 6 Scenario 7 Scenario 8
g(ut) =P1+Poxp &) =P+ Paxpt glue) = P1+ Paxnt  g(ut) = Pr+ Paxin+
True +PB3 x13 B3 xi3 + Paxp B3 xi3 + PaXuu+ Psxis B3 Xi3+ Pa X + P5 x5
models () =71 +722z2 h(Pr) =71 +71220+ b)) =1 +7220+  h(P) =71+ 1220+
+Y3 23 +Y3213 + V4214 V3213 + YaZua + Y525 Y3Z3 T VaZu t V5215
gut) =P+ Poxex g(ue) = P1+ Poxo+  g(ue) = 1+ Paxpp+  g(pt) = P14+ Poxiot
Estimated +PB3 13 B33+ Paxrs  Paxz+ Paxu+ Psxis P3Xiz+ Paxia + P55
models h(¢r) =711+ 72200+

V3Z13 T Y4 Zs + V5215
A— 20 50 150 20 50 150 20 150 150 20 50 200
P2 0.759 0.718 0.674 0.545 0.565 0.523 0.638 0.624 0.529 0.885 0.906 0.914
PC2 0.739 0.695 0.647 0.493 0515 0469 0.585 0.569 0.460 0.851 0.878  0.888
R%R 0.782 0.743 0.700 0.580 0.611 0.577 0.670 0.653 0.554 0.796 0.816  0.840
R%R 0.764 0.722 0.675 0.532 0567 0.529 0.622 0.602 0.488 0.735 0.761 0.792
R%c 0.777 0.735 0.688 0.553 0.588 0.548 0.668 0.648 0.531 0.649 0.627 0.500
Rl%cc 0.759 0.713 0.662 0.502 0.541 0497 0.620 0.597 0.462 0.544 0.515 0.350
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We shall focus on n = 40, Figure 4e the true intensity degree of nonconstant dispersion is close to
200, with ¢max =~ 260 and ¢pin ~ 2, whereas A ~ 400 with (ﬁmax =730 and $min ~ 1.9, that is a substantial
distortion of the true intensity degree of nonconstant dispersion. Indeed, it is a substantial distortion of
the true variance of the response observations.

Since the R2-like criteria, select the model that can better explain the variability of the response, it is
plausible that these measures present lower values when the distortions between the true and estimated
variances of the response variable are so large. Please note that the R? R, takes several values smaller than
0.6 and the R%Cc even takes negative values whereas overall the values of P? are greater than 0.6 (Figure 4e).
Additionally, in this sense the R%. criterion proved to be more rigorous than the R?; criterion. This is
a strong evidence that models with small R and high R? values are worthy of further investigation.
Indeed, the best fitted model should display high and close values of the three criteria and of their
penalized versions.
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Figure 4. Correct specification: g(y¢) = B1 + Baxz + B3xiz + Baxta + Bsxis, h(Pr) = 1 + Yoz + Yozr2 +
V3213 + Yazea + 1525 (@) 1 € (0.20,0.80),n = 80,A = 20; (b) 1 € (0.20,0.80),n = 80,A = 200; (c) y €
(0.20,0.80), n = 120, A = 20; (d) 1 € (0.20,0.80), 1 = 120, A = 200; (e) # € (0.20,0.80), n = 40, A = 200.
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3.3. Nonlinear Setting

In what follows, we shall present Monte Carlo experiments for the class of nonlinear beta regression
models. The numerical results were obtained using the following beta regression model as data
generating processes:

x
log (it‘ut) =B +xtﬁ22 + Bslog(xiz — Ba) + ﬁ, t=1,...,n,
xpp ~ U(1,2), x;3 ~ U(4.5,34.5) and ¢ were kept fixed throughout the experiment. Here we use the
starting value scheme for the estimation by ML proposed by [23]. The precision and the sample size are
respectively ¢ = (20,50,150,400), n = (20,40, 60). Additionally, 8 = (1.0,1.9, —2.0,3.4, 7.2)" that yields
€ (0.36,0.98). To evaluate the criterion performance on account of nonlinearity negligence, we consider

the following model specification: log (1 £ ‘Ht> = B1 + Baxp + B3xi3. All results are based on 10,000 Monte
Carlo replications and for each replication.

