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Abstract: Beta regression models are a class of supervised learning tools for regression problems with
univariate and limited response. Current fitting procedures for beta regression require variable selection
based on (potentially problematic) information criteria. We propose model selection criteria that take
into account the leverage, residuals, and influence of the observations, both to systematic linear and
nonlinear components. To that end, we propose a Predictive Residual Sum of Squares (PRESS)-like
machine learning tool and a prediction coefficient, namely P2 statistic, as a computational procedure.
Monte Carlo simulation results on the finite sample behavior of prediction-based model selection criteria
P2 are provided. We also evaluated two versions of the R2 criterion. Finally, applications to real data are
presented. The new criterion proved to be crucial to choose models taking into account the robustness of
the maximum likelihood estimation procedure in the presence of influential cases.
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1. Introduction

The class of nonlinear beta regression models was proposed by [1] and extended to situations in which
the data include zeros and/or ones by [2,3]. Shortly thereafter, [4] developed for the class of nonlinear beta
regression model residuals and measures of local influence. Local influence proposed by [5] is a decisive
scheme to select the model that fit well a dataset, takes into account that the estimation process is robust
in influential cases. Indeed, the final conclusion about model selection should consider the analysis of
influence. The model selection is a crucial step in data analysis, since all inference performance is based on
the selected model. [6] evaluated the behavior of different model selection criteria in a beta regression
model, such as the Akaike Information Criterion (AIC) [7], Schwarz Bayesian Criterion (SBC) [8] and
various approaches based on pseudo-R2.

However, it is common for models selected by the usual selection criteria to present poorly fitted
or influential observations. Indeed, the best models selected by the usual criteria do not always present
residual plots that validate the goodness-of-fit. Also, current fitting procedures for beta regression
are infeasible for high-dimensional data setups and require variable selection based on (potentially
problematic) information criteria. Furthermore, the usual selection criteria do not offer any insight about
the quality of the predictive values. In this context, [9] proposed the PRESS (Predictive Residual Sum of
Squares) statistic, which can be used as a measure of the predictive power of a model. [10] proposed a
coefficient of prediction based on PRESS, namely P2 that is similar to the R2 approach. The P2 statistic can
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be used to select models from a predictive perspective [11]. Moreover, the PRESS statistic presents a close
relationship with the Cook distance [12] and local influence measures [5], as we shall present here. Hence,
the P2 statistic is a selection criterion that takes into account the impact of the observations poorly fitted by
the model, observations with atypical residuals, and cases that exert a disproportional effect on the model
estimation process, even affect the inference conclusions, influential cases.

Our main goal is to introduce a PRESS-like machine learning tool and its associated P2 statistic, as a
coefficient of prediction for the class of nonlinear beta regression models. The P2 statistic is used as a
selection criterion for beta regression. We carried out Monte Carlo simulations to evaluate the behavior of
the P2 measure, as well as the behavior of two usual R2-like criterion, namely: the R2

LR [6] and R2
FC [13].

We considered a variety of simulation scenarios, as different ranges for the response mean, several sample
sizes and values to the precision parameter, five link functions and different model misspecifications.
Finally, we present and discuss two applications to real data.

The simulation and application data set results showed that small values of the new criterion are
an indication that the robustness of the maximum likelihood estimation procedure of the model in the
presence of influential points is worthy of further investigation. This information could not be accessed
by usual selection criteria. However, the issue about variability is still better accessed by R2-like criteria.
Thus, the best machine learning strategy is to use the three criteria discussed here to choose the best model,
once each one holds on different information.

2. P2 Criterion

Consider the linear model Y = Xβ + ε as the supervised learning procedure, where Y is a vector n× 1
of the responses, X is a known matrix of covariates (measured features) of dimension n× p of full rank,
β is the parameter vector of dimension p× 1 and ε is a vector n× 1 of errors. We have the least-squares
estimators: β̂ = (X>X)−1X>y, the residual rt = yt − x>t β̂ and the predicted value ŷt = x>t β̂, where
x>t = (xt1, . . . , xtp), and t = 1, . . . , n. Notice that we found these quantities in one shot, without doing
any sort of iterative optimization. Let β̂(t) be the least-squares estimate of β without the tth observation
and ŷ(t) = x>t β̂(t) be the predicted value of the case deleted, such that r(t) = yt − ŷ(t) is the prediction
error. Thus, for multiple regression, the classic Predictive Residual Sum of Squares statistic named here as
PRESSC is given by

PRESSC =
n

∑
t=1

r2
(t) =

n

∑
t=1

(yt − ŷ(t))
2 =

(
rt

1− htt

)2
, (1)

where rt is the ordinary residual obtained by regressing y on X and htt is the tth diagonal element of the
projection matrix X(X>X)−1X> of this regression.

Now, let y1, . . . , yn be independent random variables, such that each yt, for t = 1, . . . , n, is beta
distributed denoted by yt ∼ B(µt, φt), i.e., each yt has density function given by

f (yt; µt, φt) =
Γ(φt)

Γ(µtφt)Γ((1− µt)φt)
yµtφt−1

t (1− yt)
(1−µt)φt−1, 0 < yt < 1, (2)

where 0 < µt < 1 and φt > 0. Here, E(yt) = µt and Var(yt) = V(µt)/(1 + φt), where V(µt) = µt(1− µt).
Ref. [1] proposed the class of nonlinear beta regression models in which the mean of yt and the precision
parameter can be written as

g(µt) = η1t = f1(x>t ; β) and h(φt) = η2t = f2(z>t , γ), t = 1, . . . , n, (3)

where β = (β1, . . . , βk)
> and γ = (γ1, . . . , γq)> are, respectively, k × 1 and q × 1 vectors of unknown

parameters (β ∈ IRk; γ ∈ IRq), η1t and η2t are the nonlinear predictors, x>t = (xt1, . . . , xtk1) and z>t =
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(zt1, . . . , ztq1) are vectors of covariates (i.e., vectors of known variables), t = 1, . . . , n, k1 ≤ k, q1 ≤ q and
k + q < n. Both g(·) and h(·) are strictly monotonic and twice differentiable link functions. Furthermore,
fi(·), i = 1, 2, are differentiable and continuous functions, such that the matrices J1 = ∂η1/∂β and
J2 = ∂η2/∂γ have full rank (their ranks are equal to k and q, respectively). The model’s parameters can be
estimated by maximum likelihood (ML). In the Appendix, we present the log-likelihood function, the score
vector and Fisher’s information matrix for the nonlinear beta regression model. Model (2)–(3) embodies
the beta regression linear model with varying dispersion when the predictors are linear functions of the
parameters. In this case, g(µt) = η1t = x>t β and h(φt) = z>t γ. If, in addition, the predictor for µt is linear
and φt is constant through the observations, we arrive at the beta regression model defined [13].

The beta regression likelihood is inherently nonlinear and there are no closed form expressions for the
ML estimators, and their computations should be performed numerically using a nonlinear optimization
algorithm for machine learning, e.g., some form of iterative Newton’s method (Newton–Raphson, Fisher’s
scoring, BHHH, etc.). To propose a PRESS-like statistic for beta regression, we shall explore the relationship
between the Fisher iterative ML scheme and a weighted least square regression. This regression considers
pseudo variables as proposed [14] to build a Cook-like distance that have been used in several classes of
regression models. Fisher’s scoring iterative scheme used for estimating β, both to linear and nonlinear
regression model, can be written as

β(m+1) = β(m) + (K(m)
ββ )−1U(m)

β (β), (4)

where m = 0, 1, 2, . . . are the iterations which are carried out until convergence. The convergence happens
when the difference |β(m+1) − β(m)| is less than a small, previously specified constant.

From Appendix’s expressions (A1), (A2) and from (4), it follows that the mth scoring iteration for β,
in a class of nonlinear regression model is defined as

β(m+1) = β(m) + (J>1 ΦW J1)
−1 J>1 ΦT(y∗ − µ∗), (5)

where the tth elements of the vectors y∗ and µ∗ are

y∗t = log{yt/(1− yt)} and µ∗t = ψ(µtφt)− ψ((1− µt)φt), t = 1, . . . , n, (6)

Φ = diag(φ1, . . . , φn), T = diag(1/g′(µ1), . . . , 1/g′(µn)) J1 = ∂η1/∂β, W = diag(w1, . . . , wn), wt given in
Appendix, expression (A3). Furthermore, Φ, W, J1, T and µ∗ are evaluated at βm.

