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Abstract: Graphs are a very useful framework for representing information. In general, these data
structures are used in different application domains where data of interest are described in terms of
local and spatial relations. In this context, the aim is to propose an alternative graph-based image
representation. An image is encoded by a Region Adjacency Graph (RAG), based on Multicolored
Neighborhood (MCN) clustering. This representation is integrated into a Content-Based Image Retrieval
(CBIR) system, designed for the vision-based positioning task. The image matching phase, in the CBIR
system, is managed with an approach of attributed graph matching, named the extended-VF algorithm.
Evaluated in a context of indoor localization, the proposed system reports remarkable performance.
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1. Introduction

First-person vision systems, adopted from humans, to observe the scene [1,2] capture data
including the user’s preferences. A common example concerns a localization context. Images with
a similarity profile are taken by a phone camera and retrieved from a database, where the attached
localization information is sent to the user. Combining location, motion patterns, and attention allows
the recognition of behaviors, interest, intention, and anomalies.

Several vision-based position systems are built on a client-server paradigm. Typically, a common
scenario involves a user (or robot), client side, located in an indoor environment that observes the
scene, with related acquisition of different screen shots. These frames are sent to a central server, i.e.,
a CBIR system, which performs a comparison with a pre-captured image database. The important
condition, in order to perform the localization step, is to label the image database with positioning
information related to the environment map. Subsequently, spatial coordinates associated with the best
ranked images, e.g., retrieved from the CBIR system with reference to a query, are returned to the user
(or robot) for localization. In this way, a higher accuracy is ensured. In this field, the literature provides
some interesting works, and the vision research applied to indoor localization is in constant progress.

Most of the researchers have focused their attention on the features extracted in many ways
from the scene. The Harris and SIFT [3] features are important to identify what is distinctive and
discriminative for the purpose of a correct recognition of the scene. The bag of words algorithm has
been applied to SIFT descriptors, to identify discriminative combinations of descriptors [4]. In [5],
the application of clustering to descriptors led to results that were less distinctive in a large cluster
than those in a small cluster. For example, in indoor navigation, window corners are common, so they
are not good features to identify scenes uniquely, whilst corners found on posters or signs are much
better. In [6], an effective approach based on real-time loop detection was proven to be efficient using a
hand-held camera, through SIFT features and intensity and hue histograms combined using a bag of
words approach. In recent years, the trend has led to features extracted through deep learning such
as based on recurrent neural networks [7] and convolutional neural networks [8]. All this, however,
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has the effect of a performance degradation, especially in the extraction phase, which is particularly
important for real-time applications in which quick feedback is required.

In this context, the main contribution resides in the image features and the mechanism adopted
to perform the comparison. Up to now, none of the existing approaches have tackled the relations
among features in terms of similarity and spatial homogeneity. Our main contribution consists of
introducing an approach based on graph-based representation, according to which regions with their
corresponding feature vector and the geometric relationship between these regions are encoded in
the form of a graph. The problem of localization is thus formulated as an image retrieval problem
between a graph-based representation of the image to be localized and those stored in a database.
Each region is represented as a Multicolored Neighborhood (MCN) [9], obtained by extending the
representation reported in [9] made for an object to a complex scene. A representation, namely,
the Multimodal Neighborhood Signature (MNS), was firstly developed by Matas et al. [10]. However,
this signature cannot specify whether there are only two segments or more than two present in the
Region Of Interest (ROI). Thus, the neighborhoods having more than two-modal color distributions are
not efficiently represented; this problem has been solved by the MCN representation. MCN regions are
then linked together by graphs; methods such as the Color Adjacency Graph (CAG) [10], Attributed
Relational Graph (ARG) [11], and shock graph [12] are prominent in this approach. The problem,
then, is formulated as an approximate graph matching problem. One advantage of graph-based
representation is that the geometric relationship can be used to encode certain shape information of
the object, and any subgraph matching algorithm can be used to identify a single, as well as multiple
objects in query images. We adopt here an extended version of algorithm VFgraph matching [13],
which is able to solve the classic problem of graph isomorphism generally. Unlike the version in [13],
which operates on simple graph structures, the extended-VF graph matching algorithm works with
the purpose of analyzing region features (multicolored neighborhood), corresponding to graph nodes,
and at the same time, spatial relationships existing between them. Structural relations prove to be
fundamental in order to match images in a context of indoor environment scenes. An overview of our
systems is reported in Figure 1.

