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Abstract: Graph-embedding algorithms map a graph into a vector space with the aim of preserving
its structure and its intrinsic properties. Unfortunately, many of them are not able to encode the
neighborhood information of the nodes well, especially from a topological prospective. To address
this limitation, we propose a novel graph-embedding method called Deep-Order Proximity and
Structural Information Embedding (DOPSIE). It provides topology and depth information at the
same time through the analysis of the graph structure. Topological information is provided through
clustering coefficients (CCs), which is connected to other structural properties, such as transitivity,
density, characteristic path length, and efficiency, useful for representation in the vector space.
The combination of individual node properties and neighborhood information constitutes an optimal
network representation. Our experimental results show that DOPSIE outperforms state-of-the-art
embedding methodologies in different classification problems.
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1. Introduction

In the last decade, we have observed an exponential increase of real network datasets.
Networks (or graphs) have been adopted to encode information in different fields such as:
computational biology [1], social network sciences [2], computer vision [3,4], and natural-language
processing [5].

The most important tasks over graphs can be roughly summarized into five categories: (a) node
classification [6]; (b) link prediction [7]; (c) clustering [8]; (d) visualization [9]; and (e) graph
embedding [10,11].

In particular, in this work we will focus on point (e). Considering this task, the aim is to
map a graph into a vector space preserving local and spatial information. Vector spaces guarantee
a wider set of mathematical, statistical, and machine-learning-based tools regarding their graph
counterpart. Moreover, some operations on vector space are often simpler and faster than equivalent
graph operations. The main challenge is defining an approach, which involves a trade-off in
balancing computational efficiency and predictability of the computed features. Getting a vector
representation for each node is very difficult. Our motivations arise from some key points about the
graph-embedding problem:

1. Capability. Vector representation should keep the global structure and the connections between
nodes. The first challenge is to find the property suitable to the embedding procedure. Given the
set of distance metrics and properties, this choice can be difficult, and the performances are
connected to the application field;
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2. Scalability. Most real networks are big, and are composed of millions of data points (of nodes and
edges). Embedding algorithms must be scalable and suitable to work with large graphs. A good
and scalable embedding method helps especially when the goal is to preserve global properties
of the network;

3. Dimensionality. Finding the optimal dimension is very hard. A big dimension increases
the accuracy with high time and space complexity. Low-dimension results in better link
prediction accuracy if the model captures local connections between nodes. The best solution is
application-specific-dependent.

In this paper, taking into account the described points, we propose a novel method called
Deep-Order Proximity and Structural Information Embedding (DOPSIE) for learning feature
representations of nodes in networks. In DOPSIE, we learn a mapping of nodes to a low-dimensional
space of features by employing the clustering coefficient measured on triadic patterns (three connected
nodes, also known as triangles). Clustering coefficients, among the many measures, are adopted
due to the connection between other graph properties (transitivity, density, characteristic path
length, and efficiency). Precisely, starting from each node under analysis, the method analyzes
its connections to identify triadic patterns, thus computing CCs. This search is iteratively performed
from each explored neighborhood level, to understand if they have other triadic patterns. In this
way, the topological information, arising from the different explored neighborhood levels, is captured.
There are many measures proposed in the literature for the purpose of capturing structural information.
In [12] the structural information content of a graph is interpreted and defined as a derivation of
graph entropy. In [13], entropy methods applied to knowledge discovery and data mining are
presented. The authors focus the attention on four methods: Approximate Entropy (ApEn), Sample
Entropy (SampEn), Fuzzy Entropy (FuzzyEn), and Topological Entropy (FiniteTopEn). In [14], different
approaches and measures (degree distribution, path-based measures, and so on) are adopted to
analyze the functional organization of gene networks, and networks in medicine are described.
Further measures of node importance such as betweenness, closeness, eigenvector, and Katz centrality
are described in [15]. Moreover, some tools have been proposed to extract node centrality measures
such as CentiBiN (Centralities in Biological Networks) [16], SBEToolbox [17], Brain Connectivity
Toolbox [18], and MATLAB Tools for Network Analysis[19].