Ref. [14] suggests that we rewrite the iterative process in (5) by defining the following vector
u(m)

1 = J1β(m) + W−1T(y∗ − µ∗) such that the equation in (5) becomes

β(m+1) = (J>1 ΦW J1)
−1ΦJ>1 Wu(m)

1 . (7)

Upon convergence, we may write the ML estimator of β as

β̂ = (J>1 Φ̂Ŵ J1)
−1Φ̂J>1 Ŵu1, where u1 = J1 β̂ + Ŵ

−1
T̂(y∗ − µ̂∗). (8)

Here, Ŵ, Φ̂, T̂ and Ĵ1 are the matrices W, Φ, T and J1, respectively, evaluated at the ML estimators of β

and γ. We note that β̂ in (8) can be viewed as the least-squares estimator of β obtained by regressing the
pseudo observation vector

y† = Φ̂1/2Ŵ
1/2

u1 on J1
† = Φ̂1/2Ŵ

1/2
J1. (9)
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Since we had the expression of β̂ in (8), several quantities related to the pseudo regression in (9) may
be obtained, as the ordinary residual, the projection matrix, the β̂(t) and the prediction error. Following [14]
we have that

β̂(t) = β̂− {(J>1 Φ̂Ŵ J1)
−1 J1tφ̂

1/2
t ŵ1/2

t rβ
t }/(1− h∗tt), (10)

in which J>1t is the tth row of the J1 matrix, h∗tt and rβ
t , are respectively, the tth diagonal element of the

projection matrix H∗ = (ŴΦ̂)1/2 J1(J1Φ̂Ŵ J1)
−1 J>1 (Φ̂Ŵ)1/2 and the tth ordinary residual of the pseudo

regression in (8) given by

rβ
t = φ̂1/2

t ŵ1/2
t u1,t − φ̂1/2

t ŵ1/2
t J>1t β̂ =

y∗t − µ̂∗t√
v̂t

, (11)

where u1,t the tth element of the vector u1 and vt are given in (8) and (A3–Appendix), respectively. We note
that µ∗ = E(y∗), vt = Var(y∗t ) and rβ

t in (11) is the standardized weighted residual 1 [15]. In what follows we
able to define ŷ†

(t) = φ̂1/2
t ŵ1/2

t J>1t β̂(t) and the prediction error

r†
(t) = y†

t − ŷ†
(t) = φ̂1/2

t ŵ1/2
t u1,t − φ̂1/2

t ŵ1/2
t J>1t β̂(t). (12)

Plugging (10) quantity in (12) we then obtain that r†
(t) is

y†
t − ŷ†

(t) = φ̂1/2
t ŵ1/2

t u1,t − φ̂1/2
t ŵ1/2

t J>1t

{
β̂−
{(J>1 Φ̂Ŵ J1)

−1 J1tφ̂
1/2
t ŵ1/2

t rβ
t }

(1− h∗tt)

}

= φ̂1/2
t ŵ1/2

t u1,t − φ̂1/2
t ŵ1/2

t J>1t β̂−
{φ̂1/2

t ŵ1/2
t J>1t(J>1 Φ̂Ŵ J1)

−1 J1tφ̂
1/2
t ŵ1/2

t rβ
t }

(1− h∗tt)

= rβ
t − h∗ttr

β
t /(1− h∗tt) = rβ

t /(1− h∗tt).

Finally, for the nonlinear beta regression models, the PRESS-like statistic becomes as

PRESS =
n

∑
t=1

(y†
t − ŷ†

(t))
2 =

n

∑
t=1

(
rβ

t
1− h∗tt

)2

. (13)

It is noteworthy that based on (11) the expression in (13) may be written as

PRESS =
n

∑
t=1

(rβ
p,t)

2

1− h∗tt
, (14)

in which

rβ
p,t =

y∗t − µ̂∗t√
v̂t(1− h∗tt)

. (15)

It is important to emphasize that rβ
p,t in the PRESS expression given in (14) is the standardized weighted

residual 2 proposed by [15] which outperforming the others beta regression residuals in their numerical
evaluation. In special, outperforming the ordinary residual (yt − µ̂t)/

√
Var(yt). The weighted residuals

are constructed using the difference between the logit of the responses and their fitted means, the main
qualities of beta distribution. The same holds to the proposal for the PRESS-like statistic to the class of
beta regression.
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Indeed, the PRESS also has relationships with influence measures [16]. Ref. [12] use a version
of the likelihood displacement [17] to build the Cook’s distance that measures the impact of a given
observation on the parameter estimates of the mean sub-model by removing it from the data. Based on
approximations for the likelihood displacement, the Cook-like distances have been proposed for several
classes of regression models. Focus on beta regression models [18] obtain an approximation for the version
of likelihood displacement to build the Cook’s distance given by

LDt =
(rβ

p,t)
2

1− h∗tt
h∗tt ⇒

(rβ
p,t)

2

1− h∗tt
=

LDt

h∗tt
, (16)

plugging (16) measure in (13) we thus obtain that

PRESS =
n

∑
t=1

LDt

h∗tt
, (17)

in which LDt is the Cook-like distance to the class of beta regression. Furthermore, Ref. [19] shown that
LDt ≈ Ct in which Ct is the total local influence of observation t, defined in (A4). Thus, PRESS ≈ ∑n

t=1
Ct
h∗tt

,
which clarify the relationship of this statistic with the local influence measures. Ref. [19] also suggest
that observations such that Ct > 2 ∑n

t=1 Ct/n can be taken to be individually influential. We shall take
the same threshold pattern to highlight influential observations on the index plots of Cook-like distances.
When the predictors in (3) are linear functions of the parameters, i.e., g(µt) = x>t β and h(φt) = z>t γ,
the expression in (17) also represents the PRESS-like statistic for the class of the linear beta regression
models with p = k + q unknown regression parameters.

Considering the same approach to build the determination coefficient R2 in linear models, Ref. [10]
define a prediction measure based on the PRESSC statistic in (1) as P2

C = 1 − PRESSC/SST(t),
where SST(t) = ∑n

t=1(y(t) − y(t))
2, with y(t) being the arithmetic mean for n− 1 values of yt.

Based on this idea, for beta regression models we must use the pseudo regression procedure defined
in (9) to build the P2-like coefficient as

P2 = 1− PRESS
SST†

(t)
, (18)

where SST†
(t) = ∑n

t=1(y
† − y†

(t))
2, with y†

(t) being the arithmetic average for n − 1 values of the vector

y† = Φ̂1/2Ŵ
1/2

u1 by excluding the tth observation. It can be shown that SST†
(t) = (n/(n− p))2SST†,

wherein p is the number of model parameters and SST is the Total Sum of Squares for the full data. For the
class of nonlinear beta regression models, SST† = ∑n

t=1(y
†
t − y†)2, where y† is the arithmetic average of

the y†
t , t = 1, . . . , n and p = k + q. Please note that P2 given in (18) is not a positive quantity. Indeed,

the PRESS/SST†
(t) is a positive quantity, thus the P2 take values in (−∞; 1]. The closer to one, the better

is the predictive power of the model.
To compare the behaviors of the P2 defined in (18) and R2-like criteria we consider at the outset

two versions of pseudo-R2 based on the likelihood ratio. The first one was proposed by [20] as R2
LR =

1− (Lnull/L f it)
2/n, where Lnull is the ML achievable (saturated model) and L f it is the likelihood achieved

by the model under investigation. The second version is a proposal of [6] that takes into account the
inclusion of covariates both in the mean and in the precision sub-models, is given by: R2

LRc
= 1− (1−

R2
LR)

(
n−1

n−(1+α)k1−(1−α)q1

)δ
, where α ∈ [0, 1] and δ > 0. Based on simulation presented by the authors

we chose α = 0.4 and δ = 1. We also consider the R2
FC, which is defined as the square of the sample

coefficient of correlation between g(y) and η̂1 [13], and its penalized version based on [6] given by
R2

FCc
= 1− (1− R2

FC)(n− 1)/(n− (k1 + q1)), where k1 and q1 are, respectively, the number of covariates
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of the mean and dispersion sub-models. By analogy, we define the penalized version of P2 given by
P2

c = 1− (1− P2)(n− 1)/(n− (k1 + q1)).