Figure 1. Application overview. Given an input image, captured by a user located in an indoor
environment, a set of images pre-captured in the same environment is retrieved through the
extended-VFmatching algorithm. The location of the user is determined by labels attached to
matched images. Finally, the relevance feedback phase calculates the accuracy of the localization
prediction. MCN, Multicolored Neighborhood; RAG, Region Adjacency Graph; CBIR, Content-Based
Image Retrieval.
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The paper is organized as follows: Section 2 includes related research in image indoor localization.
Sections 3–6 are dedicated to region representation, attributed graph matching, and complexity analysis.
Results and conclusions are respectively reported in Sections 7 and 8.

2. Related Work

The recent literature reports different approaches to image-based indoor localization. Although
not all fully related to feature-based content-based image retrieval, on which mainly our approach
resides, we briefly introduce them to better contextualize our approach and, consequently,
our contribution.

In [14], the JUDOCAoperator detected junctions in the images. Any junction can be split into
a series of two-edge junctions (each two-edge junction forms a triangle). The average intensity is
calculated, in gray-scale or color images, for each triangle. Thus, the information is stored in a database,
as the output of the JUDOCA [15] operator (location of the junction and the orientations of the edges),
in addition to the average color calculated. In the retrieval step, the input image is compared with
each one in the database using the features extracted.

The authors in [16] adopted PCA-SIFT [17] features and fast nearest neighbor search based
on LSH [18] for image search. Then, the error in the corresponding points was removed by the
RANSAC [19] algorithm. Finally, it was necessary to quickly search corresponding image points since
the database contained many reference images.

The system proposed in [20] applied a reduction on SIFT features extracted from images.
The comparison was performed to measure the feature’s retrieval rate between each image and
the entire database. To this end, an image was retrieved if it matched at least five keypoints with the
query. This match was considered good if the common content view of two images overlapped.

In [21], the ways to achieve natural landmark-based localization using a vision system for the
indoor navigation of an Unmanned Aerial Vehicle (UAV) were discussed. The system first extracted
feature points from the image data, taken by a monocular camera, using the SIFT algorithm. Landmark
feature points, having distinct descriptor vectors among the feature points, were selected. Then,
the position of landmarks was calculated and stored in a map database. Based on the landmark
information, the current position of the UAV was retrieved.

In [22], an application for mobile robot navigation was proposed. The system worked on the
visual appearance of scenes. For example, scenes, with different locations, that contain repeated
visual structures such as corridors, doors, or windows, occur frequently and are recognized as the
same. The goal of the proposed method was to recognize the location in the scenes possessing similar
structures. The images were described through the salient region, extracted from images using the
visual attention model and calculating weights using distinctive features in the salient region. The test
phase provided results about single-floor corridor recognition and multi-floor corridor recognition
with an accuracy of 78.2% and 71.5%, respectively.

In [23], a new Simultaneous Localization And Mapping (SLAM) algorithm based on the Square
Root Unscented Kalman Filter (SRUKF) was described. The logic of the algorithm was based on the
square root unscented particle filter for estimating the robot states in every iteration. Afterwards,
SRUKF was used to localize the estimated landmarks. Finally, the robot states and landmark
information were updated. The algorithm was applied in combined way with the robot motion
model and observation model of infrared tag in the simulation. Experimental results showed that the
algorithm improved the accuracy and stability of the estimated robot state and landmarks in SLAM.
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In [24], the localization problem was addressed by querying a database of omnidirectional images
that represented in detail a visual map of the environment. The advantage of omnidirectional consisted,
compared to standard perspectives, of capturing in a single frame the entire visual content of a room.
This improved the acquisition process of data and favored scalability by significantly decreasing the
size of the database. The images were described through an extension of the SIFT algorithm that
significantly improved point matching between the two types of images with a positive impact on the
recognition based on visual words. The approach was compared with the classical bag-of-words against
the recent framework of visual phrases and reported an improvement of localization performance.

In [25], a robust method of self-localization for mobile robots based on a USB camera in order to
recognize a landmark in the environment was proposed. The method adopted the Speeded Up Robust
Features (SURF) method [26] that is robust to recognize landmark. Then, mobile robot positions were
retrieved based on the results of SURF.

