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Abstract: Point estimation of class prevalences in the presence of dataset shift has been a popular
research topic for more than two decades. Less attention has been paid to the construction of
confidence and prediction intervals for estimates of class prevalences. One little considered question
is whether or not it is necessary for practical purposes to distinguish confidence and prediction
intervals. Another question so far not yet conclusively answered is whether or not the discriminatory
power of the classifier or score at the basis of an estimation method matters for the accuracy of the
estimates of the class prevalences. This paper presents a simulation study aimed at shedding some
light on these and other related questions.
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1. Introduction

In a prevalence estimation problem, one is presented with a sample of instances (the test sample),
each of which belongs to exactly one of a finite number of classes but has not been labelled with the
class. The task is to estimate the distribution of the class labels in the sample. If the problem sits in a
binary two-class context, all instances belong to exactly one of two possible classes and, accordingly,
can be labelled either positive or negative. The distribution of the labels then is characterised by the
prevalence (i.e., proportion) of the positive labels (“class prevalence” for short) in the test sample.
However, the labels are latent at estimation time such that the class prevalence cannot be determined
by simple inspection of the labels. Instead, the class prevalence can only be inferred from the features
of the instances in the sample, i.e., from observable covariates of the labels. The interrelationship
between features and labels must be learnt from a training sample of labelled instances in another step
before the class prevalence of the positive labels in the test sample can be estimated.

This whole process is called “supervised prevalence estimation” [1], “quantification” [2],
“class distribution estimation” [3] or “class prior estimation” [4] in the literature. See the work of
González et al. [5] for a recent overview of the quantification problem and approaches to deal with it.
The emergence of further recent papers with new proposals of prevalence estimation methods suggests
that the subject is still of high interest for both researchers and practitioners [6–9].

A variety of different methods for prevalence point estimation has been proposed and a
considerable number of comparative studies for such methods has been published in the literature [5].
However, the question of how to construct confidence and prediction intervals for class prevalences
seems to have attracted less attention. Hopkins and King [10] routinely provided confidence intervals
for their estimates “via standard bootstrapping procedures”, without commenting much on details
of the procedures or on any issues encountered with them. Keith and O’Connor [7] proposed and
compared a number of methods for constructing such confidence intervals. Some of these methods
involve Monte-Carlo simulation and some do not. In addition, Daughton and Paul [11] proposed
a new method for constructing bootstrap confidence intervals and compared its results with the
confidence intervals based on popular prevalence estimation methods. Vaz et al. [9] introduced the
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“ratio estimator” for class prevalences and used its asymptotic properties for determining confidence
intervals without involving Monte-Carlo techniques.

This paper presents a simulation study that seeks to illustrate some observations from these
previous papers on confidence intervals for class prevalences in the binary case and to provide answers
to some questions begged in the papers:

• Would it be worthwhile to distinguish confidence and prediction intervals for class prevalences
and deploy different methods for their estimation? This question is raised against the backdrop
that, for instance, Keith and O’Connor [7] talked about estimating confidence intervals but in fact
constructed prediction intervals which are conceptionally different [12].

• Would it be worthwhile to base class prevalence estimation on more accurate classifiers?
The background for this question are conflicting statements in the literature as to the benefit
of using accurate classifiers for prevalence estimation. On the one hand, Forman [2] stated
on p. 168: “A major benefit of sophisticated methods for quantification is that a much less
accurate classifier can be used to obtain reasonably precise quantification estimates. This enables
some applications of machine learning to be deployed where otherwise the raw classification
accuracy would be unacceptable or the training effort too great.” As an example for the opposite
position, on the other hand, Barranquero et al. [13] commented on p. 595 with respect to
prevalence estimation: “We strongly believe that it is also important for the learner to consider the
classification performance as well. Our claim is that this aspect is crucial to ensure a minimum
level of confidence for the deployed models.”

• Which prevalence estimation methods show the best performance with respect to the construction
of as short as possible confidence intervals for class prevalences?

• Do non-simulation approaches to the construction of confidence intervals for class
prevalences work?

In addition, this paper introduces two new methods for class prevalence estimation that are
specifically designed for delivering as short as possible confidence intervals.

Deploying a simulation study for finding answers to the above questions has some advantages
compared to working with real-world data:

• The true class prevalences are known and can even be chosen with a view to facilitate obtaining
clear answers.

• The setting of the study can be freely modified—e.g., with regard to samples sizes or accuracy of
the involved classifiers—to more precisely investigate the topics in question.

• In a simulation study, it is easy to apply an ablation approach to assess the relative impact of
factors that influence the performance of methods for estimating confidence intervals.

• The results can be easily replicated.
• Simulation studies are good for delivering counter-examples. A method performing poorly in

the study reported in this paper may be considered unlikely to perform much better in complex
real-world settings.

Naturally, these advantages are bought at the cost of accepting certain obvious drawbacks:

• Most findings of the study are suggestive and illustrative only. No firm conclusions can be drawn
from them.

• Important features of the problem which only occur in real-world situations might be overlooked.
• The prevalence estimation problem primarily is caused by dataset shift. For capacity reasons,

the scope of the simulation study in this paper is restricted to prior probability shift, a special
type of dataset shift. In the literature, prior probability shift is known under a number of
different names, for instance “target shift” [14], “global drift” [15], or “label shift” [16] (see
Moreno-Torres et al. [17] for a categorisation of types of dataset shift).
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With these qualifications in mind, the main findings of this paper can be summarised as follows:

• Extra efforts to construct prediction intervals instead of confidence intervals for class prevalences
appear to be unnecessary.

• “Error Adjusted Bootstrapping” as proposed by Daughton and Paul [11] for the construction of
prevalence confidence or prediction intervals may fail in the presence of prior probability shift.

• Deploying more accurate classifiers for class prevalence estimation results in shorter
confidence intervals.

• Compared to the other estimation methods considered in this paper, straight-forward
“adjusted classify and count” methods for prevalence estimation [2] (called “confusion matrix
method” in [18]) without any further tuning produce the longest confidence intervals and, hence,
given identical coverage, perform worst. Methods based on minimisation of the Hellinger distance
[3] (with different numbers of bins) produce much shorter confidence intervals, but sometimes
do not guarantee sufficient coverage. The maximum likelihood approach (with bootstrapping
for the confidence intervals) and “adjusted probabilistic classify and count” ([19], called there
“scaled probability average”) appear to stably produce the shortest confidence intervals among
the methods considered in the paper.

In this paper, instead of accuracy, also the term “discriminatory power” is used; similarly, instead
of “accurate” the adjective “powerful” is employed.

The paper is organised as follows:

• Section 2 describes the conception and technical details of the simulation study, including in
Section 2.2 a list of the prevalence estimation methods in scope.

• Section 3 provides some tables with results of the study and comments on the results, in order
to explore the questions stated above. The results in Section 3.3 show that certain standard
non-simulation approaches cannot take into account estimation uncertainty in the training sample
and that bootstrap-based construction of confidence intervals could be used instead.

• Section 4 wraps up and closes the paper.
• In Appendix A, the mathematical details needed for coding the simulation study are listed.
• In Appendix B, the appropriateness for prior probability shift of the approach proposed by

Daughton and Paul [11] is investigated.

The calculations of the simulation study were performed by making use of the statistical software
R [20]. The R-scripts utilised can be downloaded from the URL https://www.researchgate.net/profile/
Dirk_Tasche under the heading “Rscripts and data for paper Confidence Intervals for Class Prevalences
under Prior Probability Shift”.

2. Setting of the Simulation Study

The set-up of the simulation study is intended to reflect the situation that occurs when a prevalence
estimation problem as described in Section 1 has to be solved:

• There is a training sample (x1,P, y1,P), . . . , (xm,P, ym,P) of observations of features xi,P and class
labels yi,P ∈ {−1, 1} for m instances. Instances with label −1 belong to the negative class,
instances with label 1 belong to the positive class. By assumption, this sample was generated
from a joined distribution P(X, Y) (the training population distribution) of the feature random
variable X and the label (or class) random variable Y.