3. Simulation Study

The Monte Carlo experiments present in this section were carried out using both fixed and varying
dispersion beta regressions as data generating processes, as well as linear and nonlinear models.
All simulations were carried out using the Ox matrix programming language [21]. The number of Monte
Carlo replications is 10,000. Our goal is simultaneously to assess the performance of the P2, R2

FC and R2
LR

criteria, and, additionally, which values, on average, these statistics could assume under different data
settings and features of the regression model. To that end, at the outset, we present the average values of
the statistics as the arithmetic mean of the Monte Carlo replicas. Also, we provide information about the
distributions of the statistics by a boxplot analysis.

Since the upper limits of all statistics are equal to one, a performance evaluation criterion for these
measures is that their values go to one if the model is correctly specified and far from one otherwise.
The mean values of the statistics are especially useful when the scenarios considered in the simulations
occur in the real data analysis.

3.1. Linear Setting: Fixed Dispersion, Omitted Covariates and Link Functions

Table 1 shows the mean values of the statistics obtained by simulation of the constant dispersion beta
regression model that involves a systematic component for the mean given by

log
(

µt

1− µt

)
= β1 + β2 xt2 + β3 xt3 + β4 xt4 + β5 xt5, t = 1, . . . , n, (19)

that is based on logit link function. The covariate values were independently obtained as random
draws of the following distributions: Xti ∼ U(0, 1), i = 2, . . . , 5 and were kept fixed throughout the
experiment. The precisions, the sample sizes and the range of mean response are, respectively, φ =

(20, 50, 150, 400, 1000), n = (40, 80, 120, 400), µ ∈ (0.005, 0.12), µ ∈ (0.90, 0.99) and µ ∈ (0.20, 0.88).
Under the model specification given in (19) we investigate the behavior of the statistics by omitting
covariates. In this case, we considered the Scenarios 1, 2, and 3, in which are omitted three, two, and one
covariate, respectively. In a fourth scenario, the estimated model is correctly specified.

The results in Table 1 show that the mean values of all statistics increase as important covariates are
included in the model and the value of φ increases. On the other hand, as the size of the sample increases,
the model misspecification is evidenced by lower values of the statistics (Scenarios 1, 2, and 3). It shall be
noted that the mean values for all statistics are considerably larger when µ ∈ (0.20, 0.88). Additionally,
their values approach one when the estimated model is closest to the true model. For instance, in Scenario
4 for n = 40, φ = 150 the values of P2 and R2

LR are, respectively, 0.936 and 0.947.
The behavior of the statistics for finite sample size changes substantially when µ ∈ (0.90; 0.99). It is

noteworthy the reduction of its mean values, in special to the P2 criterion when µ ≈ 1 revealing the
difficulty in fitting the model in this range of µ. Even under true specification (Scenario 4) the P2 criterion
identifies unmistakably some problem in the model-fitting when µ ≈ 1. For instance, when n = 80 and
φ = 50, we have P2

c = −0.007 and R2
LRc

= 0.542. The same feature occurs when µ ∈ (0.005, 0.12).
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Table 1. Mean values of the statistics. True model versus misspecification models (omitted covariates
(Scenarios 1, 2, and 3)). The model estimated correctly: Scenario 4.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Estimated g(µt) = β1 + β2 xt2 g(µt) = β1 + β2 xt2 g(µt) = β1 + β2 xt2 g(µt) = β1 + β2 xt2+

model +β3 xt3 +β3 xt3 + β4 xt4 β3 xt3 + β4 xt4 + β5 xt5

µ ∈ (0.20, 0.88); β = (−1.9, 1.2, 1.0, 1.1, 1.3)> .

n φ→ 20 50 150 20 50 150 20 50 150 20 50 150

40

P2 0.307 0.363 0.393 0.393 0.463 0.502 0.506 0.602 0.656 0.694 0.847 0.936

P2
c 0.270 0.329 0.361 0.342 0.418 0.461 0.450 0.557 0.617 0.649 0.825 0.927

R2
LR 0.296 0.358 0.391 0.394 0.473 0.515 0.518 0.620 0.675 0.723 0.869 0.947

R2
LRc

0.258 0.324 0.358 0.344 0.429 0.475 0.463 0.577 0.638 0.682 0.849 0.939

80

P2 0.286 0.346 0.379 0.368 0.445 0.488 0.506 0.584 0.643 0.666 0.833 0.930

P2
c 0.267 0.329 0.363 0.343 0.423 0.468 0.450 0.561 0.624 0.643 0.821 0.925

R2
LR 0.291 0.356 0.391 0.385 0.468 0.513 0.518 0.614 0.672 0.706 0.860 0.943

R2
LRc

0.273 0.339 0.375 0.361 0.447 0.494 0.463 0.593 0.655 0.686 0.851 0.939

µ ∈ (0.90, 0.99); β = (1.8, 1.2, 1, 1.1, 0.9)> .

n φ→ 20 50 150 20 50 150 20 50 150 20 50 150

40

P2 0.119 0.061 0.071 0.139 0.062 0.072 0.171 0.072 0.156 0.149 0.089 0.213

P2
c 0.071 0.010 0.021 0.067 −0.016 −0.006 0.076 −0.034 0.059 0.023 −0.045 0.097

R2
LR 0.164 0.196 0.243 0.221 0.266 0.336 0.271 0.374 0.466 0.444 0.593 0.774

R2
LRc

0.119 0.153 0.203 0.157 0.205 0.281 0.188 0.303 0.405 0.362 0.533 0.741

80

P2 0.093 0.036 0.044 0.112 0.038 0.046 0.149 0.045 0.120 0.123 0.056 0.175

P2
c 0.070 0.011 0.019 0.077 0.000 0.008 0.103 −0.006 0.073 0.063 −0.007 0.119

R2
LR 0.158 0.190 0.240 0.211 0.253 0.327 0.268 0.356 0.451 0.416 0.571 0.760

R2
LRc

0.136 0.169 0.221 0.180 0.224 0.301 0.229 0.321 0.422 0.376 0.542 0.744

µ ∈ (0.005, 0.12); β = (−1.5,−1.2,−1.0,−1.1,−1.3)> .

n φ→ 20 50 150 20 50 150 20 50 150 20 50 150

40

P2 0.128 0.063 0.056 0.108 0.059 0.028 0.153 0.070 0.202 0.149 0.090 0.212

P2
c 0.081 0.013 0.005 0.033 −0.020 −0.053 0.056 −0.036 0.111 0.023 −0.044 0.096

R2
LR 0.199 0.215 0.254 0.265 0.349 0.379 0.326 0.415 0.548 0.442 0.595 0.774

R2
LRc

0.156 0.172 0.214 0.204 0.295 0.327 0.249 0.348 0.496 0.360 0.535 0.741

80

P2 0.105 0.040 0.032 0.083 0.043 0.012 0.128 0.038 0.165 0.123 0.057 0.174

P2
c 0.081 0.015 0.006 0.047 0.005 −0.027 0.081 −0.013 0.121 0.064 −0.007 0.119

R2
LR 0.197 0.211 0.251 0.253 0.340 0.372 0.311 0.394 0.534 0.416 0.572 0.760

R2
LRc

0.176 0.191 0.231 0.223 0.314 0.347 0.274 0.362 0.509 0.376 0.543 0.743

In what follows, we shall investigate the empirical distributions of the statistics: P2, P2
c , R2

LR, R2
LRc

,
R2

FC and R2
FCc

under the correctly specified modeling (scenario 4) in Table 1, for n = 40 and φ = 150.
These results are shown using boxplots of 10,000 values of the statistics obtained from the Monte Carlo
simulations (Figure 1). The mean value of the statistic replications is represented by a dot on the side of
each boxplot. In panels (a), (b) and (c) we present the boxplots for µ ≈ 0, µ scattered on the standard unit
interval and for µ ≈ 0, respectively.
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Figure 1. Correct specification: g(µt) = β1 + β2 xt2 + β3 xt3 + β4 xt4 + β5 xt5, n = 40, φ = 150. (a) µ ≈ 0;
(b) µ scattered on the standard unit interval; (c) µ ≈ 1.

Figure 1 shows that the means and medians of all statistics are close, thus the mean values of the
statistics adequately represent their behavior in these scenarios. We also notice that both P2 and R2

criteria are so small, for models correctly specified when µ is close to the boundaries of the standard unit
interval (Figure 1). However, it is noteworthy how the P2 values are substantially smaller than the R2-like
criterion values.