In [27], an approach to indoor localization and pose estimation in order to support augmented
reality applications on a mobile camera phone was proposed. The system was able to localize the
device in an indoor environment and determine its orientation. Furthermore, 3D virtual objects
from a database were projected into the image and displayed for the mobile user. Data acquisition
was performed off-line and consisted of acquiring images at different locations in the environment.
The on-line pose estimation was done by a feature-based matching between the cell phone image and
an image selected from the pre-computed database. The algorithm accuracy was evaluated in terms of
the reprojection distance of the 3D virtual objects in the cell phone image.

In [28], a mobile device used by the user to help the localization estimation in indoor environments
was described. The system was centered on a hybrid method that combined Wi-Fi and object detection
to estimate user location in indoor environments. The Wi-Fi localization consisted of a fingerprinting
approach using a naive Bayes classifier to analyze the signals of existing networks and give a rougher
position estimation. Object detection was accomplished via feature matching between the image
database of environment and the image being captured by the camera device in real time.

In [29], the authors presented a probabilistic motion model in which the indoor map was
represented in the form of graph. In particular, the motion of the user was followed through the
building floor plan. The floor plan was represented as an arrangement of edges and open space
polygons connected by nodes.

In [30], the authors provided an indoor localization method to estimate the location of a user.
A matching approach between an actual photograph and a rendered BIM (Building Information Modeling)
image was adopted. A Convolutional Neural Network (CNN) was used for feature extraction.

In [31], the authors described an approach that recovered the pose of the camera from the 2D
points, image positions, and 3D points of the scene model correspondence in order to obtain the initial
location and eliminate the accumulative error when an image was successfully registered. However,
the image was not always registered since the traditional 2D-to-3D matching rejected different correct
correspondences when the view became large. A robust image registration strategy was adopted to
recover initially unregistered images by integrating the 3D-to-2D search.

In [32], a large-scale visual localization method for indoor environments was proposed.
The authors worked based on three steps: recovery of candidate poses, pose estimation using dense
matching different from local features, and pose verification by virtual view synthesis to address the
changes in the viewpoint, scene layout, and occluders.
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In [33], a framework for performing fine localization and less latency with more a priori
information was proposed. The system worked in off-line mode and used SURF to represent the image
database, and on-line mode position and direction angle estimation by the homography matrix and
learning line was performed.

In [34], the authors combined wireless signals and images to improve the positioning performance.
The framework adopted Local Binary Patterns (LBP) to represent images. Localization worked
through two steps: first, obtaining a coarse-grained estimation based on wireless signals and, second,
to determine the correspondences between two-dimensional pixels and three-dimensional points
based on images collected by the smartphone.

According to our approach, the problem of localization is formulated as an image retrieval
problem between a graph-based representation of the image to be localized and that stored in a
database. In the following sections, details about the region representation and graph-matching-based
image retrieval will be given.

3. Region Representation

Color information and pattern appearance are included in the image representation. A way
of preserving the position of adjacent segments is to store their color vector representation as units.
These units, linked together, cover all segments of adjacent pixels in the ROI. The region is called the
MultiColored Neighborhood (MCN) [9].

To keep track of structural information, for each MCN, the value of color found from the centroids
of clusters was stored as a unit. The colors represented by the centroids of clusters were formed
through the vectors present in MCN. This unit of cluster centroids contained the average color value
corresponding to the different segments of the MCN. Ultimately, the scene was represented by the
Multicolored Region Descriptor (M-CORD) in terms of the distinct sets of units of the cluster centers of the
constituent MCNs. Suppose we have N distinct MCNs. The region contains N units of cluster centroids,
and each unit represents a single centroid of an MCN. This descriptor contains the information about
each MCN. As a consequence, if there is a unit of ki clusters present in the descriptor, then there is a set
of pixels that cover ki segments in an image. This greatly improves the discriminating power of the
recognition system when the same, but differently-aligned, colors are present in two objects.

Since the distribution of the color of each MCN is multimodal, a clustering technique can be
adopted to find the number of colors in a region and construct the M-CORD. The clustering algorithm
is applied to w× w overlapping windows extracted from the image.

After having found an MCN, this is matched with all of the previously-considered MCNs and is
included in the descriptor if it is significantly different from all the previously-considered MCNs.