• There is a test sample x1,Q, . . . , xn,Q of observations of features xi,Q for n instances. By assumption,
each instance has a latent class label yi,Q ∈ {−1, 1}, and both the features and the labels were
generated from a joined distribution Q(X, Y) (the test population distribution) of the feature
random variable X and the label random variable Y.

https://www.researchgate.net/profile/Dirk_Tasche
https://www.researchgate.net/profile/Dirk_Tasche
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The prevalence estimation or quantification problem is then to estimate the prevalence q = Q[Y =

1] of the positive class labels in the test population. Of course, this is only a problem if there is dataset
shift, i.e., if P(X, Y) 6= Q(X, Y) and as a likely consequence p = P[Y = 1] 6= q.

This paper deals only with the situation where the training population distribution P(X, Y)
and the test population distribution Q(X, Y) are related by prior probability shift, which means in
mathematical terms that

Q[X ∈ A |Y = −1] = P[X ∈ A |Y = −1] and Q[X ∈ A |Y = 1] = P[X ∈ A |Y = 1], (1)

for all subsets A of the feature space such that P[X ∈ A] and Q[X ∈ A] are well-defined.

2.1. The Model for the Simulation Study

The classical binormal model with equal variances fits well into the prior probability shift setting
for prevalence estimation of this paper. Kawakubo et al. [21] used it as part of their experiments
for comparing the performance of prevalence methods. Logistic regression is a natural and optimal
approach to the estimation of the binormal model with equal variances ([22] Section 6.1). Hence,
when logistic regression is used for the estimation of the model in the simulation study, there is no
need to worry about the results being invalidated by the deployment of a sub-optimal regression or
classification technique. The binormal model is specified by defining the two class-conditional feature
distributions P(X |Y = −1) and P(X |Y = 1), respectively.

Training population distribution. Both class-conditional feature distributions are normal,
with equal variances, i.e.,

P(X |Y = −1) = N (µ, σ2), P(X |Y = 1) = N (ν, σ2), (2a)

with µ < ν and σ > 0.
Test population distribution. This is the same as the training population distribution, with P

replaced by Q, in order to satisfy the assumption in Equation (1) on prior probability shift between
training and test times.

For the sake of brevity, in the following, the setting with Equation (2a) for both the training and
the test samples is referred to as “double” binormal setting.

Given the class-conditional population distributions as specified in Equation (2a),
the unconditional training and test population distributions can be represented as

P(X) = p P(X |Y = 1) + (1− p)P(X |Y = −1) and

Q(X) = q P(X |Y = 1) + (1− q)Q(X |Y = −1),
(2b)

with p = P[Y = 1] and q = Q[Y = 1] as parameters whose values in the course of the simulation study
are selected depending on the purposes of the specific numerical experiments.

Control parameters. For this paper’s numerical experiments, the values for the parameterisation
of the model are selected from the ranges specified in the following list:

• p ∈ {0.33, 0.5, 0.67} is the prevalence of the positive class in the training population.
• m ∈ {100, ∞} is the size of training sample. In the case m = ∞, the training sample is considered

identical with the training population and learning of the model is unnecessary. In the case of
a finite training sample, the number of instances with positive labels is non-random in order to
reflect the fact that for model development purposes a pre-defined stratification of the training
sample might be desirable and can be achieved by under-sampling of the majority class or by
over-sampling of the minority class. m+ then is the size of the training sub-sample with positive
labels, and m− is the size of the training sub-sample with negative labels. Hence, it holds that
m = m+ + m−, m+ = p m und m− = (1− p)m for finite m.

• q ∈ {0.05, 0.2} is the prevalence of the positive class in the test population.
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• n ∈ {50, 500} is the size of the test sample. In the test sample, the number of instances with
positive labels is random.

• The population distribution underlying the features of the negative-class training sub-sample is
always P(X |Y = −1) = N (µ, σ2) with µ = 0 and σ = 1. The population distribution underlying
the features of the positive-class training sub-sample is P(X |Y = 1) = N (ν, σ2) with ν ∈ {1, 2.5}
and σ = 1.

• The population distribution underlying the features of the negative-class test sub-sample is always
Q(X |Y = −1) = N (µ, σ2) with µ = 0 and σ = 1. The population distribution underlying the
features of the positive-class test sub-sample is Q(X |Y = −1) = N (µ, σ2) with ν ∈ {1, 2.5} and
σ = 1.

• The number of simulation runs in all of the experiments is nsim = 100, i.e., nsim-times a
training sample and a test sample as specified above are generated and subjected to some
estimation procedures.

• The number of bootstrap iterations where needed in any of the interval estimation procedures is
always R = 999 [23].

• All confidence and prediction intervals are constructed at α = 90% confidence level.

Choosing ν = 1 in one of the following simulation experiments reflects a situation where no
accurate classifier can be found, as it is suggested by the fact that then the AUC (area under the curve)
of the feature X taken as a soft classifier is Φ

(
ν−µ

σ
√

2

)
= 76.02% (where Φ denotes the standard normal

distribution function). In the case ν = 2.5, the same soft classifier X is very accurate with an AUC of
Φ
(

ν−µ

σ
√

2

)
= 96.15%. The different performance of the classifier depending on the value of parameter ν

is also demonstrated in Figure 1 by the ROCs (receiver operating characteristics) corresponding to the
two values ν = 1 (“low power”) and ν = 2.5 (“high power”).
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Figure 1. Receiver Operating Characteristics for the high power (ν = 2.5) and low power (ν = 1)
simulation scenarios.

For the sake of completeness, it is also noted that the feature-conditional class probability P[Y =

1 |X] under the training population distribution is given by

P[Y = 1 |X](x) =
1

1 + exp(a x + b)
, x ∈ R, (3a)
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with a = µ−ν

σ2 < 0 and b = ν2−µ2

2 σ2 + log
(

1−P[Y=1]
P[Y=1]

)
.

For the density ratio R under both the training and test population distributions, one obtains

R(x) =
φν,σ(x)
φµ,σ(x)

= exp
(

x ν−µ

σ2 + µ2−ν2

2 σ2

)
, x ∈ R. (3b)

φγ,τ denotes the density function of the one-dimensional normal distribution with mean γ and standard
deviation τ.

2.2. Methods for Prevalence Estimation Considered in this Paper

The following criteria were applied for the selection of the methods deployed in the
simulation study:

• The methods must be Fisher consistent in the sense of Tasche [24]. This criterion excludes,
for instance, “classify and count” [2], the “Q-measure” approach [1] and the distance-minimisation
approaches based on the Inner Product, Kumar–Hassebrook, Cosine, and Harmonic Mean
distances mentioned in [8].

• The methods should enjoy some popularity in the literature.
• Two new methods based on already established methods and designed to minimise the lengths

of confidence intervals are introduced and tested.

According to these criteria, the following prevalence estimation methods were included in the
simulation study:

• ACC50: Adjusted Classify and Count (ACC: [2,18,25]), based on the Bayes classifier that minimises
accuracy. The number “50” indicates that, when the Bayes classifier is represented by means of
the posterior probability of the positive class and a threshold, the threshold has to be 50%.

• ACCp: Adjusted Classify and Count, based on the Bayes classifier that maximises the difference
of TPR (true positive rate) and FPR (false positive rate). “p” because if the Bayes classifier
is represented by means of the posterior probability of the positive class and a threshold,
the threshold needs to be p, the a priori probability (or prevalence) of the positive class in
the training population. ACCp is called “method max” in Forman [2].

• ACCv: New version of ACC where the threshold for the classifier is selected in such a way
that the variance of the prevalence estimates is minimised among all ACC-type estimators
based on classifiers represented by means of the posterior probability of the positive class and
some threshold.

• MS: “Median sweep” as proposed by Forman [2].
• APCC: “Adjusted probabilistic classify and count” ([19], there called “scaled probability average”).
• APCCv: New version of APCC where the a priori positive class probability parameter in the

posterior positive class probability is selected in such a way that the variance of the prevalence
estimates is minimised among all APCC-type estimators based on posterior positive class
probabilities where the a priori positive class probability parameter varies between 0 and 1.

• H4: Hellinger distance approach with four bins [3,6].
• H8: Hellinger distance approach with eight bins [3,6].
• Energy: Energy distance approach [6,21].
• MLinf/MLboot: ML is the maximum likelihood approach to prevalence estimation [26]. Note that

the EM (expectation maximisation) approach of Saerens et al. [18] is one way to implement ML.
“MLinf” refers to construction of the prevalence confidence interval based on the asymptotic
normality of the ML estimator (using the Fisher information for the variance). “MLboot” refers to
construction of the prevalence confidence interval solely based on bootstrap sampling.