The paper is organized as follows: in Section 2 the related works are summarized; in Section 3 we
describe our algorithm; in Section 4 a detailed comparison with state-of-the-art methodologies on a
wide family of public datasets is presented; Section 5 reports conclusions and future works.

2. Related Work

Over the last 50 years, the machine-learning community has developed a big amount of
approaches that are designed to deal with data encoded as vectors of real values. For this reason,
when dealing with networks, it can be profitable to map a graph to a vector space instead to develop
an ad-hoc algorithm that is able to directly deal with this kind of data.

To achieve this goal, the conventional paradigm is to generate features from nodes and edges.
Graph-embedding methods [10,11] learn a mapping from graph data to a low-dimensional vector
space in which the graph structural information and graph properties are maximally preserved.

In the rest of this section, we provide an overview of some of the most notable graph-embedding
methods. One of the most valuable approaches is DeepWalk (DW, [20]). It is a deep
unsupervised method that learns the topology of nodes in social networks, based on random walks.
Social information are features including the neighborhood and the community similarities, enclosed
in a continuous space with a relatively small number of dimensions. The method generalizes human
behavior, adapted to acquire the semantic and syntactic structure of human language, based on a set of
randomly generated walks.

In [21], a framework for learning continuous node feature representations in networks, called
Node2vec, is described. The algorithm is based on a custom graph-based objective function inspired
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by natural-language processing. The goal is to preserve network neighborhoods of nodes in a
d-dimensional feature space through the maximization of a likelihood function. The heart of the
method is the flexible notion of neighborhood built through a 2nd-order random walk approach.
Based on these principles, Node2vec can learn representations that arrange nodes based on roles
and/or community membership.

In [22], a graph-embedding algorithm called High-Order Proximity-preserved Embedding (HOPE)
that preserves high-order proximity of large-scale graphs and is able to capture their asymmetric
transitivity is proposed. The authors introduce an efficient embedding algorithm that exploits
multiple high-order proximity measurements. Based on the formulation of generalized Singular
Value Decomposition (SVD), the factorization of a matrix into the product of three matrices UDV
where the columns of U and V are orthonormal and the matrix D is diagonal with positive real entries,
the algorithm works on large-scale graphs by avoiding the time-consuming computation of high-order
proximities.

In [23] the authors address the problem of factorizing natural graphs through decomposition and
inference operations. The proposed method works by partitioning a graph to minimize the number of
neighboring vertices rather than edges across partitions. It is a dynamic approach as is adaptable to
the topology of the underlying network hardware.

In [24], a method able to capture highly non-linear network structures, called Structural Deep
Network-Embedding (SDNE) method, based on semi-supervised deep-model and multiple layers
of non-linear functions, is described. The algorithm, to store the network information, combines
first-order proximity to preserve the local network structure, and second-order proximity to capture
the global network structure. This approach ensures robustness, especially with sparse networks.

In [25] a network-embedding algorithm, named Large-scale Information Network Embedding
(LINE), suitable for arbitrary types of information networks (undirected, directed, and/or weighted)
is proposed. It includes both local and global network structures optimizing an objective function.
To overcome the limitation of the classical stochastic gradient descent approaches, and to improve the
effectiveness and the efficiency of the overall approach, an edge-sampling algorithm is adopted.

A technique to generate a vector representation for nodes by taking the graph structural
information is described in [26]. This technique employs a random walking approach to extract
graph structural information. Moreover, the model shows the ability to extract meaningful information
and generate informative representations by means of stacked denoising autoencoders.

3. Our Method

Given a graph G = (V, E), where V and E are sets of nodes and edges respectively, a graph-
embedding method is a mapping f : V → <d. Precisely, an embedding procedure maps nodes to
features vectors with the purpose to preserve the connection information between nodes.

A triangle ∆ = (V∆, E∆) of a graph G is a three node subgraph of G with V∆ = {v1, v2, v3} ⊂ V
and E∆ = {{v1, v2}, {v2, v3}, {v3, v1}} ⊂ E. δ(G) is the number of triangles in graph G. If a
node i is considered, δi(G) is the number of triangles in graph G in which node i is involved.
A triple Υ = (VΥ, EΥ) of a graph G is a three node subgraph with VΥ = {v1, v2, v3} ⊂ V and
EΥ = {{v1, v2}, {v2, v3}} ⊂ E, where v2 is the center of the triple. The notation τ(G) refers to the
number of triples in graph G that each triangle contains exactly three triples.