The input parameters of the clustering algorithm used to obtain MCNs are:
V, r, min_clst_size. V = {ṽ1, ṽ2, ..., ṽn}, is the set of color vectors. The difference between ṽi and ṽj is
given by ‖ṽi − ṽj‖ < r, where r is the dissimilarity parameter, and the dissimilarity between sets V is
computed according to the Hausdorff distance, which measures the degree of mismatch between two
sets. The advantage of the use of this distance, in our case, is that it was not applied to a single-color
vector irrespective of all other color vectors. This distance provides more stability and accuracy in
calculating the proximity between two sets (color vectors). min_clst_size is the parameter to check the
validity of clusters. It needs n− 1 distances and n− 1 comparisons to find a region with a uniform
color, because in each region, all color vectors ṽi are within a disk of radius r centered on ṽ1.

For surrounding pixels that have more than one cluster, (n−1)n
2 distance computations are

necessary. In any case, the number of comparisons increases with the number of clusters.
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4. Region Adjacency Graph

The Region Adjacency Graph (RAG) [35] was used to build the scene representation. The RAG
was constructed as follows. Let us consider the clustering result, which has the purpose of recognizing
pixels that can be considered as belonging to the same class. After that, each pixel set, region R,
can be considered as an elementary component of the image. Finally, the RAG was built based on the
spatial relations between regions. Two regions were defined to be adjacent if they shared the same
boundary. In the graph, a node represents a region, and a link represents adjacency between two
nodes. Each node is associated with the relevant properties of the region (color), i.e., the M-CORD.
An example of RAG, based on M-CORD, is reported in Figure 2b.

Formally, a RAG, G = (N, B), is an undirected graph such that:

N = {N1, . . . , Nn} (1)

N is the set of nodes in the graph, where a node corresponds to a region and:

(Ni, Nj) ∈ B (2)

if the corresponding regions Ni and Nj are located adjacent in the image (connected). A neighborhood
system can be defined on G, denoted by:

n = {n(N1), . . . , n(Nn)} (3)

where n(Ni), with i = 1, . . . , n, is the set of all the nodes in N that are neighbors of n(Ni), such that:

Ni /∈ n(Ni) (4)

Ni is not connected with itself (loop), and if:

Nj ∈ n(Ni) (5)

Nj is connected with Ni, then:
Ni ∈ n(Nj). (6)

Ni is connected with Nj. Given two graphs, representing scenes, it is possible to compare them
using a graph matching algorithm; we adopt the algorithm described in [13], properly extended to
take into account the M-CORD attached to each node.

(a) (b)

Figure 2. Graph representation: (a) the original image of the indoor environment; (b) RAG based on
Multicolored Region Descriptor (M-CORD).
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5. Extended VF Graph Matching

A matching process between two graphs G1 = (N1, B1) and G2 = (N2, B2) is the determination
of a mapping M that associates nodes of the graph G1 with nodes of the graph G2, and vice
versa. Different types of constraints may be imposed on M, and consequently, different types of
matching can be obtained: morphism [36], isomorphism [37], and isomorphism of a sub-graph [38].
Generally, the mapping M is expressed as a set of ordered pairs (n, m) (with n ∈ G1 and m ∈ G2),
each representing the matching of a node n of G1 with a node m of G2. According to the extended VF
algorithm, the graph-matching process can be efficiently described using a State Space Representation
(SSR), where for each state process s, a partial mapping M(s) is a subset of M, containing some
components of M. A partial mapping refers to two subgraphs of G1 and G2, and G1(s) and G2(s),
obtained with a selection of nodes of G1 and G2 included in M(s) and the connections among them.
Moreover, M1(s) and M2(s) can be defined as the projection of M(s) in N1 and the projection of M(s)
in N2, while the sets of the branches of G1(s) and G2(s) are identified by B1(s) and B1(s). P(s) can be
defined as the set of all the possible pair candidates to be added to the current state considering first
the sets of the nodes directly connected to G1(s) and G1(s). Additionally, the Tout

1 (s) out-terminal set
can be defined as the set of nodes of G1 not in M1(s), but with successors of a node in M1(s), and the
Tin

1 (s) in-terminal set can be defined as the set of nodes that are not in M1(s), but with predecessors of
a node in M1(s). In the same way, Tout