For the readers’ convenience, the particulars needed to implement the methods in this list are
presented in Appendix A. Note that ACC50, ACCp, ACCv, APCC und APCCv are all special cases of
the “ratio estimator” discussed by Vaz et al. [9].
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On the basis of the general asymptotic efficiency of maximum likelihood estimators ([27]
Theorem 10.1.12), the maximum likelihood approach for class prevalences is a promising approach for
achieving minimum confidence intervals lengths. In addition, the ML approach may be considered a
representative of the class of entropy-related estimators and, as such, is closely related to the Topsøe
approach which was found to perform very well by Maletzke et al. [8].

2.3. Calculations Performed in the Simulation Study

The calculations performed as part of the simulation study serve the purpose of providing facts
for answers to the questions listed in Section 1 “Introduction”.

Calculations for constructing confidence intervals. Iterate nsim times the following steps:

1. Create the training sample: Simulate m+ times from P(X |Y = 1) = N (ν, σ2) features x1,P+ , . . .,
xm+ ,P+ of positive instances and m− times from P(X |Y = −1) = N (µ, σ2) features x1,P− , . . .,
xm− ,P− of negative instances.

2. Create the test sample: Simulate the number N+ of positive instances as a binomial random
variable with size n and success probability q. Then, simulate N+ times from Q(X |Y =

1) = N (ν, σ2) features x1,Q, . . ., xN+ ,Q of positive instances and N− = n − N+ times from
Q(X |Y = −1) = N (µ, σ2) features xN++1,Q, . . ., xn,Q of negative instances. The information of
whether a feature xi,Q was sampled from Q(X |Y = 1) or from Q(X |Y = −1) is assumed to
be unknown in the estimation step. Therefore, the generated features are combined in a single
sample x1,Q, . . ., xn,Q.

3. Iterate R times the bootstrap procedure: Generate by stratified sampling with replications
bootstrap samples x′1,P+ , . . ., x′m+ ,P+ of features of positive instances, x′1,P− , . . ., x′m− ,P− of features
of negative instances from the training subsamples, and x′1,Q, . . ., x′n,Q of features with unknown
labels from the test sample. Calculate, based on the three resulting bootstrap samples, estimates
of the positive class prevalence in the test population according to all the estimation methods
listed in Section 2.2.

4. For each estimation method, the bootstrap procedure from the previous step creates a
sample of R estimates of the positive class prevalence. Based on this sample of R estimates,
construct confidence intervals at level α for the positive class prevalence in the test population.

Tabulated results of the simulation algorithm for confidence intervals.

• For each estimation method, nsim estimates of the positive class prevalence are calculated.
From this set of estimates, the following summary results were derived and tabulated:

– the average of the prevalence estimates;
– the average absolute deviation of the prevalence estimates from the true prevalence

parameter;
– the percentage of simulation runs with failed prevalence estimates; and
– the percentage of estimates equal to 0 or 1;

• For each estimation method, nsim confidence intervals at level α for the positive class prevalence
are produced. From this set of confidence intervals, the following summary results were derived
and tabulated:

– the average length of the confidence intervals; and
– the percentage of confidence intervals that contain the true prevalence parameter

(coverage rate).

For the construction of the bootstrap confidence intervals in Step 4 of the list of calculations,
the method “perc” ([23] Section 5.3.1) of the function boot.ci of the R-package “boot” was used.
More accurate methods for bootstrap confidence intervals are available, but these tend to require more
computational time and to be less robust. Given that the performance of “perc” in the setting of this
simulation study can be controlled via checking the coverage rates, the loss in performance seems
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tolerable. In the cases where calculations resulted in coverage rates of less than α, the calculations were
repeated with the “bca” method ([23] Section 5.3.2) of boot.ci in order to confirm the results.

Step 1 of the calculations can be omitted in the case m = ∞, i.e., when the training sample is
identical with the training population distribution. However, in this case, some quantities of relevance
for the estimates have to be pre-calculated before the entrance into the loop for the nsim simulation
runs. The details for these pre-calculations are provided in Appendix A. In addition, in the case m = ∞,
for the prevalence estimation methods ACC50, ACCp, ACCv, APCC und APCCv, the bootstrap
confidence intervals for the prevalences were replaced by “conservative binomial intervals” ([12]
Section 6.2.2), computed with the “exact” method of the R-function binconf. Moreover, as explained in
Section 2.2, in the case m = ∞, the method MLinf was applied instead of MLboot for the construction
of the maximum likelihood confidence interval.

As mentioned in Section 1, one of the purposes of the simulation study was to illustrate the
differences between confidence and prediction intervals. Conceptionally, the difference may be
described by their definitions as given in Meeker et al. [12] (“1− α” as used by Meeker et al. [12]
corresponds to “α” as used in this paper):

• “A 100(1− α)% confidence interval for an unknown quantity θ may be formally characterized
as follows: If one repeatedly calculates such intervals from many independent random samples,
100(1 − α)% of the intervals would, in the long run, correctly include the actual value θ.
Equivalently, one would, in the long run, be correct 100(1− α)% of the time in claiming that the
actual value of θ is contained within the confidence interval.” ([12] Section 2.2.5)

• “If from many independent pairs of random samples, a 100(1 − α)% prediction interval is
computed from the data of the first sample to contain the value(s) of the second sample,
100(1 − α)% of the intervals would, in the long run, correctly bracket the future value(s).
Equivalently, one would, in the long run, be correct 100(1− α)% of the time in claiming that the
future value(s) will be contained within the prediction interval.” ([12] Section 2.3.6)

To construct prediction intervals instead of confidence intervals in the simulation runs, Step 4 of
the calculations was modified as follows:

4∗. For each estimation method, the bootstrap procedure from the previous step creates a sample
of R estimates of the positive class prevalence. For each estimate, generate a virtual number of
realisations of positive instances by simulating an independent binomial variable with size n and
success probability given by the estimate. Divide these virtual numbers by n to obtain (for each
estimation method) a sample of relative frequencies of positive labels. Based on this additional
size-R sample of relative frequencies, construct prediction intervals at level α for the percentage
of instances with positive labels in the test sample.

As in the case of the construction of confidence intervals, for the construction of the prediction
intervals, again the method “perc” of the function boot.ci of the R-package “boot” was deployed.

Tabulated results of the simulation algorithm for prediction intervals.

• For each estimation method, nsim virtual relative frequencies of positive labels in the test sample
were simulated under the assumption that the estimated positive class prevalence equals the true
prevalence. From this set of frequencies, the following summary results are derived and tabulated:

– the average of the virtual relative frequencies;
– the average absolute deviation of the virtual relative frequencies from the true

prevalence parameter;
– the percentage of simulation runs with failed prevalence estimates and hence also failed

simulations of virtual relative frequencies of positive labels; and
– the percentage of virtual relative frequencies equal to 0 or 1.

• For each estimation method, nsim prediction intervals at level α for the realised relative frequencies
of positive labels are produced. From this set of prediction intervals, the following summary
results were derived and tabulated:
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– the average length of the prediction intervals; and
– the percentage of prediction intervals that contain the true relative frequencies of positive

labels (coverage rate).

3. Results of the Simulation Study

All simulation procedures were performed with parameter setting nsim = 100, Rseed = 17 and
R = 999 (see Section 2.1 for the complete list of control parameters). In each table in the following,
the values selected for the remaining control parameters are listed in the captions or within the
table bodies.

In all the simulation procedures run for this paper, the R-boot.ci method for determining the
statistical intervals (both confidence and prediction) was the method “perc”. In cases where the
coverage found with “perc” is significantly lower than 90% (for nsim = 100 at 5% significance level this
means lower than 85%), the calculation was repeated with the R-boot.ci method “bca” for confirmation
or correction.

The naming of the table rows and table columns has been standardized. Unless mentioned
otherwise, the columns always display results for all or some of the prevalence estimation methods
listed in Section 2.2. Short explanations of the meaning of the row names are given in Table 1. A more
detailed explanation of the row names can be found in Section 2.3.

Table 1. Explanation of the row names in the result tables in Section 3.