We evaluated the behavior of the statistics both under model misspecification and under model
correct specification. The results displayed in Table 4 reveal that all statistics present values smaller when
the model is missspecified. For example, fixing the precision value of ¢ = 400, for n = 20, we have values
of P?, R%R and R%C equal to 0.576,0.700, 0.637, respectively. For n = 40 and n = 60 the values of the
statistics are 0.568, 0.698, 0.634 and 0.562, 0.698, 0.633, respectively. We simulated other nonlinear patterns
to the sub-model mean predictor, and in some simulations the three criteria did not present smaller values

of the feasible linear model than to the nonlinear model correctly specified.

Table 4. Mean values of the statistics. True model: ¢(y;) = 1 + xfzz + Bslog(xiz — Bs) + F2, x2 ~ U(L,2),
x3 ~ U(4.5,345), p = (1.0,1.9,-2.0,3.4, 7.2)T, u € (0.36,098), t =1,...,n, ¢ fixed. Misspecification:
g(ut) = B1 + B2 x12 + B3 x43 (omitted nonlinearity).

Estimated Model With misspecification: g(p¢) = B1 + B2 X2 + B3 X3 Correctly
n 20 40 60 60
¢ — 20 50 150 400 20 50 150 400 20 50 150 400 50 150 400
P2 0.485 0.535 0.564 0.576 0.438 0.508 0.550 0.568 0.420 0.496 0.543 0.562 0.849 0.936 0.975
P? 0.388 0.448 0.483 0.497 0.391 0.467 0.513 0.532 0.388 0.469 0.518 0.539 0.835 0.930 0.973
R%R 0.578 0.647 0.684 0.700 0.563 0.639 0.681 0.698 0.557 0.636 0.680 0.698 0.883 0.953 0.982
R%RC 0.499 0.581 0.625 0.643 0.526 0.608 0.654 0.673 0.533 0.616 0.662 0.681 0.863 0.945 0.979
R%—"C 0.486 0.574 0.619 0.637 0.448 0.556 0.612 0.634 0.437 0.550 0.609 0.633 0.879 0.951 0.981
R%{CC 0.389 0.494 0.548 0.569 0.402 0.519 0.580 0.604 0.407 0.526 0.588 0.613 0.867 0.946 0.979

4. Applications

4.1. Fluid Catalytic Cracking

The first application employs real data from the graduation work of [24], from Chemistry Department
of the Colombia National University. It is based on the Fluid Catalytic Cracking (FFC) process, considered
the heart of a gasoline refinery. [24] explains that the FCC process is used to convert hydrocarbons of high
molecular weight into small molecules of high commercial value, through the contact of hydrocarbons with
a catalyst. The zeolite USY is the major catalyst of the process. The FCC process also involves the vanadium
element, steam, and temperature. However, the vanadium on the catalyst decreases gasoline production.
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Is special, the vanadium affects the crystallinity of zeolite USY depending on steam concentration and of
the temperature during the process. The aim here is modeling the percentage of crystallinity of zeolite USY
(y), based on different concentrations of vanadium (x;) and steam (x3), and two values of the process
temperature (x4). Typically, the higher the vanadium and steam concentrations, the lower the percentage
of crystallinity. [22] modeled these data. At the outset, the authors fitted several linear beta regression
models and carried out the residual analysis which made clear the nonlinear trend. Thus, the authors
modeling these data using a logit nonlinear beta model defined as

g(pt) = B1+ Boxia/ (xp + B3) + Baxiz + Bav/Xs  and  log(¢r) = 11 + 71237y, (20)

t =1...,28. We fitted the model in (20) considering five link functions, namely: logit, probit, log-log,
complementary log-log (C-Log-Log) and Cauchy. We shall present only the logit and complementary
log-log model inferences (Table 5). Similar results are obtained by use the probit, log-log, and Cauchy link
functions. However, we report that the parameter v, was significantly different from zero, at the usual
nominal levels, only for the model with the Cauchy link function. On the other hand, to the models with
C-Log-Log and logit link functions the parameter 7,, is far to be significantly different from zero, p-value
equal to 0.404 and 0.200, respectively.