When the mean response is concentrated on the boundaries of the standard unit interval, even when
the model is correctly specified, the statistic of prediction assumes negative values, panel (a) and panel (c).
Based on panel (b) (µ ∈ (0.20, 0.88)), it can be seen that when the response mean response is scattered on
the standard unit interval, the behavior of the prediction statistic is very different, with values much more
concentrated nearby one. The same behavior occurs for the goodness-of-fit measures. R2

FC and R2
LR.

In Figure 2 we consider a misspecification problem (three omitted covariates). For illustration,
we consider only φ = 50 and n = 40, 80, 120, 400, µ ∈ (0.20, 0.88). We notice that when three covariates are
omitted, with the increasing of sample size, the replication values of the statistics tend to concentrate at
small values, as expected due to the misspecification problem.

We notice that typically the mean and the median of the 10,000 values of the statistic is closed,
confirming the usefulness of the mean values to describe these measures. When n = 400 (panel
d), the values of all statistics tend to concentrate around a value far from 1, i.e., around 0.3, and 0.4.
It behaves noteworthy as the prediction and determination coefficients behave equally in this scenario
(µ ∈ (0.20, 0.88)).

In Figure 3 we consider µ ∈ (0.01, 0.20) and the model is estimated correctly, n = 40 and φ =

(50, 150, 400, 1000). We notice that the values of the R2-like statistics become more concentrated and closer
to one as the value of φ increases. Nonetheless, the behavior of P2 statistics is quite different. Even when
φ = 400 this measure displays negative values (panel(c)). These observations that present P2 negative
values are cases, poorly fitted by the model and potential influential cases. It is noteworthy that cases
poorly fitted by the model can befall in despite of that φ = 1000 (Figure 3d). The statistics present the same
feature when µ ≈ 1.
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Figure 2. Omitted covariates. Estimated model: g(µt) = β1 + β2 xt2. Correct model: g(µt) = β1 + β2 xt2 +

β3 xt3 + β4 xt4 + β5 xt5; µ ∈ (0.20, 0.88); φ = 50. (a) sample size n = 40; (b) sample size n = 80; (c) sample
size n = 120; (d) sample size n = 200.
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Figure 3. Correct specification: g(µt) = β1 + β2 xt2 + β3 xt3 + β4 xt4 + β5 xt5; sample size n = 40. (a) φ = 50;
(b) φ = 150; (c) φ = 400; (d) φ = 1000.
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To summarize, at the outset, we shall consider the response mean around 0.5. When the model is
correctly specified, the P2 have their values close to one, especially when the model precision or sample size
increases. When the proposed model omits important covariates, the P2 values tend to depart considerably
of one and stay below 0.5. The measure R2

FC and R2
LR present similar behavior. On the other hand,

when the mean of the response is concentrated near zero or one, the P2 values differ considerably from
one, taking negative values even when the model is correctly specified, revealing as it is difficult make
prediction close to the boundaries of the unit interval.

Indeed, scenarios in which the model present large dispersion and a substantial concentration of
values on one of the boundaries of the standard unit interval tend to present influential observations.
In these situations, Ref. [22] argue that for the beta regression models the ML parameter estimation
based on the BFGS nonlinear optimization algorithm proved to be typically not robust in influential cases.
The P2 criterion is based on the PRESS-like statistic which presents a relationship both with residuals
and influence measures. In this sense, this new criterion that we proposed for the beta regression models
outperforms the R2

LR and R2
FC in identifying problems on fit the model when µ ≈ 0 or µ ≈ 1 and the

precision is not so large. However, this fact does not disable the use of R2-like statistics. The P2 criterion
can be viewed as a measure of model bias whereas the R2 is a quantifier of the model variance. What we
emphasize is that we must also consider the P2 criterion to select the model that best fit a dataset. In the
applications we shall present results that show as the R2 and P2 criteria contain different and important
information about the model-fitting.

Another important question is the link function to the mean sub-model. All simulations, we carried
out until now were based on logit link function. In what follows, we present Monte Carlo simulation
results in which we consider other link functions, namely: probit, complementary log–log, log–log,
and Cauchy, respectively defined as g(µ) = Φ−1(µ), g(µ) = − log{− log(µ)}, g(µ) = log{− log(1− µ)}
and g(µ) = tan{π(µ− 0.5)}. It is important to emphasize that the same link function is used both to
generate the response observations and to fit the model. Our goal is to evaluate the performance of each
link function on different ranges of mean and dispersion response, in special we aim to identifying if the
link function is related to the problems in fitting the beta regression model when the response is close of
the boundaries of the standard unit interval. Thus, we must fit the model correctly.

The results presented in Table 2 showed that when the response mean is close to one, the use
of complementary log–log function leads to models with better predictive power as well as better
goodness-of-fit. On the other hand, if the mean is close to zero the best results are provided by the
log–log link function. When the mean is scattered on the standard unit interval both the probit and
logit functions perform well. The Cauchy model performance well only when µ ∈ (0.20, 0.80). Thereby,
we can deduce that the link function is related with the small values the P2 criteria when µ ≈ 0 and
µ ≈ 1 displayed in Table 1, since all scenarios were fitted by the logit model. Thus, the appropriate link
function can improve the robustness of the ML estimation procedure of the beta models in the presence of
influential points. It is noteworthy that these conclusions are supported on the P2 criterion.
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Table 2. Mean values of the statistics. True model: g(µt) = β1 + β2 xt2 + β3 xt3 + β4 xt4 + β5 xt5, xti ∼
U(0, 1), i = 2, 3, 4, 5, t = 1, . . . , n and φ constant across observations.

µ→ µ ∈ (0.005, 0.12) µ ∈ (0.20, 0.88) µ ∈ (0.90, 0.99)