Row Name Explanation

“Av prev” Average of the prevalence estimates (for confidence intervals)
“Av freq” Average of the relative frequencies of simulated positive class labels (for prediction intervals)
“Av abs dev” Average of the absolute deviation of the prevalence estimates

or the simulated relative frequencies from the true prevalence
“Perc fail est” Percentage of simulation runs with failed prevalence estimates
“Av int length” Average of the confidence or prediction interval lengths
“Coverage” Percentage of confidence intervals containing the true prevalence or

of prediction intervals containing the true realised relative frequencies of positive labels
“Perc 0 or 1” Percentage of prevalence estimates or simulated fequencies with value ≤ 10−7 or ≥ 1− 10−7

3.1. Prediction vs. Confidence Intervals

In the simulation study performed for this paper, the values of the true positive class prevalences
of the test samples—understood in the sense of the a priori positive class prevalences of the populations
from which the samples were generated (see Section 2)—are always known. In contrast, when one
is working with real-world datasets, there is no way to know with certainty the true positive class
prevalences of the test samples. Inevitably, therefore, in studies of prevalence estimation methods on
real-world datasets, the performance has to be measured by comparison between the estimates and
the relative frequencies of the positive labels observed in the test samples.

This was stated explicitly, for instance, by Keith and O’Connor [7]. The authors said in the
section “Problem definition” of the paper that they estimated “prevalence confidence intervals”
with the property that “(1 − α)% of the predicted intervals ought to contain the true value θ∗”.
For this purpose, Keith and O’Connor [7] defined the “true value” as follows: “For each group D,
let θ∗ ≡ (1/n)∑n

i yi be the true proportion of positive labels (where n = |D|).” As “group” was used
by Keith and O’Connor [7] as equivalent to sample and yi was 1 for positive labels and 0 otherwise,
it is clear that Keith and O’Connor [7] estimated rather prediction intervals than confidence intervals
(see Section 2.3 for the definitions of both types of intervals).

Hence, as asked in Section 1: Would it be worthwhile to distinguish confidence and prediction
intervals for class prevalences and deploy different methods for their estimation?
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By assumption (see Section 2), the test sample x1,Q, . . . , xn,Q is interpreted as the feature
components of independent, identically distributed random variables (X1,Q, Y1,Q), . . ., (Xn,Q, Yn,Q).
While the positive class prevalence in the test population is given by the constant Q[Y = 1] = q,
the relative frequency of the positive labels in test sample is represented by the random variable

Ŷn,Q =
1
n

n

∑
i=1

I(Yi,Q = 1), (4)

where I(Yi,Q = 1) = 1 if Yi,Q = 1 and I(Yi,Q = 1) = 0 otherwise.
The simulation procedures for the panels in Table 2 are intended to gauge the impact of using

a confidence interval instead of a prediction interval for capturing the relative frequency of positive
labels in the test sample as defined in Equation (4). By the law of large numbers, the difference of Ŷn,Q
and q should be small for large n. Therefore, if there were any impact of using a confidence interval
when a prediction interval would be needed, it should rather be visible for smaller n.

Table 2. Illustration of coverage of positive class frequencies in the test sample by means of prediction
and confidence intervals. Control parameter for all panels: n = 50.

m+ = 33, m− = 67, ν = 2.5, q = 0.2, Prediction Intervals

ACC50 ACCp ACCv MS APCC APCCv H4 H8 Energy MLboot

Av freq 19.26 20.70 16.02 20.72 20.42 18.74 18.92 19.72 19.76 19.38
Av abs dev 7.50 8.82 9.02 7.60 7.58 7.58 7.40 7.24 7.28 7.50
Perc fail est 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 32.20 33.30 29.98 30.36 30.04 29.68 30.32 29.86 30.00 29.88
Coverage 100.0 99.0 94.0 100.0 99.0 98.0 99.0 99.0 99.0 98.0
Perc 0 or 1 1.0 2.0 6.0 1.0 2.0 2.0 4.0 1.0 3.0 1.0

m+ = 33, m− = 67, ν = 2.5, q = 0.2, Confidence Intervals

ACC50 ACCp ACCv MS APCC APCCv H4 H8 Energy MLboot

Av prev 20.34 21.05 17.01 20.50 20.54 20.34 20.63 20.31 20.55 20.65
Av abs dev 6.68 7.23 7.61 6.22 6.12 6.13 6.06 5.88 6.18 6.00
Perc fail est 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 28.27 28.98 26.13 25.67 25.15 24.55 25.57 25.10 25.10 24.83
Coverage 97.0 97.0 89.0 98.0 97.0 96.0 98.0 95.0 97.0 98.0
Perc 0 or 1 0.0 2.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0

m+ = 67, m− = 33, ν = 1, q = 0.2, Prediction Intervals

ACC50 ACCp ACCv MS APCC APCCv H4 H8 Energy MLboot

Av freq 18.96 22.30 23.72 21.33 17.08 18.20 22.80 28.76 19.12 17.48
Av abs dev 19.00 16.98 17.32 15.56 15.16 14.32 15.12 17.20 15.04 14.48
Perc fail est 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 71.69 58.92 72.82 54.15 47.88 49.96 56.24 59.32 49.44 47.38
Coverage 95.0 94.0 99.0 95.0 92.0 94.0 92.0 87.0 93.0 91.0
Perc 0 or 1 43.0 26.0 19.0 17.2 32.0 24.0 20.0 9.0 24.0 24.0

m+ = 67, m− = 33, ν = 1, q = 0.2, Confidence Intervals

ACC50 ACCp ACCv MS APCC APCCv H4 H8 Energy MLboot

Av prev 21.36 22.90 21.16 23.61 19.25 20.93 23.65 28.81 21.26 19.59
Av abs dev 19.28 16.45 15.21 14.60 14.63 13.91 15.64 15.53 14.56 13.37
Perc fail est 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 66.65 57.89 69.97 51.98 47.20 49.07 54.25 54.26 48.45 47.08
Coverage 97.0 95.0 98.0 96.0 90.0 95.0 90.0 77.0 94.0 96.0
Perc 0 or 1 36.0 24.0 22.0 15.6 27.0 22.0 19.0 7.0 22.0 16.0
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Table 2. Cont.

m+ = 67, m− = 33, ν = 1, q = 0.05, Prediction Intervals

ACC50 ACCp ACCv MS APCC APCCv H4 H8 Energy MLboot

AAv freq 13.90 10.78 12.48 12.02 10.50 10.96 13.74 19.86 11.80 8.48
Av abs dev 13.06 10.34 11.84 10.94 10.36 10.44 12.88 16.52 11.12 8.44
Perc fail est 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 62.61 44.90 59.71 44.94 39.12 41.48 46.78 52.30 41.30 35.30
Coverage 98.0 97.0 97.0 94.0 93.0 92.0 90.0 75.0 92.0 93.0
Perc 0 or 1 41.0 42.0 42.0 36.4 47.0 42.0 39.0 13.0 38.0 47.0

m+ = 67, m− = 33, ν = 1, q = 0.05, Confidence Intervals

ACC50 ACCp ACCv MS APCC APCCv H4 H8 Energy MLboot

Av prev 13.43 11.88 11.65 12.15 9.52 10.40 12.77 18.30 10.70 8.33
Av abs dev 13.79 11.11 11.03 10.68 9.56 9.71 11.44 15.43 10.01 8.34
Perc fail est 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 58.34 45.14 55.64 41.20 34.38 37.22 43.41 48.10 37.30 32.95
Coverage 98.0 93.0 96.0 93.0 89.0 91.0 83.0 62.0 94.0 92.0
Perc 0 or 1 52.0 40.0 42.0 31.2 42.0 36.0 34.0 17.0 37.0 44.0

The algorithm devised in this paper for the construction of prediction intervals (see Section 2.3)
involves the simulation of binomial random variables with the prevalence estimates as success
probabilities which are independent of the test samples. This procedure, however, is likely to
exaggerate the variance of the relative frequencies of the positive labels because the prevalence
estimates and the test samples are not only not independent but even by design should be strongly
dependent. The dependence between prevalence estimate and the test sample should be stronger when
the classifier underlying the estimator is more accurate. This implies that, for prevalence estimation,
differences between prediction and confidence intervals should rather be discernible for lower accuracy
of the classifiers deployed.