In the following two sections, we will introduce the theoretical elements that are at the foundation
of DOPSIE.

3.1. Clustering Coefficient

In graph theory, the clustering coefficient describes the degree of aggregation of nodes in a graph.
Two possible versions can be defined: the Global Clustering Coefficients (GCC) and the local

Clustering Coefficients (CC) [27].
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The GCC is based on triplets of nodes. A triplet is defined as three connected nodes. A triangle
can include three closed triplets, each one centered on one of the nodes. The GCC is the number of
closed triplets over the total number of triplets. Formally, GCC can be defined as follows:

GCC(G) =
δ(G)

τ(G)
(1)

This measure ranges between 0 and 1. Precisely, it is equal to 0 if no triangles are found in
the network, while it is equal to 1 if all nodes are connected as in a completely connected network.
This method can be applied both to directed and undirected graphs.

By contrast, the CC of a node i is defined as the number of triangles in which node the i is involved
over the maximum possible number of such triangles:

CCi(G) =
δi(G)

ki(ki − 1)
(2)

ki denotes the number of neighbors of node i. Also, this measure ranges between 0 and 1. Precisely, it is
equal to 0 if none of the neighbors of a node is connected, and it is equal to 1 if all of the neighbors are
connected. Please note that a distinction between directed and undirected graphs must be done. In a
directed graph the edge i→ j is distinct from j→ i. So, for the node i there are ki(ki − 1) connections
between its members. As a result, the clustering coefficient is given by Equation (2). By contrast,
considering an undirected graph the edge i→ j is identical to j→ i. So, for the node i there are ki(ki−1)

2
possible connections between its members. The CC becomes:

CCi(G) =
2δi(G)

ki(ki − 1)
(3)

It is important to notice that in network analysis this quantity can then be averaged over the entire
network or averaged by node degree.

Properties

GCC has some interesting relationships with two important properties of the graphs: transitivity
and density.

Transitivity was introduced in [28] and it can be defined as follows:

T(G) =
3δ(G)

τ(G)
(4)

In [29] is proven that GCC(G) and T(G) are equal for graphs where:

• all nodes have the same degree;
• all nodes have the same clustering coefficient.

Density [30] is defined as follows:

D(G) =
2m

n(n− 1)
(5)

where n are the number of nodes and m are the number of edges.
We can now analyze the behaviors of D(G), GCC(G) and T(G) for the families of graph with

n→ ∞. Precisely:

1. D is sparse, GCC → 0, T → 0. The graph family is composed of rings of n nodes and n edges.
2. D is sparse, GCC → 1, T → 1. The graph family consists of n

3 disconnected triangles.
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3. D is sparse, GCC → 1,T → 0. δ = n. Consequently,

T =
2(n2 − n)

2 + n
= n2 (6)

and

GCC =
n

(n + 2)
. (7)

4. D is sparse, GCC → 0, T → 1. The graph family of n = q + k nodes with q nodes as a clique and
k nodes as a ring. δ = (q

3) and t = 3(q
3) + k. Consequently,

T =
3(q

3)

(q
3) + k

(8)

and

GCC =
q

q + k
(9)

5. D is dense, GCC → 0, T → 0. The graph family is complete and bipartite with partitions of
equivalent dimension.

6. D is dense, GCC → 1, T → 0. The graph family is a bi-partition of equal dimension (b nodes)
and a

3 disconnected triangles, with

T =
a

a + b(b/2
2 )

(10)

and

GCC =
a

b + a
. (11)

7. D is dense, GCC → 0, T → 1. The same family of case 4.
8. D is dense, GCC → 1,T → 1. The family of complete graph.

It is important to notice that in [31] it is shown that GCC has some interesting relationships also
with two other important properties: Characteristic Path Length ([32], CPL) and efficiency [33]. CPL is
the average distance over all pairs of nodes and is defined as follows:

L(G) =
1

n(n− 1) ∑
i 6=j

d(i, j) (12)

where d(i, j) represents the length of the shortest path between a sequence of distinct nodes i and j in
G. Notice that d(i, j) = ∞ if there are no edges that connect i and j.