n φ→ 20 150 400 20 150 400 20 150 400

Probit

40

P2 0.281 0.561 0.759 0.610 0.913 0.966 0.282 0.562 0.759

P2
c 0.222 0.525 0.739 0.578 0.905 0.963 0.222 0.525 0.739

R2
LR 0.392 0.792 0.910 0.599 0.912 0.966 0.394 0.792 0.910

R2
LRc

0.341 0.774 0.903 0.566 0.905 0.963 0.344 0.775 0.903

R2
FC 0.389 0.791 0.910 0.599 0.912 0.965 0.391 0.791 0.910

R2
FCc

0.338 0.773 0.902 0.565 0.905 0.963 0.340 0.773 0.902

C-Log-Log

40

P2 0.109 0.195 0.343 0.535 0.883 0.953 0.370 0.694 0.851

P2
c 0.035 0.128 0.288 0.497 0.873 0.949 0.317 0.668 0.839

R2
LR 0.370 0.780 0.905 0.574 0.903 0.962 0.333 0.741 0.884

R2
LRc

0.260 0.741 0.888 0.499 0.886 0.955 0.216 0.696 0.863

R2
FC 0.362 0.773 0.902 0.574 0.903 0.962 0.327 0.739 0.883

R2
FCc

0.308 0.754 0.893 0.539 0.895 0.959 0.271 0.717 0.873

Log-Log

40

P2 0.370 0.694 0.851 0.536 0.883 0.953 0.109 0.196 0.342

P2
c 0.318 0.668 0.839 0.497 0.873 0.949 0.034 0.129 0.287

R2
LR 0.334 0.742 0.884 0.574 0.903 0.962 0.370 0.780 0.905

R2
LRc

0.279 0.720 0.874 0.538 0.895 0.959 0.318 0.762 0.897

R2
FC 0.327 0.739 0.883 0.574 0.904 0.962 0.362 0.774 0.902

R2
FCc

0.271 0.718 0.873 0.539 0.896 0.959 0.308 0.755 0.893

Cauchy

40

P2 0.031 0.158 0.330 0.511 0.877 0.951 0.031 0.158 0.330

P2
c 0.006 0.136 0.313 0.498 0.874 0.949 0.006 0.136 0.313

R2
LR 0.183 0.556 0.769 0.599 0.913 0.966 0.182 0.557 0.768

R2
LRc

0.161 0.545 0.763 0.588 0.911 0.965 0.161 0.546 0.762

R2
FC 0.080 0.460 0.702 0.561 0.905 0.963 0.081 0.460 0.702

R2
FCc

0.057 0.446 0.694 0.549 0.903 0.962 0.057 0.446 0.694

3.2. Linear Setting: Varying Dispersion

In this section, we shall report simulation results to beta regression models with varying dispersion.
All results were obtained using 10,000 Monte Carlo replications. Under model misspecification,
the true data generating process considers varying dispersion, but a fixed dispersion beta regression
is estimated. We also used different covariates in the mean and precision sub-models. The sample
sizes are n = 40, 80, 120. We generated 40 values for each covariate and replicated them, once, twice,
and three times, respectively, to get covariate values for n = 80 and n = 120. Using this procedure,
the intensity degree of nonconstant dispersion λ = max{φ1, . . . , φn}/ min{φ1, . . . , φn} remains constant as
the sample size changes. The numerical results were obtained using the following beta regression model:
g(µt) = log(µt/(1− µt)) = β1 + βi xti, and log(φt) = γ1 + γi zti, xti ∼ U(0, 1), zti ∼ U(−0.5, 0.5), i =
2, 3, 4, 5, and t = 1, . . . , n under different choices of parameters (Scenarios): Scenario 5: β = (−1.3, 3.2)>,
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µ ∈ (0.22, 0.87), [γ = (3.5, 3.0)>; λ ≈ 20], [γ = (3.5, 4.0)>; λ ≈ 50] and [γ = (3.5, 5.0)>; λ ≈ 150].
Scenario 6: β = (−1.9, 1.2, 1.6, 2.0)>, µ ∈ (0.24, 0.88), [γ = (2.4, 1.2,−1.7, 1.0)>; λ ≈ 20], [γ =

(2.9, 2.0,−1.7, 2.0)>; λ ≈ 50] and [γ = (2.9, 2.0,−1.7, 2.8)>; λ ≈ 150]. Finally, Scenarios 7 and 8
(Full models): β = (−1.9, 1.2, 1.0, 1.1, 1.3)>, µ ∈ (0.20, 0.88), [γ = (3.2, 2.5,−1.1, 1.9, 2.2)>; λ ≈ 20],
[γ = (3.2, 2.5,−1.1, 1.9, 3.2)>; λ ≈ 50], and [γ = (3.2, 2.5, 1.1, 1.9, 4.0)>; λ ≈ 200]. Please note that
Scenarios 7 and 8 present the same generation data process. However, in Scenario 7 the dispersion is
estimated as a constant (misspecification) and in Scenario 8 the dispersion is correctly modeled.

In Table 3, we present the mean values for 10,000 statistic replications. In this table, we report the
results only for n = 40. Next, we presented boxplots for the 10,000 statistic replications to other sample
sizes. We are considering µ close to 0.5. We notice based on Table 3 that under model misspecification
the statistics display smaller values in comparison with Scenario 8 (correct specification), in which as
greater is λ greater are the values of the statistics, as expected. When the dispersion is postulated
as fixed, as the intensity degree of nonconstant dispersion increases, the mean values of the statistics
decreases, which correctly points out for the model misspecification. It is noteworthy that under correct
model specification the values of three statistics are so different. In special the P2 values are greater
than the values of R2-like criteria. Furthermore, the values of the R2

FC are considerably smaller than the
values of the R2

LR, in special when λ increases. For example, taking λ = 20, 50, 200, n = 40 we have
R2

LR = (0.796, 0.816, 0.840) and R2
FC = (0.649, 0.627, 0.500) (Table 3–Scenario 8). Figure 4 supports this

evidence. When λ and the sample size increase, for example n = 80 and n = 120, the values of P2 criterion
tend to concentrate close to one, whereas the values of R2

LR and R2
FC tend to concentrate below 0.8 and

0.6, respectively.

Table 3. Mean values of the statistics. Misspecified models, φ fixed: Scenarios 5, 6 and 7 versus Scenario 8
(correct specification), n = 40.

Scenario 5 Scenario 6 Scenario 7 Scenario 8

g(µt) = β1 + β2 xt2 g(µt) = β1 + β2 xt2+ g(µt) = β1 + β2 xt2+ g(µt) = β1 + β2 xt2+

True +β3 xt3 β3 xt3 + β4 xt4 β3 xt3 + β4 xt4 + β5 xt5 β3 xt3 + β4 xt4 + β5 xt5

models h(φt) = γ1 + γ2 zt2 h(φt) = γ1 + γ2 zt2+ h(φt) = γ1 + γ2 zt2+ h(φt) = γ1 + γ2 zt2+

+γ3 zt3 +γ3 zt3 + γ4 zt4 γ3 zt3 + γ4 zt4 + γ5 zt5 γ3 zt3 + γ4 zt4 + γ5 zt5

g(µt) = β1 + β2 xt2 g(µt) = β1 + β2 xt2+ g(µt) = β1 + β2 xt2+ g(µt) = β1 + β2 xt2+

Estimated +β3 xt3 +β3 xt3 + β4 xt4 β3 xt3 + β4 xt4 + β5 xt5 β3 xt3 + β4 xt4 + β5 xt5

models h(φt) = γ1 + γ2 zt2+

γ3 zt3 + γ4 zt4 + γ5 zt5

λ→ 20 50 150 20 50 150 20 150 150 20 50 200

P2 0.759 0.718 0.674 0.545 0.565 0.523 0.638 0.624 0.529 0.885 0.906 0.914

P2
c 0.739 0.695 0.647 0.493 0.515 0.469 0.585 0.569 0.460 0.851 0.878 0.888

R2
LR 0.782 0.743 0.700 0.580 0.611 0.577 0.670 0.653 0.554 0.796 0.816 0.840

R2
LRc

0.764 0.722 0.675 0.532 0.567 0.529 0.622 0.602 0.488 0.735 0.761 0.792

R2
FC 0.777 0.735 0.688 0.553 0.588 0.548 0.668 0.648 0.531 0.649 0.627 0.500

R2
FCc

0.759 0.713 0.662 0.502 0.541 0.497 0.620 0.597 0.462 0.544 0.515 0.350
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We shall focus on n = 40, Figure 4e the true intensity degree of nonconstant dispersion is close to
200, with φmax ≈ 260 and φmin ≈ 2, whereas λ̂ ≈ 400 with φ̂max = 730 and φ̂min ≈ 1.9, that is a substantial
distortion of the true intensity degree of nonconstant dispersion. Indeed, it is a substantial distortion of
the true variance of the response observations.

Since the R2-like criteria, select the model that can better explain the variability of the response, it is
plausible that these measures present lower values when the distortions between the true and estimated
variances of the response variable are so large. Please note that the R2

LRc
takes several values smaller than

0.6 and the R2
FCc

even takes negative values whereas overall the values of P2
c are greater than 0.6 (Figure 4e).

Additionally, in this sense the R2
FC criterion proved to be more rigorous than the R2

LR criterion. This is
a strong evidence that models with small R2

FC and high R2
LR values are worthy of further investigation.

Indeed, the best fitted model should display high and close values of the three criteria and of their
penalized versions.
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Figure 4. Correct specification: g(µt) = β1 + β2xt2 + β3xt3 + β4xt4 + β5xt5, h(φt) = γ1 + γ2zt2 + γ2zt2 +

γ3zt3 + γ4zt4 + γ5z5t. (a) µ ∈ (0.20, 0.80), n = 80, λ = 20; (b) µ ∈ (0.20, 0.80), n = 80, λ = 200; (c) µ ∈
(0.20, 0.80), n = 120, λ = 20; (d) µ ∈ (0.20, 0.80), n = 120, λ = 200; (e) µ ∈ (0.20, 0.80), n = 40, λ = 200.
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3.3. Nonlinear Setting

In what follows, we shall present Monte Carlo experiments for the class of nonlinear beta regression
models. The numerical results were obtained using the following beta regression model as data
generating processes:

log
(

µt

1− µt

)
= β1 + xβ2

t2 + β3log(xt3 − β4) +
xt3

β5
, t = 1, . . . , n,

xt2 ∼ U(1, 2), xt3 ∼ U(4.5, 34.5) and φ were kept fixed throughout the experiment. Here we use the
starting value scheme for the estimation by ML proposed by [23]. The precision and the sample size are
respectively φ = (20, 50, 150, 400), n = (20, 40, 60). Additionally, β = (1.0, 1.9,−2.0, 3.4, 7.2)> that yields
µ ∈ (0.36, 0.98). To evaluate the criterion performance on account of nonlinearity negligence, we consider
the following model specification: log

(
µt

1−µt

)
= β1 + β2xt2 + β3xt3. All results are based on 10,000 Monte

Carlo replications and for each replication.
We evaluated the behavior of the statistics both under model misspecification and under model

correct specification. The results displayed in Table 4 reveal that all statistics present values smaller when
the model is missspecified. For example, fixing the precision value of φ = 400, for n = 20, we have values
of P2, R2

LR and R2
FC equal to 0.576, 0.700, 0.637, respectively. For n = 40 and n = 60 the values of the

statistics are 0.568, 0.698, 0.634 and 0.562, 0.698, 0.633, respectively. We simulated other nonlinear patterns
to the sub-model mean predictor, and in some simulations the three criteria did not present smaller values
of the feasible linear model than to the nonlinear model correctly specified.