Table 2 shows a number of simulation results, all for test sample size n = 50, i.e., for small size of
the test sample:

• Top two panels: Simulation of a “benign” situation, with not too much difference of positive
class prevalences (33% vs. 20%) in training and test population distributions, and high power of
the score underlying the classifiers and distance minimisation approaches. The results suggest
“overshooting” by the binomial prediction interval approach, i.e., intervals are so long that
coverage is much higher than requested, even reaching 100%. The confidence intervals clearly
show sufficient coverage of the true realised percentages of positive labels for all estimation
methods. Interval lengths are quite uniform, with only the straight ACC methods ACC50 and
ACCp showing distinctly longer intervals. In addition, in terms of average absolute deviation from
the true positive class prevalence, the performance is rather uniform. However, it is interesting to
see that ACCv which has been designed for minimising confidence interval length among the ACC
estimators shows the distinctly worst performance with regard to average absolute deviation.

• Central two panels: Simulation of a rather adverse situation, with very different (67% vs. 20%)
positive class prevalences in training and test population distributions and low power of the
score underlying the classifiers and distance minimisation approaches. There is still overshooting
by the binomial prediction interval approach for all methods but H8. For all methods but H8,
sufficient coverage by the confidence intervals is still clearly achieved. H8 coverage of relative
positive class frequency is significantly too low with the confidence intervals but still sufficient
with the prediction intervals. However, H8 also displays heavy bias of the average relative
frequency of positive labels, possibly a consequence of the combined difficulties of there being
eight bins for only 50 points (test sample size) and little difference between the densities of the
score conditional on the two classes. In terms of interval length performance MLboot is best,
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closely followed by APCC and Energy. However, even for these methods, confidence interval
lengths of more than 47% suggest that the estimation task is rather hopeless.

• Bottom two panels: Similar picture to the central panels, but even more adverse with a small test
sample prevalence of 5%. The results are similar, but much higher proportions of 0% estimates
for all methods. H8 now has insufficient coverage with both prediction and confidence intervals,
and also H4 coverage with the confidence intervals is insufficient. Note the strong estimation bias
suggested by all average frequency estimates, presumably caused by the clipping of negative
estimates (i.e., replacing such estimates by zero). Among all these bad estimators, MLboot is
clearly best in terms of bias, average absolute deviation and interval lengths.

• General conclusion: For all methods in Section 2.2 but the Hellinger methods, it suffices to
construct confidence intervals. No need to apply special prediction interval techniques.

• Performance in terms of interval length (with sufficient coverage in all circumstances):
MLboot best, followed by APCC and Energy.

Daughton and Paul [11] proposed “Error Adjusted Bootstrapping” as an approach to constructing
“confidence intervals” (prediction intervals, as a matter of fact) for prevalences and showed by
example that its performance in terms of coverage was sufficient. However, theoretical analysis
of “Error Adjusted Bootstrapping” presented in Appendix B suggests that this approach is not
appropriate for constructing prediction intervals in the presence of prior probability shift. Indeed,
Table 3 demonstrates that “Error Adjusted Bootstrapping” intervals based on the classifiers ACC50
and ACCp (see Section 2.2) achieve sufficient coverage if the difference between the training and test
sample prevalences is moderate (33% vs. 20%) but breaks down if the difference is large (67% vs. 20%).

Table 3. Illustration of difference between binomial approach and approach by Daughton and Paul [11]
to prediction intervals for positive class prevalences. Control parameters for both panels: n = 50,
ν = 2.5, and q = 0.2. Columns “ACC50” and “ACCp” show results for confidence intervals with
methods as explained in Section 2.2. All other columns show prediction intervals and average relative
frequencies of positive labels. In all columns, coverage refers to containing the realised relative
frequency of positive labels in the test sample. “DnPACC50” and “DnPACCp” are determined according
to the “error-corrected bootstrapping”, as proposed by Daughton and Paul [11].

m+ = 33, m− = 67

ACC50 predACC50 ACCp predACCp DnPACC50 DnPACCp

Av prev or freq 19.97 20.22 19.49 19.78 24.32 25.40
Av abs dev 6.19 7.70 6.56 8.54 5.68 6.80
Perc fail est 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 27.91 32.84 29.28 33.90 21.68 21.78
Coverage 100.0 100.0 99.0 100.0 95.0 93.0
Perc 0 or 1 0.0 0.0 1.0 2.0 0.0 0.0

m+ = 67, m− = 33

ACC50 predACC50 ACCp predACCp DnPACC50 DnPACCp

Av prev 19.69 19.38 19.58 20.28 38.06 39.26
Av abs dev 9.91 9.82 9.03 10.32 18.18 19.26
Perc fail est 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 32.41 36.34 30.49 34.72 26.28 26.32
Coverage 98.0 99.0 95.0 98.0 22.0 14.0
Perc 0 or 1 12.0 12.0 3.0 5.0 0.0 0.0
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3.2. Does Higher Accuracy Help for Shorter Confidence Intervals?

As mentioned in Section 1, views in the literature differ on whether or not the performance of
prevalence estimators is impacted by the discriminatory power of the score underlying the estimation
method. Table 4 shows a number of simulation results, for a variety of sets of circumstances,
both benign and adverse. The results for high and low power are juxtaposed:

• Top two panels: Simulation of a “benign” situation, with moderate difference of positive class
prevalences (50% vs. 20%) in training and test population distributions, no estimation uncertainty
on the training sample and a rather large test sample with n = 500. The results for all estimation
methods suggest that the lengths of the confidence intervals are strongly dependent upon the
discriminatory power of the score which is the basic building block of all the methods. Coverage is
accurate for the high power situation, whereas there is even slight overshooting of coverage in
the low power situation.

• Central two panels: Simulation of a less benign situation, with small test sample size and low true
positive class prevalence in the test sample but still without uncertainty on the training sample.
There is nonetheless again evidence for the strong dependence of the lengths of the confidence
intervals upon the discriminatory power of the score. For all estimation methods, low power leads
to strong bias of the prevalence estimates. The percentage of zero estimates jumps between the
third and the fourth panel. Hence, decrease of power of the score entails much higher rates of zero
estimates. For the maximum likelihood method, the interval length results in both panels show
that constructing confidence intervals based on the central limit theorem for maximum likelihood
estimators may become unstable for small test sample size and small positive class prevalence.

• Bottom two panels: Simulation of an adverse situation, with small test and training sample
sizes and low true positive class prevalence in the test sample. The results show qualitatively
very much the same picture as in the central panels. The impact of estimation uncertainty in
the training sample which marks the difference to the situation for the central panels, however,
is moderate for high power of the score but dramatic for low power of the score. Again, there is
a jump of the rate of zero estimates between the two panels differentiated by different levels
of discriminatory power. For the Hellinger methods, results of the high power panel suggest
a performance issue with respect to the coverage rate. This observation is not confirmed by a
repetition of the calculations for Panel 5 with deployment of R-boot.ci method “bca” instead of
“perc”; however, the “better” results are accompanied by a high rate of failures of the confidence
interval construction. In contrast to MLinf, MLboot (using only bootstrapping for constructing
the confidence intervals) performs well, even with relatively low bias for the prevalence estimate
in the low power case.

• General conclusion: The results displayed in Table 4 suggest that there should be a clear benefit in
terms of shorter confidence intervals when high power scores and classifiers are deployed for
prevalence estimation. In addition, the results illustrate the statement on the asymptotic variance
of ratio estimators like ACC50, ACCp, APCv, APCC and APCCv in Corollary 11 of Vaz et al. [9].