2 (s) and Tin
2 (s) can be defined. In the SSR, a transition between

two states corresponds to the adding of a new pair to nodes that form the mapping. The goal is to
reduce the number of paths to be explored during the search (brute force approach), for each state from
the route s0 to the target. It requires that the corresponding partial solution checks certain conditions of
consistency, based on the desired mapping. For example, to have an isomorphism, it is necessary that
the solutions be partial isomorphisms between the corresponding sub-graphs. If the addition of a node
pair produces a solution that does not match the conditions of consistency, then the exploration of this
path can be avoided (because it is certain that it will not lead to a state goal). The logic is to introduce
criteria for prediction if a state s has no successor after a certain number of steps. It is clear that the
criteria (feasibility rules) would find (quickly) the conditions that lead to inconsistency. In particular,
given a pair (n, m) to be included in state s, to obtain a state s′, a feasibility rule allows determining
all inconsistent states reachable from s′. Therefore, states that do not match the feasibility rules can
be discarded for further expansions. Between all combinations of SSR allowed, only a small part
conforms to the type of morphism sought, and there is no way that prevents the achievement of the
complete solution. G1(s) and G1(s) related to M(s) are isomorphic if the condition of consistency is
verified for graph isomorphism or subgraph isomorphism search.

6. Complexity Analysis

In this section, we analyze the computational complexity of the image feature extraction algorithm
and the graph-matching algorithm.

The Multicolored Neighborhood (MCN) clustering, used to extract M-CORD from the image,
is designed to perform the union of k clusters, V1, V2, ..., Vk, as V1 ∪ V2 ∪ ... ∪ Vk, which compose
the output image, where V = {ṽ1, ṽ2, ..., ṽn} is the set of color vectors. The number of comparisons
required to partition all vectors in V in k > 1 clusters is equal to:

|V|2 +
k

∑
j=2

(|V| −
j

∑
i=1

(|Vi| − 1))2 (7)
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where |Vi| denotes the number of elements in Vi. Additionally, at most n vector additions and k
divisions are needed for the computation of centroids. In any case, the number of comparisons increases
with the number of clusters. Then, the computational time complexity is Θ(V2). The execution time
and success is strongly dependent on the number of clusters k that will compose the number of
components of the output image.

The computational complexity of the graph matching algorithm can be computed in a different
way. The extended-VF algorithm works based on SSR. In SSR, the next state is obtained by adding a pair
(n, m) to the previous state, and the cost for this operation can be decomposed into three terms:

• the cost needed to verify if the new state satisfies the feasibility rules;
• the cost needed to calculate the sets (Tin

1 , Tin
2 , etc.) associated with the new state;

• the cost needed to generate the sets of the pair candidates for inclusion in the current state.

The first two terms have a cost proportional to the number of branches having n or m as an
endpoint. The operations needed for each branch can be performed in constant time proportional to
the number of branches. If we denote this quantity with b, the cost for the first two terms will be Θ(b).

The third term requires a number of operations that is at least proportional to the number of nodes
of the two graphs. In order to find all the pair (n, m) candidates for the inclusion in the current state,
it is necessary to examine the node of Tout

1 (s) with the smallest label and all the nodes of G2 belonging
to Tout

2 (s) (spending a time proportional to the number of nodes in G1 and G2). If we suppose that the
two graphs have the same number N of the nodes, the total cost for this term will be Θ(N). Meanwhile,
if the two graphs have a number of different nodes, the term will be Θ(max(N1, N2)). In the worst case,
in each state, the predicate will not be able to avoid the visit of any successors, and the algorithm will
have to explore all the states before reaching a solution. This situation may occur if the graphs exhibit
strong symmetries, for example if they are almost completely connected and the algorithm takes a
long time to reach the final solution. Therefore, in order to improve this aspect, it is important to
reduce the number of clusters k for image representation, especially when including little information,
which affects the matching phase.

7. Image Search for Indoor Localization: Experimental Results

For testing, we adopted a dataset of images with associated location information [1]. Starting from
the input image, the framework tried to find similar images in the database. Using the pre-annotated
location information, an estimation of input image location can be performed.

The dataset was composed of about 8.8 thousand images in an indoor environment, accompanied
by a floor plan map. A location label was associated with each image. The images were located with
two types of coordinates: actual world coordinates and floor plan coordinates. The ratio between them
was 0.0835.