Table 4. Mean values of the statistics. True model: g(µt) = β1 + xβ2
t2 + β3log(xt3 − β4) +

xt3
β5

, xt2 ∼ U(1, 2),

xt3 ∼ U(4.5, 34.5), β = (1.0, 1.9,−2.0, 3.4, 7.2)>, µ ∈ (0.36, 0.98), t = 1, . . . , n, φ fixed. Misspecification:
g(µt) = β1 + β2 xt2 + β3 xt3 (omitted nonlinearity).

Estimated Model With misspecification: g(µt) = β1 + β2 xt2 + β3 xt3 Correctly

n 20 40 60 60

φ→ 20 50 150 400 20 50 150 400 20 50 150 400 50 150 400

P2 0.485 0.535 0.564 0.576 0.438 0.508 0.550 0.568 0.420 0.496 0.543 0.562 0.849 0.936 0.975

P2
c 0.388 0.448 0.483 0.497 0.391 0.467 0.513 0.532 0.388 0.469 0.518 0.539 0.835 0.930 0.973

R2
LR 0.578 0.647 0.684 0.700 0.563 0.639 0.681 0.698 0.557 0.636 0.680 0.698 0.883 0.953 0.982

R2
LRc

0.499 0.581 0.625 0.643 0.526 0.608 0.654 0.673 0.533 0.616 0.662 0.681 0.863 0.945 0.979

R2
FC 0.486 0.574 0.619 0.637 0.448 0.556 0.612 0.634 0.437 0.550 0.609 0.633 0.879 0.951 0.981

R2
RCc

0.389 0.494 0.548 0.569 0.402 0.519 0.580 0.604 0.407 0.526 0.588 0.613 0.867 0.946 0.979

4. Applications

4.1. Fluid Catalytic Cracking

The first application employs real data from the graduation work of [24], from Chemistry Department
of the Colombia National University. It is based on the Fluid Catalytic Cracking (FFC) process, considered
the heart of a gasoline refinery. [24] explains that the FCC process is used to convert hydrocarbons of high
molecular weight into small molecules of high commercial value, through the contact of hydrocarbons with
a catalyst. The zeolite USY is the major catalyst of the process. The FCC process also involves the vanadium
element, steam, and temperature. However, the vanadium on the catalyst decreases gasoline production.
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Is special, the vanadium affects the crystallinity of zeolite USY depending on steam concentration and of
the temperature during the process. The aim here is modeling the percentage of crystallinity of zeolite USY
(y), based on different concentrations of vanadium (x2) and steam (x3), and two values of the process
temperature (x4). Typically, the higher the vanadium and steam concentrations, the lower the percentage
of crystallinity. [22] modeled these data. At the outset, the authors fitted several linear beta regression
models and carried out the residual analysis which made clear the nonlinear trend. Thus, the authors
modeling these data using a logit nonlinear beta model defined as

g(µt) = β1 + β2xt2/(xt2 + β3) + β3xt3 + β4
√

xt4 and log(φt) = γ1 + γ2x2
t4, (20)

t = 1 . . . , 28. We fitted the model in (20) considering five link functions, namely: logit, probit, log–log,
complementary log–log (C-Log-Log) and Cauchy. We shall present only the logit and complementary
log–log model inferences (Table 5). Similar results are obtained by use the probit, log–log, and Cauchy link
functions. However, we report that the parameter γ2 was significantly different from zero, at the usual
nominal levels, only for the model with the Cauchy link function. On the other hand, to the models with
C-Log-Log and logit link functions the parameter γ2, is far to be significantly different from zero, p-value
equal to 0.404 and 0.200, respectively.

Table 5. Parameter estimates, standard errors (s.e.), relative changes in estimates and in standard errors
due to cases exclusions and respective p-values. Varying dispersion model.

Model C–Log–Log Logit

β1 β2 β3 β4 β5 γ1 γ2 β1 β2 β3 β4 β5 γ1 γ2

Full 0.90 −0.05 −26.9 −0.16 −0.32 4.05 0.26 2.29 −0.10 −26.9 −0.29 −0.68 3.92 0.40

data 0.07 0.02 4.34 0.06 0.06 0.37 0.31 0.15 0.04 4.36 0.11 0.13 0.37 0.31

0.000 0.006 0.000 0.003 0.000 0.000 0.404 0.000 0.010 0.000 0.007 0.000 0.000 0.200

Estimate and standard error changes (%) and p-values.

Obs. 2.1 −16.8 5.9 −30.4 2.6 9.5 −46.7 2.7 −16.6 6.6 −34.6 5.4 9.4 −25.9

10,20 −13.1 10.8 0.2 −3.4 −7.6 7.8 13.5 −7.4 13.8 0.5 1.1 −4.6 7.8 13.5

22,28 del. 0.000 0.040 0.000 0.033 0.000 0.000 0.695 0.000 0.062 0.000 0.086 0.000 0.000 0.404

Obs. −0.7 −1.2 2.5 −13.0 −2.8 −0.6 −31.5 1.7 −7.1 11.2 −54.6 9.1 −8.7 121.8

13,20 3.7 16.5 8.1 15.7 10.0 1.0 12.5 5.3 26.6 −23.9 −4.3 10.3 1.0 12.7

23,27 del. 0.000 0.020 0.000 0.025 0.000 0.000 0.612 0.000 0.061 0.000 0.210 0.000 0.000 0.012

Nevertheless, we computed the selection criteria for the five models and presented in Table 6.
The results in this table evidence that the values of the statistics are overall low, except to complementary
log–log model. Furthermore, the lower values of the P2 statistic when compared with the values of R2-like
criteria, is special to logit model, is an indication of same misspecification on the fitted models. Thus,
from now on we shall focus on the complementary log–log and logit models.

In what follows, we shall perform residual and influence diagnostics for the fitted models based
on (20) and using the logit and complementary log–log link functions, see Figures 5 and 6, respectively.
The index plots of the Cook-like distances identify the observations {10, 12, 16, 24} as influential, for the
two link function models. Furthermore, the case {20} is worthy of further investigation for logit model,
Figure 5c,d. However, the most important information is provided by the normal probability plot for the
logit model in Figure 5b. Here there are two points on the boundaries of envelope bands, cases 22 and 28.
Typically, these are influential cases.
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Table 6. Criterion values. Nonlinear Model. Data on FCC.

Criteria Constant Dispersion Varying Dispersion

Logit Probit Log–Log C–Log–Log Cauchy Logit Probit Log–Log C–Log–Log Cauchy

P2 0.42 0.55 0.22 0.70 0.09 0.20 0.33 0.31 0.66 0.51

P2
c 0.29 0.44 0.05 0.63 −0.1 −0.03 0.14 0.12 0.59 0.37

R2
FC 0.68 0.68 0.67 0.68 0.51 0.67 0.68 0.66 0.69 0.49

R2
FCc

0.60 0.61 0.59 0.61 0.40 0.57 0.59 0.56 0.59 0.34

R2
LR 0.69 0.69 0.68 0.70 0.65 0.70 0.71 0.70 0.71 0.70

R2
LRc

0.55 0.55 0.54 0.56 0.49 0.55 0.59 0.55 0.56 0.55

Based on the above analysis, we removed from the data combinations of the cases 10, 12, 16, 20, 22, 24,
28 (residual/Cook plots) and 13, 18, 23, 27 singled out additionally by the local influence plots (Figure 6)).
In Figure 6 we carried out the local influence analysis based on the perturbation simultaneous of the
covariate vanadium, which is present both in the mean and dispersion predictor.
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Figure 5. Residual and Cook-like distance plots. Varying dispersion model. Data on FCC. (a) Envelope
band of weight residual and link function C-Log-Log; (b) Envelope band of weight residual and link
function Logit; (c) Cook-like distance and link function C-Log-Log ; (d) Cook-like distance and link function
C-Log-Log.
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Thus, we fit the models after the exclusions. We take advantage of the information in Table 5,
where we present the relative changes (%) in parameter estimates and standard error estimates, as well
as the p-values after the exclusions that most affected the model-fitting. From Table 5 we note that the
estimation process of the complementary log–log model proved to be more robust to influential cases than
the estimation process of the logit model.