Table 5. Parameter estimates, standard errors (s.e.), relative changes in estimates and in standard errors
due to cases exclusions and respective p-values. Varying dispersion model.

Model C-Log-Log Logit
Br B2 B3 Bs Bs  m 2 | P P B3 B Bs M m
Full 090 -0.05 —269 —-0.16 —-032 405 026 |229 —-010 —269 —-029 —0.68 3.92 040
data 0.07 002 434 006 0.06 037 031|015 004 436 011 013 037 0.31
0.000 0.006 0.000 0.003 0.000 0.000 0.404 |0.000 0.010 0.000 0.007 0.000 0.000 0.200
Estimate and standard error changes (%) and p-values.
Obs. 21 -168 59 -304 26 95 —467| 27 -—-166 66 346 54 94 -259
1020 -131 108 02 -34 -76 78 135 |-74 138 05 1.1 —-46 78 135
22,28 del. 0.000 0.040 0.000 0.033 0.000 0.000 0.695|0.000 0.062 0.000 0.086 0.000 0.000 0.404
Obs. -07 -12 25 -130 -28 -06 -315| 1.7 -71 112 -546 91 87 1218
13,20 37 165 81 157 100 10 125 | 53 266 -239 —-43 103 1.0 127
23,27 del. 0.000 0.020 0.000 0.025 0.000 0.000 0.612 {0.000 0.061 0.000 0.210 0.000 0.000 0.012

Nevertheless, we computed the selection criteria for the five models and presented in Table 6.
The results in this table evidence that the values of the statistics are overall low, except to complementary
log-log model. Furthermore, the lower values of the P? statistic when compared with the values of R?-like
criteria, is special to logit model, is an indication of same misspecification on the fitted models. Thus,
from now on we shall focus on the complementary log-log and logit models.

In what follows, we shall perform residual and influence diagnostics for the fitted models based
on (20) and using the logit and complementary log-log link functions, see Figures 5 and 6, respectively.
The index plots of the Cook-like distances identify the observations {10,12,16,24} as influential, for the
two link function models. Furthermore, the case {20} is worthy of further investigation for logit model,
Figure 5¢,d. However, the most important information is provided by the normal probability plot for the
logit model in Figure 5b. Here there are two points on the boundaries of envelope bands, cases 22 and 28.
Typically, these are influential cases.
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Table 6. Criterion values. Nonlinear Model. Data on FCC.

Criteria Constant Dispersion Varying Dispersion
Logit Probit Log-Log C-Log-Log Cauchy | Logit Probit Log-Log C-Log-Log Cauchy
p? 042 055 0.22 0.70 0.09 020 033 0.31 0.66 0.51
p? 029 044 0.05 0.63 -01 | —-0.03 0.14 0.12 0.59 0.37
R2- 0.68  0.68 0.67 0.68 0.51 0.67  0.68 0.66 0.69 0.49
RZFCC 0.60 0.61 0.59 0.61 0.40 057 059 0.56 0.59 0.34
R, 0.69  0.69 0.68 0.70 0.65 070 071 0.70 0.71 0.70
R%RC 0.55 055 0.54 0.56 0.49 055 059 0.55 0.56 0.55

Based on the above analysis, we removed from the data combinations of the cases 10, 12, 16, 20, 22, 24,
28 (residual /Cook plots) and 13, 18, 23, 27 singled out additionally by the local influence plots (Figure 6)).
In Figure 6 we carried out the local influence analysis based on the perturbation simultaneous of the
covariate vanadium, which is present both in the mean and dispersion predictor.