Efficiency measures how efficiently information exchanges between nodes and their usefulness.
It can be defined as follows:

E(G) =
1

n(n− 1) ∑
i 6=j

1
d(i, j)

(13)

Finally, it is important to underline that the described properties are still true also if we consider a
subgraph/neighborhood of a selected node instead of all G.
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3.2. Deep-Order Proximity

Given a graph G, our embedding procedure encodes a generic node vi ∈ V as follows:[
ne(vi) ne1(vi) . . . nep(vi)

]
(14)

where ne is computed by means of Equation (2) and p is the selected node-order proximity value that
indicates how the neighborhood proximity of node i is explored. Moreover, nep (with p ∈ {1, . . . , n})
is calculated as follows:

nep =
|NNk |

∑
k=1

CC(NNk) (15)

where CC(NNk) is the clustering coefficient value, computed employing Equation (2) on the k-th
neighbor of the node i with a given distance proximity p and | · | is the cardinality operator adopted to
calculate the dimension of the set NNk.

Summarizing, the final result of the embedding procedure is:

GE =


ne(v1) ne1(v1) . . . nep(v1)

ne(v2) ne1(v2) . . . nep(v2)
...

...
...

...
ne(vN) ne1(vN) . . . nep(vN)

 (16)

where each element of a generic column describes the involvement of a given node with its triangular
pattern neighbors. Figure 1 shows an example of a node neighborhood. The red point represents
the node under analysis, the green triangles are built considering the first-order proximity neighbors
(p = 1), the black triangles are built considering the second-order proximity neighbors (p = 2), and the
yellow ones are built considering the third order proximity neighbors (p = 3). The application of
this measure is linked to some fundamental aspects. First, the CCs are connected to other properties
such as transitivity, density, characteristic path length, and efficiency. Transitivity verifies the number
of passages of edges for a given node, while density provides information of centrality for a given
subgraph or node. These centrality measures emphasize important nodes, especially in networks
which present agglomerations in particular areas. Thus, CCs inherently capture further properties,
enriching information to include in the features vector. Furthermore, the methods, exploring the graph
in depth, adds another level of detail as it verifies the presence of structure in a wider area than the
single neighborhood. This aspect is fundamental as the goal of embedding is to make sure that if two
nodes are close in the graph, then they will be close in the embedding space. For this purpose, DOPSIE
guarantees that nodes of a certain importance and spatial neighbors will present high values with
respect to isolated nodes.

Figure 1. An example of a node neighborhood.
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3.3. Our Algorithm

The proposed method takes as input a graph structure and encodes a vector representation for
each node. As explained in the previous sections, the method explores an ever-growing neighborhood
for every node in the network. This approach is dictated by the fact that topological information
is not concentrated only in the nearest neighborhood but at a different distance. In fact, the goal is
to represent not single nodes but particular areas in which the nodes are involved. Features about
area are much richer and representative than punctual features. Furthermore, we have observed
that the triangular pattern, taken into account, is the minimum closed polygon that includes three
nodes and the simplest to detect providing a gain in terms of computational complexity. Algorithm 1
summarizes the steps of our method. The input parameters are the graph G and the node-order
proximity dimension p.

Algorithm 1 DOPSIE algorithm

1: procedure GRAPH EMBEDDING(G, p)
2: d← 1
3: for i← 1, |G| do
4: CCi(G)← δi(G)

ki(ki−1)
5: ne(vi)← CCi(G)
6: GE[i, d]← ne(vi)
7: end for
8: d := d + 1
9: for i← 1, |G| do

10: nn = FIND(G, vi)
11: N(i)← nn
12: if |nn| > 0 then
13: ned−1(vi)← ∑

|nn|
j=1 CCj(G)