The set {10, 20, 22, 28} impacts the estimates of β2 and β4 for both models. However,
the complementary log–log model ensures the same inference conclusions whereas to the logit model these
parameters become non-significantly different from zero at the 5% level, in special β4(p-value = 0.086).
For the logit model, the set {13, 20, 23, 27} is still more influential. The exclusion of this set strongly affects
the estimates of γ2, such that the dispersion becomes varying and β4 and β2 become non-significant at the
20% and 5% levels, respectively. This fact is a strong evidence that the parameter estimates of the full data
logit model are biased. The P2 selection criterion was able in identifying this bias pattern, what explains
the low value of this criterion to the logit model, even reaching a negative value for their penalized version.
Furthermore, this bias pattern is due to the non-robustness of the ML estimation process in the presence of
influential cases. We note also that the cases 20 and 28 highlighted on the limits of envelope bands proved
being influential cases revealing the importance of to evaluate this plot carefully. Thus, the nonlinear
model with varying dispersion does not seem to be a good option to these data. On the other hand,
the fit of a nonlinear model with fixed precision, based on complementary log–log link function presents
satisfactory values of the all selection criteria (Table 6).

The residual plots in Figure 7a,b support this conclusion, since to the complementary log–log model
all residuals are randomly scattered within the envelope bands whereas to the logit model there is the
case 5 as potentially influential. However, the cases highlighted as worthy of further investigation by the
total local influence did not change the inference conclusions, is despite to yield greater changes in the
parameter estimates of the logit model than to the complementary log–log model. Figure 7c,d. For this
data set, y ∈ (0.64.0.96) with a median close to 0.81, and the estimated values of φ are quite similar for
all link function models, close to 65. In this scenario we verified by Monte Carlo simulation that the
models based on complementary log–log functions provide the highest values of all selection criteria.
Thus, the application only confirms the simulation results.
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Figure 7. Residual and total local influence plots. Constant dispersion. Data on FCC. (a) Envelope band of
weight residual and link function C-Log-Log; (b) Envelope band of weight residual and link function Logit;
(c) Cook-like distance and link function C-Log-Log ; (d) Cook-like distance and link function C-Log-Log.

4.2. Simultaneity Factor

The second application relates to the distribution of natural gas for home usage in São Paulo, Brazil.
The real data were obtained from the Instituto de Pesquisas Tecnológicas-IPT (https://www.ipt.br/) and

https://www.ipt.br/
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the Companhia de Gás de São Paulo-COMGÁS (https://www.comgas.com.br/). The response variable
(y) is the simultaneity factor, the covariate x2 is the log of computed power and the sample size is n = 42.
Ref. [25] built a bootstrap-based prediction interval for the response variable-based on beta regression
model with constant dispersion defined as log(µt/(1− µt)) = β1 + β2 xt2, which was selected by the
classical version of PRESS statistic given by PRESSC = ∑42

t=1(yt − ŷ(t))2/42. Here we aim at selecting the
best model to the data on simultaneity factor using the P2, R2

LR and R2
FC criteria. We consider five link

functions for µ sub-model, namely: logit, probit, log–log, complementary log–log and Cauchy. Thus,
we fitted five beta regression models based on

g(µt) = β1 + β2 xt2 and h(φt) = β1 + β2 xt2, t = 1, . . . , 42. (21)

We also fitted beta regression models with constant dispersion based on the same five link functions.
For the logit model the maximum likelihood parameter estimates are β̂1 = −1.71, β̂2 = −0.33 and φ̂ ≈ 79
(β̂1 = −0.61, β̂2 = −0.33, and φ̂ ≈ 71, log–log model). The Figure 8a shows that y ∈ [0.016, 0.464], and the
median is equal to 0.069.

We highlight that the simulation results obtained under a similar scenario favor the log–log models.
These achievements are provided by the values displayed in the Table 7 (Constant dispersion). The values
in this table also reveal that using varying dispersion models improve the fit. Here, the evidence that to fit
this data the log–log link function is the best choose and a varying dispersion model is the best model
are support only by the P2 criterion. We shall carry out an influential and residual analysis to prove the
outperformance of the P2 criterion in this situation.

Table 7. Criteria values. Data on simultaneity factor.

Constant Dispersion Varying Dispersion

Criteria Logit Probit Log–Log C–Log–Log Cauchy Logit Probit Log–Log C–Log–Log Cauchy

P2 0.42 0.50 0.65 0.28 −1.67 0.70 0.83 0.88 0.62 −0.98

P2
c 0.39 0.47 0.64 0.24 −1.81 0.67 0.81 0.87 0.59 −1.13

R2
FC 0.69 0.71 0.72 0.68 0.39 0.69 0.71 0.72 0.68 0.39

R2
FCc

0.67 0.70 0.71 0.66 0.36 0.67 0.69 0.70 0.65 0.35

R2
LR 0.72 0.71 0.69 0.73 0.67 0.74 0.74 0.74 0.74 0.67

R2
LRc

0.69 0.68 0.65 0.69 0.62 0.71 0.71 0.71 0.71 0.62

In the Figure 8b,c we present the Cook-like distance index plots for the constant and varying dispersion
models based on log–log link function, respectively. These plots shown that to the beta regression model
with constant dispersion the coefficient estimates of the mean sub-model are highly sensitive to the case
21, whereas the potential influence of this case is set aside when the dispersion is modeled. This is a
strong evidence that the varying dispersion model fits better the data. Forward, we shall focus on the
beta regression with varying dispersion, in the Table 8 we present the inference results for the models
fitted considering the five link functions. For the logit and complementary log–log functions, z2 is only
significative at a 10% level, whereas when we are using the Cauchy link function this covariate is no longer
significant (p-value = 0.5133). When we use the probit function, the covariate becomes significant at the
level of 5%. However, the most significance level for z2 is only reached when the fit considers the log–log
function (p-value = 0.0088).

https://www.comgas.com.br/
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Table 8. Parameter estimates, standard errors (s.e.) and p-values. Data on simultaneity factor.

Par. Logit Probit Log–Log C–Log–Log Cauchy

Estim. s.e. p-val. Estim. s.e. p-val. Estim. s.e. p-val. Estim. s.e. p-val. Estim. s.e. p-val.

β1 −1.72 0.09 0.000 −1.01 0.05 0.000 −0.63 0.05 0.000 −1.82 0.08 0.000 −2.51 0.18 0.000

β2 −0.80 0.08 0.000 −0.41 0.05 0.000 −0.31 0.04 0.000 −0.74 0.07 0.000 −1.47 0.14 0.000

γ1 4.00 0.33 0.000 3.91 0.33 0.000 3.81 0.33 0.000 4.05 0.33 0.000 4.01 0.30 0.000

γ2 0.54 0.30 0.067 0.65 0.30 0.027 0.77 0.29 0.009 0.50 0.30 0.096 0.19 0.29 0.513

In the Figure 8d,e we present the normal probability plots with simulated envelopes to varying
dispersion models based on the log–log, the logit, and the Cauchy link functions, respectively. These plots
reveal that the log–log model yields the best fit whereas the Cauchy model yields the worst fit. This is the
same conclusion provides by the P2 criterion, whereas by the R2

LR criterion all link functions could provide
a good fit, even the Cauchy link function. For instance, to the logit and Cauchy models the (R2

LR, R2
LRc

)

are, respectively, (0.74, 0.71) and (0.67, 0.62).
The performance of the R2

LR is proved to be poor when we look the Figure 8f, which clarify
unmistakably lack of fit of the Cauchy regression. Even the selection of the logit model would not
be appropriate since there are ranges of residuals not randomly distributed across the envelope bands
(Figure 8e). We note that the P2 reaches negative values and the R2

FC is able in identifying some problem
on the model variability, whether the Cauchy function is used (R2

FC = 0.39). Whether a practitioner does
not take into account the other statistics beyond of the R2

LR criterion one could select both logit and Cauchy
model to fit the data. This conclusion would be quite counter for what is proved by residual plots and
inference results. Please note that the R2

LR criterion presents a close relation with AIC-like criteria. Thus,
we must be careful in using a criterion to choose a model even the usual and classical criteria.