C-Log-Log Function Logit Function C-Log-Log Function Logit Function
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Figure 5. Residual and Cook-like distance plots. Varying dispersion model. Data on FCC. (a) Envelope
band of weight residual and link function C-Log-Log; (b) Envelope band of weight residual and link
function Logit; (c) Cook-like distance and link function C-Log-Log ; (d) Cook-like distance and link function
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Figure 6. Local influence plots. Varying dispersion model. Data on FCC. (a) Simultaneous perturbation;
(b) Mean perturbation; (c) Dispersion perturbation.
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Thus, we fit the models after the exclusions. We take advantage of the information in Table 5,
where we present the relative changes (%) in parameter estimates and standard error estimates, as well
as the p-values after the exclusions that most affected the model-fitting. From Table 5 we note that the
estimation process of the complementary log—log model proved to be more robust to influential cases than
the estimation process of the logit model.

The set {10,20,22,28} impacts the estimates of B, and Bs for both models. However,
the complementary log-log model ensures the same inference conclusions whereas to the logit model these
parameters become non-significantly different from zero at the 5% level, in special B4(p-value = 0.086).
For the logit model, the set {13, 20,23,27} is still more influential. The exclusion of this set strongly affects
the estimates of 7y, such that the dispersion becomes varying and 4 and 3, become non-significant at the
20% and 5% levels, respectively. This fact is a strong evidence that the parameter estimates of the full data
logit model are biased. The P? selection criterion was able in identifying this bias pattern, what explains
the low value of this criterion to the logit model, even reaching a negative value for their penalized version.
Furthermore, this bias pattern is due to the non-robustness of the ML estimation process in the presence of
influential cases. We note also that the cases 20 and 28 highlighted on the limits of envelope bands proved
being influential cases revealing the importance of to evaluate this plot carefully. Thus, the nonlinear
model with varying dispersion does not seem to be a good option to these data. On the other hand,
the fit of a nonlinear model with fixed precision, based on complementary log—log link function presents
satisfactory values of the all selection criteria (Table 6).

The residual plots in Figure 7a,b support this conclusion, since to the complementary log-log model
all residuals are randomly scattered within the envelope bands whereas to the logit model there is the
case 5 as potentially influential. However, the cases highlighted as worthy of further investigation by the
total local influence did not change the inference conclusions, is despite to yield greater changes in the
parameter estimates of the logit model than to the complementary log-log model. Figure 7c,d. For this
data set, y € (0.64.0.96) with a median close to 0.81, and the estimated values of ¢ are quite similar for
all link function models, close to 65. In this scenario we verified by Monte Carlo simulation that the
models based on complementary log-log functions provide the highest values of all selection criteria.
Thus, the application only confirms the simulation results.

C-Log-Log Function Logit Function C-Log-Log Function Logit Function
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Figure 7. Residual and total local influence plots. Constant dispersion. Data on FCC. (a) Envelope band of
weight residual and link function C-Log-Log; (b) Envelope band of weight residual and link function Logit;
(c) Cook-like distance and link function C-Log-Log ; (d) Cook-like distance and link function C-Log-Log.

4.2. Simultaneity Factor

The second application relates to the distribution of natural gas for home usage in Sao Paulo, Brazil.
The real data were obtained from the Instituto de Pesquisas Tecnolégicas-IPT (https:/ /www.ipt.br/) and


https://www.ipt.br/

Mach. Learn. Knowl. Extr. 2019, 1, 26 18 of 23

the Companhia de Gas de Sao Paulo-COMGAS (https:/ /www.comgas.com.br/). The response variable
(v) is the simultaneity factor, the covariate x; is the log of computed power and the sample size is n = 42.
Ref. [25] built a bootstrap-based prediction interval for the response variable-based on beta regression
model with constant dispersion defined as log(y:/(1 — u¢)) = B1 + B2 xr2, which was selected by the
classical version of PRESS statistic given by PRESS¢ = Y12, (y; — Yo )?2/42. Here we aim at selecting the
best model to the data on simultaneity factor using the P2, R?; and R%.. criteria. We consider five link
functions for yu sub-model, namely: logit, probit, log-log, complementary log-log and Cauchy. Thus,
we fitted five beta regression models based on

e(u) =P1+Poxpy and h(¢y) =P1+Poxp, t=1,...,42. (21)

We also fitted beta regression models with constant dispersion based on the same five link functions.
For the logit model the maximum likelihood parameter estimates are f; = —1.71, B, = —0.33 and ¢ ~ 79
(B1 = —061, By = —0.33, and ¢ ~ 71, log-log model). The Figure 8a shows that i € [0.016,0.464], and the
median is equal to 0.069.