• Performance in terms of interval length (with sufficient coverage in all circumstances): Both APCC
estimation methods show good and stable performance when compared to all other methods.
Energy and MLboot follow closely. The Hellinger methods also produce short confidence lengths
but may have insufficient coverage.
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Table 4. Illustration of length of confidence intervals for different degrees of accuracy (or discriminatory
power) of the score or classifier underlying the prevalence estimation methods.

n = 500, m+ = ∞, m− = ∞, ν = 2.5, p = 0.5, q = 0.2

ACC50 ACCp ACCv MS APCC APCCv H4 H8 Energy MLinf

Av prev 20.28 20.28 19.68 20.34 20.35 20.27 20.27 20.33 20.34 20.35
Av abs dev 1.97 1.97 1.90 1.79 1.79 1.72 1.81 1.76 1.80 1.72
Perc fail est 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 8.47 8.47 8.04 7.74 7.71 7.50 7.54 7.42 7.72 7.35
Coverage 91.0 91.0 93.0 90.0 89.0 92.0 89.0 89.0 89.0 91.0
Perc 0 or 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n = 500, m+ = ∞, m− = ∞, ν = 1, p = 0.5, q = 0.2

ACC50 ACCp ACCv MS APCC APCCv H4 H8 Energy MLinf

Av prev 20.71 20.71 18.60 20.74 20.53 20.00 20.47 20.47 20.66 20.41
Av abs dev 4.68 4.68 4.21 3.64 3.37 3.23 3.65 3.30 3.39 3.19
Perc fail est 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 19.08 19.08 18.47 16.70 15.73 15.15 16.14 15.50 15.91 15.05
Coverage 92.0 92.0 93.0 94.0 94.0 94.0 96.0 95.0 95.0 94.0
Perc 0 or 1 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

n = 50, m+ = ∞, m− = ∞, ν = 2.5, p = 0.33, q = 0.05

ACC50 ACCp ACCv MS APCC APCCv H4 H8 Energy MLinf

Av prev 4.96 5.49 2.75 4.99 5.14 4.60 5.07 4.56 5.15 5.09
Av abs dev 3.63 4.03 3.26 3.32 3.47 2.92 3.33 2.93 3.54 3.06
Perc fail est 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 16.75 17.98 14.44 12.65 12.73 10.88 12.95 12.03 12.84 16.96
Coverage 95.0 98.0 97.0 90.0 86.0 85.0 88.5 94.4 88.0 97.0
Perc 0 or 1 24.0 24.0 27.0 16.0 18.0 11.0 18.0 10.0 18.0 13.0

n = 50, m+ = ∞, m− = ∞, ν = 1, p = 0.33, q = 0.05

ACC50 ACCp ACCv MS APCC APCCv H4 H8 Energy MLinf

Av prev 8.37 9.56 2.77 8.07 7.74 6.56 7.86 7.37 7.93 7.26
Av abs dev 8.31 9.28 5.70 7.78 7.64 7.00 7.73 7.47 7.68 7.50
Perc fail est 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 38.27 35.30 29.85 27.52 25.46 24.98 27.63 25.80 26.30 47.01
Coverage 96.0 92.0 90.0 89.0 86.0 86.0 89.0 86.3 89.0 97.0
Perc 0 or 1 38.0 44.0 65.0 32.0 41.0 48.0 41.0 45.0 43.0 48.0

n = 50, m+ = 33, m− = 67, ν = 2.5, q = 0.05

ACC50 ACCp ACCv MS APCC APCCv H4 H8 Energy MLboot

Av prev 5.72 6.91 3.62 5.67 5.88 5.72 5.53 5.65 5.97 5.59
Av abs dev 4.46 5.10 3.54 4.11 4.11 3.97 4.00 3.95 4.18 3.55
Perc fail est 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 16.62 18.68 11.35 14.96 14.92 13.90 14.22 13.44 15.09 13.95
Coverage 89.0 87.0 91.0 88.0 86.0 87.0 84.8 82.0 85.0 85.0
Perc 0 or 1 24.0 22.0 24.0 18.0 17.0 17.0 18.0 15.0 17.0 14.0

n = 50, m+ = 33, m− = 67, ν = 1, q = 0.05

ACC50 ACCp ACCv MS APCC APCCv H4 H8 Energy MLboot

Av prev 10.49 11.59 6.54 10.43 8.50 8.38 10.96 12.12 9.50 8.39
Av abs dev 10.47 10.94 6.58 9.55 8.30 7.88 10.00 10.43 8.83 7.72
Perc fail est 0.0 0.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0 0.0
Av int length 52.48 46.04 40.00 36.00 32.37 31.70 39.38 39.11 32.85 32.96
Coverage 97.0 95.0 96.0 94.0 91.0 90.0 91.0 92.0 92.0 92.0
Perc 0 or 1 43.0 37.0 43.0 32.3 41.0 38.0 36.0 28.0 40.0 38.0
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3.3. Do Approaches to Confidence Intervals without Monte Carlo Simulations Work?

For the prevalence estimation methods ACC50, ACCp, ACCv, MS, and MLinf, confidence intervals
can be constructed without bootstrapping and, therefore, much less numerical effort. For ACC50,
ACCp, ACCv, and MS, conservative binomial intervals by means of the “exact” method of R-function
binconf can be deployed ([12] Section 6.2.2). For the maximum likelihood approach, an asymptotically
most efficient normal approximation with variance expressed in terms of the Fisher information can
be used ([27] Theorem 10.1.12). This approach is denoted by “MLinf” in order to distinguish it from
“MLboot”, maximum likelihood estimation combined with bootstrapping for the confidence intervals.

However, it can be shown by examples that these non-simulation approaches fail in the sense
of producing insufficient coverage rates if training sample sizes are finite, i.e., if parameters such as
true positive and false positive rates needed for the estimators have to be estimated (e.g., by means of
regression) before being plugged in. Table 5 with panels juxtaposing results for infinite sample and
finite sample sizes of the training sample, provides such an example.

The estimation problem whose results are shown in Table 5 is pretty well-posed, with a large
test sample, a high power score underlying the estimation methods and moderate difference between
training and test sample positive class prevalences. Panel 1 shows that without estimation uncertainty
on the training sample (infinite sample size) the non-simulation approaches produce confidence
intervals with sufficient coverage. In contrast, Panel 2 demonstrates that for all five methods coverage
breaks down when estimation uncertainty is introduced into the training sample (finite sample size).
According to Panel 3, this issue can be remediated by deploying bootstrapping for the construction of
the confidence intervals.

Table 5. Illustration of failure of non-simulation approaches to confidence intervals when training
sample is finite. Control parameters for all panels: p = 0.33, ν = 2.5, q = 0.2, and n = 500.

No Bootstrap, m+ = ∞, m− = ∞

ACC50 ACCp ACCv MS MLinf

Av prev 20.15 20.28 19.40 20.14 20.27
Av abs dev 2.25 2.24 2.18 2.22 2.02
Perc fail est 0.0 0.0 0.0 0.0 0.0
Av int length 8.11 8.46 8.02 8.17 7.33
Coverage 92.0 86.0 88.0 87.0 92.0
Perc 0 or 1 0.0 0.0 0.0 0.0 0.0

No Bootstrap, m+ = 33, m− = 67

ACC50 ACCp ACCv MS MLinf

Av prev 19.95 19.48 19.01 19.76 20.06
Av abs dev 3.23 3.88 2.98 3.35 2.57
Perc fail est 0.0 0.0 0.0 0.0 0.0
Av int length 8.13 8.47 7.60 8.16 7.22
Coverage 69.0 64.0 66.0 66.0 75.0
Perc 0 or 1 0.0 0.0 0.0 0.0 0.0

Bootstrap, m+ = 33, m− = 67

ACC50 ACCp ACCv MS MLboot

Av prev 19.79 19.94 18.63 20.18 20.34
Av abs dev 3.11 3.38 3.17 2.79 2.67
Perc fail est 0.0 0.0 0.0 0.0 0.0
Av int length 15.13 16.96 14.18 12.94 12.07
Coverage 95.0 93.0 91.0 91.0 92.0
Perc 0 or 1 0.0 0.0 0.0 0.0 0.0
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4. Conclusions

The simulation study whose results are reported in this paper was intended to shed some light on
certain questions from the literature regarding the construction of confidence or prediction intervals
for the prevalence of positive labels in binary quantification problems. In particular, the results of the
study should help to provide answers to the questions on:

• whether estimation techniques for confidence intervals are appropriate if in practice most of the
time prediction intervals are needed; and

• whether the discriminatory power of the soft classifier or score at the basis of a prevalence
estimation method matters when it comes to minimizing the confidence interval for an estimate.

The answers suggested by the results of the simulation study are subject to a number of
qualifications. Most prominent among the qualifications are:

• the fact that the findings of the paper apply only for problems where it is clear that training and
test samples are related by prior probability shift; and

• the general observation that the scope of a simulation study necessarily is rather restricted and
therefore findings of such studies can be suggestive and illustrative at best.

Hence, the findings from the study do not allow firm or general conclusions. As a consequence,
the answers to the questions suggested by the simulation study have to be ingested with caution:

• For not too small test sample sizes, such as 50 or more, there is no need to deploy special
techniques for prediction intervals.