The goal was to locate an input image within the indoor environment based on associated spatial
coordinates. Based on similar images returned by the image retrieval system, the position of the query
image can be found.

For testing, two types of images were chosen. One set had rich and distinctive visual structures,
named the “clean set”. A different set contained images with the details of the scene such as windows
or doors. This set was called the “confusing set”. In both sets were included 80 images. Some examples
of the “clean set” and “confusing set” are reported in Figure 3.
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Figure 3. Some examples of the “clean set” and “confusing set”.

Recall-precision was adopted to measure the performance. Given an image query, eight top-ranked
images were shown. A potential localization was performed if a cluster existed, denoted by R,
of pre-recorded images captured less than three meters away from each other in the retrieval set (based
on spatial coordinates). If more than one cluster existed, the system considered the larger and higher
ranked set. An example is show in Figure 4.

Figure 4 shows how the prediction, for an input image, was done for user localization. The position
of the first eight images from the ranking was drawn in the reference layout of the environment where
they were taken. It should be remarked that images belonging to the same cluster were labeled with
the same shape. In addition, the query image was identified with a different color from the color
assigned to the retrieved images. In this case “Cluster 2” was chosen as the set R, because it contained a
larger number of images and had a better position in the ranking. |R| denotes the size of set R. Using a
threshold, identified by |RT |, which regulates the minimum size of R, the precision of localization can
be changed for each prediction. At this point, there are three different cases:

• |R| ≥ |RT |: the size of |R| satisfies the condition of the minimum size of the cluster, and all images
contained in R are used for prediction;

• |R| < |RT |: the localization fails;
• |RT | = 1: the result of the previous step of clustering is not considered, and information associated

with the first image in the ranking is adopted for prediction.

Having chosen the cluster R, a step of relevance feedback was started. The values of FN, FP,
and TP were computed as follows:

• FN: the query image with a correspondence in the database can be considered as a false negative;
• FP: false positives can be defined as the images, having a correspondence with the query image,

in R with a minimum position distance of more than three meters;
• TP: true positives can be defined as the images, having a correspondence with the query image,

in R with a minimum position distance of less than three meters;

From these three values, recall, precision, and average precision measures can be calculated as
follows, remarking that Precisioni is relative to the ith query of the subset of dimension subsize and the
number of queries used to calculate the AvPrecision is equal to subsize:

Recall =
TP

TP + FN
Precision =

TP
TP + FP

AvPrecision =
1

subsize

subsize

∑
i=1

Precisioni (8)
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Figure 4. The result is the top eight retrieved and clustered images.
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(a) (b) (c)

Figure 5. Experimental results for Ex-VF and Re-Search. The integer value used for parameter |RT |,
minimum size of R, was in the range {1− 8}. (a) The recall-precision curve on the “clean set”. In this
case, the performances between approaches were comparable. A slight improvement by our technique
can be seen for the value of |RT | equal to eight, which produced values of recall-precision equal to one.
(b) The recall-precision curve on the “confusing set”. A substantial improvement was obtained for
Ex-VF algorithm with a better trend than Re-Search. (c) The effect of changing the subset size (the subset
sizes used were 20, 30, 40, 50, 100, 200, and 500 images). In this context, the goal was to analyze the
behavior with a growing amount of data. As can be seen, the Ex-VF algorithm outperformed Re-Search,
even if the execution times slowed down, because it was able to filter out false positives and include
true positives.

Figure 5a,b show the recall-precision curves using the algorithm on both testing sets. The measures
were computed for (integer) values for |RT | in the set {1− 8}. The feedback on the “clean set” provided
improved performance and showed that the system could be adopted for the indoor localization
scenario. For the “confusing” set, the test was very interesting because it is a common situation in
which the user can be found. Finally, Figure 5c shows the performance when the subset size changed.
This further test concerned an important aspect of our system. The goal was to analyze the behavior of
the proposed technique with a growing amount of data. In fact, with increasing images in the test set,
performance may decrease due to the large number of false positives. Our system, even if execution
times slowed down, improved performance, because it was able to filter out false positives and include
true positives. This behavior did not occur for the Re-Search technique.