We highlight that the simulation results obtained under a similar scenario favor the log-log models.
These achievements are provided by the values displayed in the Table 7 (Constant dispersion). The values
in this table also reveal that using varying dispersion models improve the fit. Here, the evidence that to fit
this data the log-log link function is the best choose and a varying dispersion model is the best model
are support only by the P? criterion. We shall carry out an influential and residual analysis to prove the
outperformance of the P? criterion in this situation.

Table 7. Criteria values. Data on simultaneity factor.

Constant Dispersion Varying Dispersion
Criteria Logit Probit Log-Log C-Log-Log Cauchy Logit Probit Log-Log C-Log-Log Cauchy
P2 0.42 0.50 0.65 0.28 -1.67 0.70 0.83 0.88 0.62 —0.98
PC2 0.39 0.47 0.64 0.24 —1.81 0.67 0.81 0.87 0.59 -1.13
R%—"C 0.69 0.71 0.72 0.68 0.39 0.69 0.71 0.72 0.68 0.39
Rlsz( 0.67 070 0.71 0.66 0.36 0.67 0.69 0.70 0.65 0.35
R%R 0.72 0.71 0.69 0.73 0.67 0.74 0.74 0.74 0.74 0.67
R%R 0.69 0.68 0.65 0.69 0.62 0.71 0.71 0.71 0.71 0.62

In the Figure 8b,c we present the Cook-like distance index plots for the constant and varying dispersion
models based on log-log link function, respectively. These plots shown that to the beta regression model
with constant dispersion the coefficient estimates of the mean sub-model are highly sensitive to the case
21, whereas the potential influence of this case is set aside when the dispersion is modeled. This is a
strong evidence that the varying dispersion model fits better the data. Forward, we shall focus on the
beta regression with varying dispersion, in the Table 8 we present the inference results for the models
fitted considering the five link functions. For the logit and complementary log-log functions, z; is only
significative at a 10% level, whereas when we are using the Cauchy link function this covariate is no longer
significant (p-value = 0.5133). When we use the probit function, the covariate becomes significant at the
level of 5%. However, the most significance level for z; is only reached when the fit considers the log-log
function (p-value = 0.0088).
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Table 8. Parameter estimates, standard errors (s.e.) and p-values. Data on simultaneity factor.

Par. Logit Probit Log-Log C-Log-Log Cauchy

Estim. s.e. p-val.|Estim. s.e. p-val.|Estim. s.e. p-val.|Estim. s.e. p-val.|Estim. s.e. p-val.
g1 —172 0.09 0.000| —1.01 0.05 0.000 | —0.63 0.05 0.000 | —1.82 0.08 0.000 | —2.51 0.18 0.000
B> —0.80 0.08 0.000 | —0.41 0.05 0.000 | —0.31 0.04 0.000 | —0.74 0.07 0.000 | —1.47 0.14 0.000
71 400 033 0.000| 391 033 0.000| 3.81 0.33 0.000| 4.05 033 0.000| 4.01 0.30 0.000
72 054 030 0.067| 0.65 030 0.027| 077 0.29 0.009 | 050 0.30 0.09 | 0.19 0.29 0513

In the Figure 8d,e we present the normal probability plots with simulated envelopes to varying
dispersion models based on the log-log, the logit, and the Cauchy link functions, respectively. These plots
reveal that the log-log model yields the best fit whereas the Cauchy model yields the worst fit. This is the
same conclusion provides by the P? criterion, whereas by the R? ; criterion all link functions could provide
a good fit, even the Cauchy link function. For instance, to the logit and Cauchy models the (R?,, R? R.)
are, respectively, (0.74,0.71) and (0.67,0.62).