• It is worthwhile to base prevalence estimation on powerful classifiers or scores because this way
the lengths of the confidence intervals can be much reduced. The use of less accurate classifiers
may entail confidence intervals so long that the estimates have to be considered worthless.

In most of the experiments performed as part of the simulation study, the maximum likelihood
approach (method MLboot) to the estimation of the positive class prevalence turned out to deliver on
average the shortest confidence intervals. As shown in Appendix A.2.3, application of the maximum
likelihood approach requires that in a previous step the density ratio or the posterior class probabilities
are estimated on the training samples. To achieve this with sufficient precision is a notoriously hard
problem. Note, however, the promising recent progress made on this issue [28]. Not much worse and
in a few cases even superior was the performance of APCC (Adjusted Probabilistic Classify and Count).
In contrast the performance of the Energy distance and Hellinger distance estimation methods was not
outstanding and, in the case of the latter methods, even insufficient in the sense of not guaranteeing
the required coverage rates of the confidence intervals.

Clearly, it would be desirable to extend the scope of the simulation study in order to obtain more
robust answers to the questions mentioned above.

One way to do so would be to look at a larger range of prevalence estimation methods. Recent
research by Maletzke et al. [8] singled out prevalence estimation methods based on minimising
distances related to the Earth Mover’s distance as very well and robustly performing. Earlier research
by Hofer [29] already found that prevalence estimation by minimising the Earth Mover’s distance
worked well in the presence of general dataset shift (“local drift”). Hence, it might be worthwhile to
compare the performance of such estimators with respect to the length of confidence intervals to the
performance of other estimators such as the ones considered in this paper.

Another way to extend the scope of the simulation study would be to generalise the “double
binormal” framework the study described in this paper is based on. Such an extension could be
constructed along the lines described in Section 4 of Tasche [24].
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Appendix A. Particulars for the Implementation of the Simulation Study

This appendix presents the mathematical details needed for coding the prevalence estimation
methods listed in Section 2.2. In particular, the case of infinite training samples (i.e., where the
training sample is actually the training population and the parameters of the model are exactly known)
is covered.

Appendix A.1. Adjusted Classify and Count (ACC) and Related Prevalence Estimators

ACC and APCC, as mentioned in Section 2.2, are special cases of the “ratio estimator” of
Vaz et al. [9]. From an even more general perspective, they are instances of estimation by the
“Method of Moments” ([30], Section 2.4.1 and the references therein). By Theorem 6 of Vaz et al. [9],
ratio estimators are Fisher consistent for estimating the positive class prevalence of the test population
under prior probability shift.

Adjusted Classify and Count (ACC). In the setting of Section 2, denote the feature space
(i.e., the range of values which the feature variable X can take) by X . Let g : X → {−1, 1} be a
crisp classifier in the sense that if for an instance it holds that g(X) = 1, a positive class label is
predicted, and if g(X) = −1 a negative class label is predicted. With the notation introduced in
Section 2, the ACC estimator Q̂g[Y = 1] based on the classifier g of the test population positive class
prevalence is given by

Q̂g[Y = 1] =
Q[g(X) = 1]− P[g(X) = 1 |Y = −1]

P[g(X) = 1 |Y = 1]− P[g(X) = 1 |Y = −1]
. (A1)

Recall that

• Q[g(X) = 1] is the proportion of instances in the test population whose labels are predicted
positive by the classifier g.

• P[g(X) = 1 |Y = −1] is the false positive rate (FPR) associated with the classifier g. The FPR equals
100%− true negative rate and, therefore, also 100%− specificity of the classifier g.

• P[g(X) = 1 |Y = 1] is the true positive rate (TPR) associated with the classifier g. The TPR is also
called “recall” or “sensitivity” of g.

Of course, the ACC estimator of Equation (A1) is defined only if P[g(X) = 1 |Y = 1] 6= P[g(X) =

1 |Y = −1], i.e., if g is not completely inaccurate. González et al. [5] gave in Section 6.2 some
background information on the history of ACC estimators.

When a threshold t ∈ R is fixed, the soft classifier s : X → R gives rise to a crisp classifier
g(s)t : X → {−1, 1}, defined by

g(s)t (x) =

{
−1, if s(x) < t,

1, if s(x) ≥ t.
(A2)

The classifiers pt(x) with

pt(x) =

{
−1, if P[Y = 1 |X](x) < t,

1, if P[Y = 1 |X](x) ≥ t.
(A3)

are Bayes classifiers which minimise cost-sensitive Bayes errors (see, for instance, (Tasche [24]
Section 2.1)). Thresholds of special interest are:

• t = 1/2 for maximum accuracy (i.e., minimum classification error) which leads to the estimator
ACC50 listed in Section 2.2; and

• t = P[Y = 1] for maximising the denominator of the right-hand side of Equation (A1), which leads
to the estimator ACCp listed in Section 2.2.
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For the simulation procedures run for this paper, a sample version of Q[pt(X) = 1] was used:

Q[pt(X) = 1] ≈ 1
n

n

∑
i=1

I(pt(xi,Q) = 1), (A4)

where x1,Q, . . . , xn,Q denotes a sample generated under the test population distribution Q(X).
To deal with the case where in the setting of Section 2.1 with the double binormal model the

training sample is infinite, the following formulae were coded for the right-hand side of Equation (A1)
with g(X) = pt(X) and (A4) (with parameters a, b as in Equation (3a)):

1
n

n

∑
i=1

I(pt(xi,Q) = 1) =
1
n

n

∑
i=1

I
(

xi,Q ≥
log(1/t− 1)− b

a

)
,

P[pt(X) = 1 |Y = −1] = 1−Φµ,σ

(
log(1/t− 1)− b

a

)
, (A5)

P[pt(X) = 1 |Y = 1] = 1−Φν,σ

(
log(1/t− 1)− b

a

)
.

Adjusted Probabilistic Classify and Count (APCC). APCC—called scaled probability average
by Bella et al. [19]—generalises Equation (A1) by replacing the indicator variable I(g(X) = 1) with a
real-valued random variable h(X). If h only takes values in the unit interval [0, 1] the variable h(X) is
a randomized decision classifier (RDC) which may be interpreted as the probability with which the
positive label should be assigned. Equation (A1) modified for APCC reads:

Q̂h[Y = 1] =
EQ[h(X)]− EP[h(X) |Y = −1]

EP[h(X) |Y = 1]− EP[h(X) |Y = −1]
. (A6)

Bella et al. [19] suggested the choice h(X) = P[Y = 1 |X].
For the simulation procedures run for this paper, a sample version of EQ

[
P[Y = 1 |X]

]
was used:

EQ
[
P[Y = 1 |X]

]
≈ 1

n

n

∑
i=1

P[Y = 1 |X](xi,Q), (A7)

where x1,Q, . . . , xn,Q denotes a sample generated under the test population distribution Q(X).
To deal with the case where in the setting of Section 2.1 with the double binormal model

the training sample is infinite, the following formulae have been coded for the right-hand side of
Equation (A6) with h(X) = P[Y = 1 |X] and Equation (A7) (with parameters a, b as in Equation (3a)):

1
n

n

∑
i=1

P[Y = 1 |X](xi,Q) =
1
n

n

∑
i=1

1
1 + exp(a xi,Q + b)

,

EP
[
P[Y = 1 |X] |Y = −1]

]
= 1−

∫ ∞

−∞

ϕµ,σ(xi,Q)

1 + exp(a xi,Q + b)
d x, (A8)

EP
[
P[Y = 1 |X] |Y = 1

]
= 1−

∫ ∞

−∞

ϕν,σ(xi,Q)

1 + exp(a xi,Q + b)
d x.