14: GE[i, d]← ned−1(vi)
15: else
16: GE[i, d]← 0
17: end if
18: end for
19: while d ≤ (p + 1) do
20: d := d + 1
21: for k← 1, |N| do
22: NN(k)← ∅
23: temp← 0
24: if |N(k)| > 0 then
25: for j← 1, |N(k)| do
26: nnt = FIND(G, N(k).v(j))
27: if |nnt| > 0 then
28: NN(k)← NN(k) ∪ nnt
29: ned−1(vk) := ned−1(vk) + ∑

|nnt|
z=1 CCz(G)

30: end if
31: end for
32: GE[k, d]← ned−1(vk)
33: else
34: GE[k, d]← 0
35: NN(k)← ∅
36: end if
37: end for
38: N ← NN
39: end while

return GE
40: end procedure

The CCs computed employing Equation (2) are stored in the first column of GE matrix (Lines 3–7).
After that, for each node, its neighbors of first order are exploited to compute the sum of their CCs
(Lines 9–18).
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Subsequently, from Lines 19–39 a depth exploration of the neighborhoods of each node with
respect to the p input parameter is performed. It is the heart of the algorithm. At each step, the method
explores a next level of depth in the graph with a limit equal to p + 1 (line 20). For each depth level,
it checks if there are nodes in the neighbors and store neighborhood information through the CCs
measure (line 29). This exploration can be compared to the diffusion of a liquid that expands from a
precise starting point (lines 21–38) and as shown in Figure 1. The starting point is the red node while
the different colors represent the neighborhood levels explored during the iterations.

Finally, the algorithm returns GE. This matrix is composed of |G| · (p + 1) elements, where each
row contains the embedding values encoding the nodes of the input graph.

Algorithm 2 Find the neighborhoods of the graph nodes

1: procedure FIND(G,vi)
2: for j← 1, |G| do
3: if (ei, ej) = 1 then
4: nn← nn ∪ vj
5: end if
6: end for

return nn
7: end procedure

3.4. Computational Complexity

In the following lines, we will analyze the time complexity of the main parts of DOPSIE.

1. The CC computation (lines 3–7). The time complexity is O(|G|). It is related to the number of
graph nodes |G|.

2. The research of the first order neighbors and the computation of the sum of the CCs of the
neighbors (lines 9–18). The time complexity is O(|G|).

3. The exploration in depth of the nodes’ neighborhoods (lines 19–39). The time complexity is
O(|N(k)| · |N| · p), where |N| is the number of the neighborhoods of all the nodes of a given
order proximity dimension, |N(k)| is the number of neighborhoods of a generic (k) node and p is
the order proximity dimension value.

4. Results

In this section, we present the datasets and the experimental framework adopted to assess
the quality of DOPSIE. We address different multilabel/multiclass classification problems through
one-vs-all paradigm. The main task is divided into multiple binary tasks and the results obtained are
expressed in terms of averaged accuracy.

4.1. Datasets

We have employed the following datasets:

• BlogCatalog [34], a network of social relationships provided by blogger authors. The labels
represent the topic categories provided by the authors.

• Email-Eu-core [35], a network generated using email data from a large European research
institution. We have an edge (u, v) in the network if the person u sent to the person v at least
one email. The dataset also contains "ground-truth" community memberships of the nodes.
Each individual belongs to exactly one of 42 departments at the research institute.

• Wikipedia [36], a network of web pages. Labels represent the categories of web pages.

Table 1 summarizes the overall details related to the employed datasets.
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Table 1. Graphs adopted in our experiments.

Name BlogCatalog Email-Eu-core Wikipedia

| V | 10312 1005 2405
| E | 667966 25571 17981
| y | 39 42 17

4.2. Experimental Framework

We have compared the classification performance achieved using the feature vectors computed by
DOPSIE with those obtained by employing the following state-of-the-art graph-embedding algorithms:
DeepWalk (DW) [20]; Graph Factorization (GF, [23]); HOPE, [22]; Node2vec [21].