Figure 6 shows examples of localization. The goal was to find the same scene of the query image
and then locate the user within the indoor environment. In Figure 6a–d, Image 1 is the query. In all
results, the query image was very similar compared to the images retrieved from the system.

Figure 7 shows more qualitative comparisons. As can be seen, the proposed approach retrieved
relevant images, in terms of the visualizationof the scene, related to query images. In this way, the
prediction of localization produced a result very close to the real position of the user. Comparisons
were also made with the technique in [1], named Re-Search. The Re-Search technique approaches the
image matching problem in two steps. Firstly, most images matched to a query image are retrieved.
The Harris-Affine (HARAFF) region detector [39] and SIFT [3] are adopted. A vocabulary tree is built
for indexing and searching the database.

The result was a small number (top 50 retrievals) of similar candidates for the query image.
Secondly, the TF-IDF approach inspired by the textual retrieval field was adopted for visual words
representing the images.
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(a) (b)

(c) (d)

Figure 6. An example illustrating the robustness of the extended-VF graph matching. In the four blocks
displayed, images located at the top of the ranking, labeled with 1, are the queries; in other words,
images captured by the user, placed in an indoor environment, looking for location information.
The remaining are images of ranking. As can seen, the images retrieved were very similar, in terms of
the structure of scene, to each query. Indeed, the tests showed that the graph structure captured the
scene structural information represented by the colors, extracted using the MCN clustering, and the
arrangement of the different elements such as doors, windows, etc., through the application of the
region adjacency graph. Finally, the algorithm Ex-VF selected all the images with the same structural
representation. Consequently, localization occurred in an effective way. Results in (a), (b), (c) figures
concern “clean set” while in (d) figure concerns “confusing set”.

The comparison with the technique Re-Search proved the effectiveness of the algorithm extended-VF
graph matching in a localization scenario. In order to measure the quality of results obtained using
both techniques, rankings in Figure 7 are analyzed. Images ranked on the top were more similar with
respect to the query image in both cases. This aspect may be justified by the phase of feature extraction
(MCN clustering), which was able to capture parts in the scene, e.g., the door in the second case of
Figure 7b, which were represented in all the images (single node in the graph) and, thus, detected by
the algorithm.

Further tests were conducted, in order to prove the effectiveness of our approach, using the same
dataset and criteria for the localization procedure. The first experiment consisted of a comparison
with different features extracted from the image. Our approach was based on MCN clustering with the
purpose of representative colors’ detection. In a different way, the K-means algorithm was applied to
find cluster centers from several regions in the image. Color features and, consequently, the graph
structure, for image representation, were differently built. In both cases, for the matching phase,
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we adopted the algorithm extended-VF graph matching. Furthermore, for performance evaluation,
an additional relevance feedback measure was introduced: mean average precision.

Mean Average Precision =
∑Q

q=1 AvPrecision(q)

Q
(9)

Mean average precision is defined as, for a set of queries, the mean of the average precision scores
for each query. Q is the number of queries. Table 1 contains the results achieved. It can be noted
that MCN clustering provided better performance than K-means. Indeed, regions with a uniform color,
corresponding to objects in the scene, were extracted. These objects, represented with nodes in the
graph structure, were easily detected by the graph-matching algorithm.

(a) (b)

(c) (d)

Figure 7. Some qualitative analysis of the image matching results of Re-Search and extended-VF graph
matching. Results in (c), (d) figures concern “clean set” while in (a), (b) figure concern “confusing set”.

The second additional experiment concerned a comparison with two other approaches working in
the same localization scenario. The first approach selected was a baseline algorithm named Nistér and
Stewénius [40] that uses a hierarchical K-means algorithm for vocabulary generation and a multi-level
scoring strategy. The second approach was an image indexing and matching algorithm that performs
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a distinctive selection of high-dimensional features [41]. A bag-of-words algorithm combined the
feature distinctiveness in visual vocabulary generation. Table 1 includes results for the comparison
of the algorithms. For the “clean set”, the best performance was provided for the D_BOW algorithm
and our approach. While, for the confusing set, our approach outperformed the algorithms used
for comparison.

Table 1. Quantitative comparison of Ex-VF (MCN clustering) with the Ex-VF (K-means), Nistér and
Stewénius, D_BOW, and Re-Search algorithms, using the mean average precision measure, on the indoor
localization task.