The performance of the R?; is proved to be poor when we look the Figure 8f, which clarify
unmistakably lack of fit of the Cauchy regression. Even the selection of the logit model would not
be appropriate since there are ranges of residuals not randomly distributed across the envelope bands
(Figure 8e). We note that the P? reaches negative values and the R2 is able in identifying some problem
on the model variability, whether the Cauchy function is used (R%~ = 0.39). Whether a practitioner does
not take into account the other statistics beyond of the R? ; criterion one could select both logit and Cauchy
model to fit the data. This conclusion would be quite counter for what is proved by residual plots and
inference results. Please note that the R?; criterion presents a close relation with AIC-like criteria. Thus,
we must be careful in using a criterion to choose a model even the usual and classical criteria.

Although we must emphasize that P2-like criteria must be used jointly with the R?-like criteria.
We shall focus on the normal probability plot of the log-log fit (Figure 8d). It is possible to note two points
out of the envelope bands just as a slight linear tendency on the residual distribution close of these two
points. This pattern explains the discrepancy between the values of the R?-like criteria and the value of P?
criterion, which are equal 0.7, and 0.9, respectively (Table 7). This pattern suggests some problem in the
dispersion sub-model or in the distribution of probability postulated for the response. Thus, we decide fit
other beta regression models, considering different link functions also for the dispersion sub-model, just
as different functions for the computed power beyond of the logarithm function, as covariates. The best
fit is still the one provides by the beta regression model defined in (21) considering the log-log link
function. In the future we can consider other distributions to fit this data as the simplex distribution that is
a dispersion model and can provide a better fit.

However, the beta regression model defined in (21) and based on log-log function is useful for
modeling the data on simultaneity factor. This example clarifies how it is important to consider both
prediction criteria and different versions of the R? criteria to select the best model to fit a dataset.
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Figure 8. Diagnostic plots. Data on simultaneity factor. (a) Boxplot of the response; (b) Cook-like distance
and link function Log-Log with constant dispersion; (¢) Cook-like distance and link function Log-Log with
varying dispersion; (d) Envelope band of weight residual and link function Log-Log with varying dispersion;
(e) Envelope band of weight residual and link function Logit with varying dispersion; (f) Cook-like distance
and link function Cauchy with varying dispersion.

5. Conclusions and Future Work

In this paper, we develop the P? criterion based on the PRESS-like machine learning tool for the
class of beta regression models. We presented results of Monte Carlo simulations carried out to evaluate
the performance the P? criterion and of the versions R%R and R%C of the R? criterion, under correct
and incorrect model specifications. We consider different scenarios, including omission of covariates,
negligence of varying dispersion and misspecification of nonlinearity. Two applications using real data
were performed.

Both the simulation results and applications yield important conclusions. When the mean response is
scattered on the standard unit interval, the P? and R? coefficients perform similarly well, and both enable
to identify usual model misspecification. On the other hand, it is noteworthy that when the response
values are close to one or zero the P? criterion outperformed the R?-like criteria in identifying problems on
the model-fitting. Generally, these behaviors are related to influential observations and appropriated link
functions for each range of response on standard unit interval. We notice that the log-log function models
yield the best fits when the response is closer to zero, whereas the complementary log-log models yield the
best fits when the response values are closer to one. These last conclusions were only supported by the P
criterion, but proved by the residual and influence analyses and by inference results. Another important
conclusion is the poor performance of the R? criterion for beta regression models when the response
is close to one of the standard unit interval boundaries. The R%- outperforms the R? in identifying
problems on the model variability on these ranges of the response variable. This conclusion is supported
by the normal probability plots with simulated envelopes used in the real application.

Our proposed criterion proved to be very successful, since it selects the same models selected by
the residual analysis, by the influence diagnostics and inference results. Despite this fact the normal
probability plots with simulated envelopes reveal that questions about the model variability or the
response distribution must be accessed the R?-like criteria.
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Therefore, to the class of beta regression models the best strategy to select the best model to fit a
dataset is jointly used the P> and R criteria. When the two criteria being simultaneously close to one,
better shall be the fitted model.