Although we must emphasize that P2-like criteria must be used jointly with the R2-like criteria.
We shall focus on the normal probability plot of the log–log fit (Figure 8d). It is possible to note two points
out of the envelope bands just as a slight linear tendency on the residual distribution close of these two
points. This pattern explains the discrepancy between the values of the R2-like criteria and the value of P2

criterion, which are equal 0.7, and 0.9, respectively (Table 7). This pattern suggests some problem in the
dispersion sub-model or in the distribution of probability postulated for the response. Thus, we decide fit
other beta regression models, considering different link functions also for the dispersion sub-model, just
as different functions for the computed power beyond of the logarithm function, as covariates. The best
fit is still the one provides by the beta regression model defined in (21) considering the log–log link
function. In the future we can consider other distributions to fit this data as the simplex distribution that is
a dispersion model and can provide a better fit.

However, the beta regression model defined in (21) and based on log–log function is useful for
modeling the data on simultaneity factor. This example clarifies how it is important to consider both
prediction criteria and different versions of the R2 criteria to select the best model to fit a dataset.
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Figure 8. Diagnostic plots. Data on simultaneity factor. (a) Boxplot of the response; (b) Cook-like distance
and link function Log-Log with constant dispersion; (c) Cook-like distance and link function Log-Log with
varying dispersion; (d) Envelope band of weight residual and link function Log-Log with varying dispersion;
(e) Envelope band of weight residual and link function Logit with varying dispersion; (f) Cook-like distance
and link function Cauchy with varying dispersion.

5. Conclusions and Future Work

In this paper, we develop the P2 criterion based on the PRESS-like machine learning tool for the
class of beta regression models. We presented results of Monte Carlo simulations carried out to evaluate
the performance the P2 criterion and of the versions R2

LR and R2
FC of the R2 criterion, under correct

and incorrect model specifications. We consider different scenarios, including omission of covariates,
negligence of varying dispersion and misspecification of nonlinearity. Two applications using real data
were performed.

Both the simulation results and applications yield important conclusions. When the mean response is
scattered on the standard unit interval, the P2 and R2 coefficients perform similarly well, and both enable
to identify usual model misspecification. On the other hand, it is noteworthy that when the response
values are close to one or zero the P2 criterion outperformed the R2-like criteria in identifying problems on
the model-fitting. Generally, these behaviors are related to influential observations and appropriated link
functions for each range of response on standard unit interval. We notice that the log–log function models
yield the best fits when the response is closer to zero, whereas the complementary log–log models yield the
best fits when the response values are closer to one. These last conclusions were only supported by the P2

criterion, but proved by the residual and influence analyses and by inference results. Another important
conclusion is the poor performance of the R2

LR criterion for beta regression models when the response
is close to one of the standard unit interval boundaries. The R2

FC outperforms the R2
LR in identifying

problems on the model variability on these ranges of the response variable. This conclusion is supported
by the normal probability plots with simulated envelopes used in the real application.

Our proposed criterion proved to be very successful, since it selects the same models selected by
the residual analysis, by the influence diagnostics and inference results. Despite this fact the normal
probability plots with simulated envelopes reveal that questions about the model variability or the
response distribution must be accessed the R2-like criteria.
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Therefore, to the class of beta regression models the best strategy to select the best model to fit a
dataset is jointly used the P2 and R2

FC criteria. When the two criteria being simultaneously close to one,
better shall be the fitted model.

Further work will be devoted to the theoretical properties of the P2 statistic, and revisited statistical
analysis, including post-Hoc analysis [26–28] with the Tukey’s honestly significant difference test, and
their p-values adjusted via false discovery rate [29] to highlight the existence of significant differences
between the proposed and classical algorithms.
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Appendix

In what follows, we shall present the score function and Fisher’s information for β and γ for the
nonlinear beta regression models [1]. The log-likelihood function for the model (2) is given by `(β, γ) =

∑n
t=1 `t(µt, φt), and `t(µt, φt) = log Γ(φt) − log Γ(µtφt) − log Γ((1 − µt)φt) + (µtφt − 1) log yt + {(1 −

µt)φt − 1} log(1− yt). The score function for β is

Uβ(β, γ) = J>1 ΦT(y∗ − µ∗), (A1)

where J1 = ∂η1/∂β (an n× k matrix), Φ = diag{φ1, . . . , φn}, the tth elements of y∗ and µ∗ being given in (6).
Also, T = diag{1/g′(µ1), . . . , 1/g′(µn)}. The score function for γ can be written as Uγ(β, γ) = J>2 Ha,
where J2 = ∂η2/∂γ (an n× q matrix), the tth element of the vector a is at = µt(y∗t − µ∗t ) + log(1− yt)−
ψ((1− µt)φt) + ψ(φt), t = 1, . . . , n and H = diag{1/h′(φ1), . . . , 1/h′(φn)}. The components of Fisher’s
information matrix are

Kββ = J>1 ΦW J>1 , Kβγ = K>γβ = J>1 CTHJ>2 and Kγγ = J>2 DJ>2 . (A2)

Here, W = diag{w1, . . . , wn}, where

wt = φtvt[1/{g′(µt)}2] and vt =
{

ψ′(µtφt) + ψ′((1− µt)φt)
}

, (A3)

C = diag{c1, . . . , cn}; ct = φt {ψ′(µtφt)µt − ψ′((1− µt)φt)(1− µt)}, D = diag{d1, . . . , dn}; dt =

ξt/(h′(µt))2 and ξt =
{

ψ′(µtφt)µ2
t + ψ′((1− µt)φt)(1− µt)2 − ψ′(φt)

}
, 1, . . . , n

Local influence:

Let θ̂ and θ̂δ be the ML estimators of θ for the assumed and perturbed models, respectively.
The perturbation in the assumed model is introduced through a vector δ, n× 1. The likelihood displacement
LDδ = 2

{
`(θ̂)− `(θ̂δ)

}
can be used to assess the influence of the perturbation on the ML estimate. Ref. [5]

is interest to look for the direction Imax, relative with a set of observations that corresponding to the largest
likelihood displacement. The index plot of Imax can be used to single out observations that are jointly
influential. Ref. [5] showed that Imax is the unit norm eigenvector corresponding to the largest eigenvalue
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of −∆> ῭−1∆. where ῭ = ∂2`(θ̂)/∂θ∂θ> and ∆ is a s× n matrix given by ∆ = ∂2`δ(θ)/∂θ∂δ>, evaluated at
θ = θ̂ and δ = δ0, which represents no perturbation.

On the other hand, the normal curvature in the direction of the tth individual, i.e., in the direction of
the vector whose tth component equals one and all other elements are zero, becomes

Ct = 2|∆t
> ῭−1∆t|, (A4)

where ∆t is the tth column of ∆ [19] Ct is the total local influence of observation t and observations such
that Ct > 2 ∑n

t=1 Ct/n can be taken to be individually influential. We partition the parameter vector θ as
θ = (β>, γ>)>. Suppose we are interested in the local influence relative to β, then

Ct;β = 2|∆t
>( ῭−1 − ῭

γγ)∆t| where ῭
γγ =

∂2`(θ)

∂γ∂γ>
and ῭

γγ =

(
0 0

0 ῭−1
γγ

)
. (A5)

Similarly, the local influence relative to γ is given by

Ct;γ = 2|∆t
>( ῭−1 − ῭

ββ)∆t| where ῭
ββ =

∂2`(θ)

∂β∂β>
and ῭

ββ =

(
῭−1

ββ 0
0 0

)
. (A6)

Here, the quantities Imax;β and Imax;γ are the unit norm eigenvector corresponding to the largest eigenvalue

of −∆>( ῭−1 − ῭
γγ)∆ and −∆>( ῭−1 − ῭

ββ)∆, respectively. The most usual perturbation schemes are
case-weight, response perturbation and covariate perturbation. Details of the ∆ structure for each
perturbation scheme and for the expression of ῭−1 can be accessed by the local influence theory developed
by [4] to the nonlinear beta regression models.
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