Nistér and Stewénius D_BOW Re-Search Ex-VF (MCN) Ex-VF (K-Means)
Clean set 0.996 1 0.999 1 0.894

Confusing set 0.843 0.988 0.905 0.991 0.974

Finally, further tests were conducted using a different indoor environment database:
KTH-IDOL2 [2]. The database contains 24 image sequences, with about 800 images for each sequence.
The images were acquired in different real-world scenarios (one-person office, two-person office,
corridor, kitchen, and printer area), over a span of six months and under different illumination
and weather conditions (cloudy weather, sunny weather, and night). Consequently, different
visual variations in an indoor environment were captured in the sequences. In this context,
four image sets were created. The first set contained different combinations of training and
test data acquired closely in time and under similar illumination conditions. On this set were
performed 12 experiments. On the second set of experiments were used 24 pairs of sequences
captured still at relatively close times, but under different illumination conditions. On third
set, consisting of 12 experiments, tests were related to data acquired six months later and
under similar illumination conditions. On the last set, both types of variations were combined,
and experiments were performed on 24 pairs of subsets, obtained six months from each other
and under different illumination settings. The measure of performance used was the percentage
of correct images classified for each room. Subsequently, the average was calculated with
equal weights independent of the number of images related to each room. Performance were
evaluated through a comparison with four types of models: SVM based on visual features,
CRFH [42] and SIFT [3], and AdaBoost [43] and SVM trained on Laser range features (L-AB and
L-SVM) [44]. The results of the experiments are presented in Figure 8a–d. On the first set, Figure 8a,
according to the expectations, CRFH and SIFT suffered from changes in illumination, as our approach,
differently from the geometric laser-based features. In other cases, Figure 8b–d, our approach produced
different performances and outperformed the comparison techniques with percentages of 92.0%, 88.0%,
and 89.0%.
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(a)

(b)

(c)

Figure 8. Cont.
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(d)

Figure 8. Quantitative comparison of Ex-VF with SVM based on visual features, CRFH [42] and
SIFT [3], and AdaBoost [43] and SVM trained on Laser range features (L-AB and L-SVM) [44]. (a) Stable
illumination conditions, close in time. (b) Varying illumination conditions, close in time. (c) Stable
illumination conditions, distant in time. (d) Varying illumination conditions, distant in time.

In Figure 9, some additional tests on the KTH-IDOL2 database are shown. In both cases, Image 1
was the query, and retrieved images included its own scene.

To solve the problem of illumination variations, different representations of the same scene were
captured both client-side (image queries) and server-side (image database). Furthermore, in this way,
all details of the scene were correctly captured. This certainly enhanced the image database and also
improved, of course, the results of user localization.

(a)

Figure 9. Cont.
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(b)

Figure 9. Two examples illustrating a test performed on the KTH-IDOL2 database. In this case as well,
the Ex-VF algorithm selected all the images similar to the query (top left). Both example, (a,b) represent
scenes in which the image contains elements that compose a visual structure.

8. Conclusions

A novel way to capture visual information in an indoor environment was reported. The approach
was graph-based and mainly resided on a very peculiar algorithm of feature extraction and scene
representation, MCN, which was shown as a valid alternative to classical techniques such as color,
shape, and texture. The robustness and effectiveness of the image matching algorithm were
demonstrated while detecting, in an indoor environment, confusing and self-repetitive patterns.
The feedback obtained from testing using the technique of graph matching was positive, specifically
with the increasing of images in the database, and sometimes even higher in terms of retrieved relevant
images. The main disadvantages of the proposed technique concerned the image representation in
situations with little structure and confused scenes in which the phase of clustering reports many
clusters with little information, resulting in a high number of nodes of the graph. Clearly, a satisfactory
result could not be achieved during the matching phase, and consequently, the localization phase failed.

The first future development concerns an on-line version of the Ex-VF algorithm for real-time
performance. In this context, statistical models can be learned in order to tune the algorithm settings
and to improve the performance. Another important issue concerns the correspondence between real
map position and database images. A solution concerns the application of structure from motion
methods to obtain the camera position and ground truth information. Finally, a further goal is the use
different features in the creation of a graph structure in order to improve localization performance.

In conclusion, it appears clear that the reported tool can be used as an interesting alternative,
in restricted scenarios, to other positioning systems to locate users in indoor environments.
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