Further work will be devoted to the theoretical properties of the P? statistic, and revisited statistical
analysis, including post-Hoc analysis [26-28] with the Tukey’s honestly significant difference test, and
their p-values adjusted via false discovery rate [29] to highlight the existence of significant differences
between the proposed and classical algorithms.
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Appendix

In what follows, we shall present the score function and Fisher’s information for 8 and v for the
nonlinear beta regression models [1]. The log-likelihood function for the model (2) is given by £(B,v) =

Yiq Le(pe, or), and C(pe, @) = logT () — log T(peepr) —log T((1 — pe)pe) + (pegpr — 1) logyr + {(1 —
t)$pr — 1} log(1 — y¢). The score function for f is

Ug(B,y) =T T(y* — p*), (A1)

where J; = 9171 /0B (an n x k matrix), ® = diag{¢s, ..., P}, the tth elements of y* and u* being given in (6).
Also, T = diag{1/¢'(41),...,1/¢'(un)}. The score function for -y can be written as U, (B,y) = ], Ha,
where ], = 915/07 (an n x g matrix), the tth element of the vector a is a; = u¢(y; — pj) +1og(l —ys) —
P((1—pe)pr) + 9(¢r),t =1,...,nand H = diag{1/h'(¢1),...,1/H (¢n)}. The components of Fisher’s
information matrix are

Kgg = J] ®W]{, Kgy =Kl s =] CTH]; and Ky, =], DJ;. (A2)
Here, W = diag{w;, ..., w,}, where

w = grog[1/{8' () }?] and vy = {¢' (usgps) + ¢/ (1 — p) 1) }, (A3)

C = diag{cy,...,cul; o0 = oY Gup)pe — ' (L= pe)p) (L — )}, D = diag{dy, ..., dn}; di =
Ce/ (W (ue))* and G = {¢' () + ¢/ (1 = pe)pe) (1 = pe)> = ¢/ (@) }, 1, m

Local influence:

Let 8 and 85 be the ML estimators of 6 for the assumed and perturbed models, respectively.
The perturbation in the assumed model is introduced through a vector 6, n x 1. The likelihood displacement
LDs =2 {6 0) —¢ (675)} can be used to assess the influence of the perturbation on the ML estimate. Ref. [5]
is interest to look for the direction Inay, relative with a set of observations that corresponding to the largest
likelihood displacement. The index plot of Inax can be used to single out observations that are jointly
influential. Ref. [5] showed that Imax is the unit norm eigenvector corresponding to the largest eigenvalue



Mach. Learn. Knowl. Extr. 2019, 1, 26 22 of 23

of —AT7 'A. where § = 920(0)/9600" and A is a s x n matrix given by A = 92/;(0) /9096, evaluated at
0 = 6 and & = &, which represents no perturbation.

On the other hand, the normal curvature in the direction of the tth individual, i.e., in the direction of
the vector whose tth component equals one and all other elements are zero, becomes

Cr=2|A7 77 Ay, (Ad)

where Ay is the tth column of A [19] C; is the total local influence of observation t and observations such
that Cy > 2} | C;/n can be taken to be individually influential. We partition the parameter vector 6 as
0 = (B",7")". Suppose we are interested in the local influence relative to 3, then

1 " 0%4(0) , 0 0
Cip = 2007 (0 — Cyy)At| where 1y =_———= and (,y = ( ..1> . (A5)
9ydy 0 ¢,
Similarly, the local influence relative to 7 is given by
—— " 920(0) . gg O
Ct;fy - 2|At (ﬁ - E/S‘B)Ad where fﬁﬁ = W and gﬁﬁ = 0 0 . (A6)

Here, the quantities Iax;p and Imax;y are the unit norm eigenvector corresponding to the largest eigenvalue

of —AT (¢ oy 4y)B and —AT (¢ oy pp)A, respectively. The most usual perturbation schemes are

case-weight, response perturbation and covariate perturbation. Details of the A structure for each

perturbation scheme and for the expression of / ! can be accessed by the local influence theory developed
by [4] to the nonlinear beta regression models.
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