Given an embedded dataset, the classification phase is performed by the Regularized Logistic
Regression (RLR) [37] appropriately tuned. Moreover, distance proximity p is set to 10. This value is
fundamental for the characterization of the network to be represented. After a training phase, a value
equal to 10 is chosen. A low value ensures poor detail and computational optimization. By contrast,
a high value enables an unrepresentative deep exploration of the neighborhood with an expensive
computation. The datasets adopted are split into training and test sets. The training set are used to
train the RLR classifier. An increasing percentage of data are adopted to understand the response in
condition of variation. This phase is fundamental because it affects the quality of the classification
model. The test set provides the standard approach to evaluate the model. It is only adopted once
the model is completely trained. The test set contains carefully sampled data spanning the different
classes that the model is composed of in the real world. We have chosen two performance measures.
Accuracy gives an overall measure by checking only if the prediction of classifier is correct or wrong.
Meanwhile, f-measure is more accurate as, in addition, it verifies the class of belonging of individual
nodes of the network.

4.2.1. BlogCatalog

In this experiment we have randomly sampled a portion (from 10 to 90%) of the labeled nodes
to create the training and test sets and we have repeated 10 times the process to average the results.
All the hyper-parameters have been tuned by means of grid search. Please note that this dataset
(formalized in Table 1) is strongly connected, and it is the bigger one considering of both the number
of nodes and the number of edges.

Table 2. Accuracy results achieved on BlogCatalog dataset. Results in bold represent the highest
performance achieved for each column.

Per Train DOPSIE GF HOPE DW Node2vec

10% 97.16 96.37 96.37 96.54 96.58
20% 97.24 96.38 96.37 96.56 96.61
30% 97.28 96.38 96.38 96.57 96.62
40% 97.29 97.17 97.11 97.15 97.21
50% 97.40 97.07 97.18 97.02 97.21
60% 96.01 95.77 95.30 95.32 95.05
70% 96.12 96.01 96.08 97.06 96.03
80% 96.72 96.09 96.05 96.43 96.24
90% 96.00 95.12 95.12 95.43 95.42

Accuracy results are shown in Table 2. Numbers in bold represent the highest performance
achieved for each column. We can notice that DOPSIE consistently outperforms the other approaches.
In contrast to the standard case, with the increase of the trained percentage, a proportional growth
of the performance is not obtained. This behavior is linked to the nodes included for the test set,
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which presents several heterogeneous connections, which results in a description of the features vector,
greatly affecting the performance.

F-measure results are shown in Table 3. Numbers in bold represent the highest performance
achieved for each column. From this further experiment, we have the same indications. Clearly,
the numerical results are slightly different because the f-measure is more sensitive to false positives
and false negatives.

Table 3. F-measure results achieved on BlogCatalog dataset. Results in bold represent the highest
performance achieved for each column.

Per Train DOPSIE GF HOPE DW Node2vec

10% 98.44 97.64 97.64 97.72 97.74
20% 98.46 97.64 97.64 97.73 97.76
30% 98.49 97.64 97.65 97.74 97.77
40% 98.49 98.34 98.15 98.14 98.01
50% 98.50 98.04 98.05 98.14 97.24
60% 97.72 97.22 97.21 97.12 97.64
70% 97.44 97.11 97.22 97.17 97.42
80% 97.46 97.01 97.28 97.16 97.26
90% 97.22 97.02 97.11 97.15 97.04

4.2.2. Email-Eu-core

In this experiment, we have randomly sampled a portion (from 10 to 90%) of the labeled nodes
to create the training and test sets and we have repeated 10 times the process to average the results.
All the hyper-parameters have been tuned by means of grid search.

This dataset has a lower number of nodes compared to the others. Moreover, it is important
to notice that this dataset is particularly dense. Considering these peculiarities, the achieved
accuracy results summarized in Table 4 show that DOPSIE outperforms Node2vec, GF and DW
when dealing with big/medium training sets (30-40-50-60-70-80-90% of the labeled nodes). Otherwise,
the performance of HOPE and GF are slightly better.

Table 4. Accuracy results achieved on email-Eu-core dataset. Results in bold represent the highest
performance achieved for each column.

Per Train DOPSIE GF HOPE DW Node2vec

10% 95.81 97.61 97.62 97.45 97.24
20% 96.26 97.69 97.63 97.56 96.23
30% 97.19 95.67 95.68 94.65 93.64
40% 97.38 96.68 95.70 94.75 95.64
50% 97.47 94.67 95.71 95.74 94.64
60% 97.17 94.47 95.47 96.47 95.47
70% 97.74 96.47 96.37 96.44 96.44
80% 97.43 95.11 94.12 96.23 96.44
90% 97.44 96.33 96.21 96.12 96.44

F-measure results are shown in Table 5. Numbers in bold represent the highest performance
achieved for each column. The results obtained with f-measure are slightly different from the values
obtained with accuracy. However, even in this case we get the same trend.
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Table 5. F-measure results achieved on email-Eu-core dataset. Results in bold represent the highest
performance achieved for each column.

Per Train DOPSIE GF HOPE DW Node2vec

10% 98.77 98.80 98.80 98.67 98.79
20% 98.37 98.80 98.80 98.74 98.79
30% 98.56 97.80 97.81 97.80 97.80
40% 98.66 97.81 97.82 97.83 97.79
50% 98.69 97.80 97.82 97.83 97.79
60% 98.21 97.22 97.66 97.54 97.21
70% 98.11 97.32 97.47 97.23 97.24
80% 98.12 97.22 97.73 97.39 97.37
90% 98.62 97.35 97.11 97.96 97.91

4.2.3. Wikipedia

In this experiment we have randomly sampled a portion (from 10 to 90%) of the labeled nodes
to create the training and test sets and we have repeated 10 times the process to average the results.
All the hyper-parameters have been tuned by means of grid search.

Accuracy results are summarized in Table 6. Numbers in bold represent the highest performance
achieved for each column. This dataset presents fewer classes and is less dense than the other two.
Nevertheless, also under this setting, DOPSIE shows better results with respect to those achieved by
Node2vec, GF, HOPE, and DW.

Table 6. Accuracy results achieved on Wikipedia dataset. Results in bold represent the highest
performance achieved for each column.

Per Train DOPSIE GF HOPE DW Node2vec

10% 93.67 92.13 92.13 92.79 92.83
20% 94.66 94.13 94.13 94.23 94.08
30% 94.11 93.13 93.13 93.40 93.21
40% 94.46 94.04 94.25 94.33 94.32
50% 94.19 93.14 93.17 93.59 93.42
60% 94.55 93.77 93.91 94.33 93.19
70% 94.32 93.13 93.17 93.54 93.32
80% 94.21 93.03 93.05 93.11 93.16
90% 94.56 93.53 93.32 93.21 93.00

F-measure results are summarized in Table 7. Numbers in bold represent the highest performance
achieved for each column. The results are numerically different but with the same trend, except for the
case of 20% of training in which flattened values of 3 methods (GF, HOPE, DW) are presented.

Table 7. F-measure results achieved on Wikipedia dataset. Results in bold represent the highest
performance achieved for each column.

Per Train DOPSIE GF HOPE DW Node2vec

10% 96.68 96.61 96.61 96.65 96.05
20% 96.83 96.91 96.91 96.91 96.85
30% 96.88 96.71 96.71 96.01 96.20
40% 96.92 96.91 96.21 96.02 96.55
50% 96.93 96.81 96.91 96.09 96.44
60% 96.21 96.12 96.02 96.11 96.11
70% 96.20 96.02 96.12 96.11 96.12
80% 96.18 96.02 96.11 96.07 96.12
90% 96.31 96.22 96.06 96.21 96.23
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5. Conclusions

In this work, we have proposed DOPSIE, a novel graph-embedding algorithm. Our method learns
a representation that captures structural properties of the analyzed graph. We have proposed a wide
experimental phase to demonstrate the effectiveness of our approach on multilabel and multiclass
classification tasks. We have identified strong and weak points of the proposed approach. The main
strong point consists of capturing structural features using exclusively the CC measure. The main weak
point concerns the effort of capturing topological features when the network presents few connections,
when nodes are poorly connected to each other. These nodes are considered not very representative,
in terms of incoming and outgoing connections, and weakly characterize the graph. This aspect
is reflected in a heterogeneous performance trend, as the current training set increases. The main
challenge is to understand how to address this issue to make the method very distinctive in the context
of network evaluation.

Possible future works might consist of exploring different concepts of proximity to further enrich
the embedding features to improve the performance.
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