Median sweep (MS). Forman [2] proposed to stabilise the prevalence estimates from ACC based
on a soft classifier s via Equation (A2), by taking the median of all ACC estimates based on g(s)t

for all thresholds t such that the denominator P[g(s)t = 1 |Y = 1] − P[g(s)t = 1 |Y = −1] of the
right-hand side of Equation (A1) exceeds 25%. For the purpose of this paper, the base soft classifier
is P[Y = 1 |X] in connection with Equation (A3), and the set of possible thresholds t is restricted to
{0.05, 0.1, 0.15, . . . , 0.9, 0.95}.
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Tuning ACC for ACCv. Observe that a main factor impacting the length of a confidence interval
for a parameter is the standard deviation of the underlying estimator. This suggests the following
approach to choosing a good threshold t∗ for the classifier pt(X) in Equation (A3):

t∗ = arg min
0<t<1

varQ[I(pt(X) = 1)](
P[pt(X) = 1 |Y = 1]− P[pt(X) = 1 |Y = −1]

)2 . (A9)

The test population distribution Q appears in the numerator of Equation (A9) because the
confidence interval is calculated for a sample generated from Q. The training population distribution
P is used in the denominator of Equation (A9) because the confidence interval is scaled by the
denominator of Equation (A1). See Equation (A5) for the formulae used for the calculations of this
paper for Equation (A9) in the setting of Section 2.1. As in the case of MS, for the purpose of this paper,
the set of possible thresholds t is restricted to {0.05, 0.1, 0.15, . . . , 0.9, 0.95}.

Tuning APCC for APCCv. Similar to Equation (A9), the idea is to minimise the variance of the
estimator under Q while controlling the size of the denominator in Equation (A6). For 0 < π < 1, define

hπ(x) =
π f+(x)

π f+(x) + (1− π) f−(x)
,

where f+ and f− are the class-conditional densities of the features. Then, it holds that

hP[Y=1](x) = P[Y = 1 |X](x).

A good choice for π could be π∗ with

π∗ = arg min
0<π<1

varQ[hπ(X)](
EP[hπ(X) |Y = 1]− EP[hπ(X) |Y = −1]

)2 . (A10)

For the purpose of this paper, the set of possible parameters π in Equation (A10) is restricted to
{0.05, 0.1, 0.15, . . . , 0.9, 0.95}. In the setting of Section 2.1, let a be defined as in Equation (3a) and let

bπ =
ν2 − µ2

2 σ2 + log
(

1− π

π

)
.

Then, analogously to Equation (A8), in the setting of Section 2.1 the following formulae are
obtained for use in the calculations of this paper for Equation (A10):

1
n

n

∑
i=1

hπ(xi,Q) =
1
n

n

∑
i=1

1
1 + exp(a xi,Q + bπ)

,

EP
[
hπ(X) |Y = −1] = 1−

∫ ∞

−∞

ϕµ,σ(xi,Q)

1 + exp(a xi,Q + bπ)
d x, (A11)

EP
[
hπ(X) |Y = 1

]
= 1−

∫ ∞

−∞

ϕν,σ(xi,Q)

1 + exp(a xi,Q + bπ)
d x.

Appendix A.2. Prevalence Estimation by Distance Minimisation

The idea for prevalence estimation by distance minimisation is to obtain an estimate q̂ of Q[Y =

1] = q by solving the following optimisation problem:

q̂ = arg min
0≤q≤1

d (Q(X), q P[X ∈ · |Y = 1] + (1− q)P[X ∈ · |Y = −1]) . (A12)

Here, d denotes a distance measure of probability measures with the following two properties:

1. d(M1, M2) ≥ 0 for all probability measures M1, M2 to which d is applicable.
2. d(M1, M2) = 0 if and only if M1 = M2.
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There is no need for d to be a metric (i.e., asymmetric distance measures d with d(M1, M2) 6=
d(M2, M1) for some M1, M2 are permitted). By Property (2), distance minimisation estimators
defined by Equation (A12) are Fisher consistent for estimating the positive class prevalence of the test
population under prior probability shift. In the following subsections, three approaches to prevalence
estimation based on distance minimisation are introduced that have been suggested in the literature
and appear to be popular.

Appendix A.2.1. Prevalence Estimation by Minimising the Hellinger Distance

The Hellinger distance (see González-Castro et al. [3] and Castaño et al. [6] for more information
on the Hellinger distance approach to prevalence estimation) dH of two probability measures M1, M2

on the same domain is defined in measure-theoretic terms by

dH(M1, M2) =
1
2

∫ (√d M1

d λ
−
√

d M2

d λ

)2

dλ, (A13)

where λ is any measure on the same domain such that both M1 and M2 are absolutely continuous with
respect to λ. The value of dH(M1, M2) does not depend upon the choice of λ.

In practice, the calculation of the Hellinger distance must take into account that most of time it
has to be estimated from sample data. Therefore, the right-hand side of Equation (A13) is discretized
by (in the setting of Section 2) decomposing the feature space X into a finite number of subsets or bins
X1, . . . ,Xb and evaluating the probability measures whose distance is to be measured on these bins.
This leads to the following approximative version of the minimisation problem in Equation (A12):

q̂ = arg min
0≤q≤1

b

∑
i=1

(√
Q[X ∈ Xi]−

√
q P[X ∈ Xi |Y = 1] + (1− q)P[X ∈ Xi |Y = −1]

)2
. (A14)

If the feature space X is multi-dimensional, e.g., X ⊂ Rd for some d ≥ 2,
González-Castro et al. [3] also suggested minimising the Hellinger distance separately across all the d
dimensions of the feature vector X = (X1, . . . , Xd). In this case, the feature space X = X1 × . . .×Xd is
decomposed component-wise in b bins and Equation (A14) is modified to become

q̂ = arg min
0≤q≤1

d

∑
k=1

b

∑
i=1

(√
Q[Xk ∈ Xi,k]−

√
q P[Xk ∈ Xi,k |Y = 1] + (1− q)P[Xk ∈ Xi,k |Y = −1]

)2
,

where Xk =
⋃b

i=1 Xi,k. For the purposes of this paper, Equation (A14) has been adapted to become

q̂ = arg min
0≤q≤1

∑b
i=1

(√
1
n ∑n

j=1 I
(
xj,Q ∈ Xi

)
−
√

q P[X ∈ Xi |Y = 1] + (1− q)P[X ∈ Xi |Y = −1]
)2

, (A15)

where (x1,Q, . . . xn,Q) ∈ Rn is a sample of features of instances generated under the test population
distribution Q(X) and the P-terms must be estimated from the training sample if it is finite and can be
exactly pre-calculated in the case of an infinite training sample. In the latter case, Equation (A15) has
to be modified to reflect the binormal setting of Section 2.1 for the training population distribution:

q̂ = arg min
0≤q≤1

b

∑
i=1

√√√√ 1
n

n

∑
j=1

I
(
`i−1 < xj,Q ≤ `i

)
−

√
q
(

Φ
(
`i − ν

σ

)
−Φ

(
`i−1 − ν

σ

))
+ (1− q)

(
Φ
(
`i − µ

σ

)
−Φ

(
`i−1 − µ

σ

)) )2

, (A16a)
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if Xi = [`i−1, `i) for −∞ = `0 < `1 < . . . `b−1 < `b = ∞. For this paper, the number b of bins (see
Maletzke et al. [8] for critical comments regarding the choice of the number of bins) in Equation (A16a)
was chosen to be 4 or 8, and the boundaries of the bins have been defined as follows (Φ−1 is the inverse
function to the standard normal distribution function):

`i = σ Φ−1
(

i
b

)
+

µ + ν

2
, i = 1, . . . , b− 1. (A16b)

Appendix A.2.2. Prevalence Estimation by Minimising the Energy Distance

Kawakubo et al. [21] and Castaño et al. [6] provided background information for the application
of the Energy distance approach to prevalence estimation.

Denote by V and V′, respectively, the projection on the first d components and the last d
components of R2 d, i.e.,

V(x) = (x1, . . . , xd) and V′(x) = (xd+1, . . . , x2 d), for x ∈ R2 d.

V and V′ are also used to denote the identity mapping on Rd, i.e., V(x) = x and V′(x) = x for
x ∈ Rd.

Let M1 and M2 be two probability measures on Rd. Then, M1 ⊗M2 denotes the product measure
of M1 and M2 on R2 d. Hence, M1 ⊗ M2 is the probability measure on R2 d such that V and V′ are
stochastically independent under M1 ⊗M2.

Denote by ||x|| the Euclidean norm of x ∈ Rd. Then, the Energy distance dE of two probability
measures M1, M2 on Rd with EM1 [||V||2] < ∞ and EM2 [||V′||2] < ∞ can be represented as

dE(M1, M2) = 2 EM1⊗M2

[
||V −V′||

]
− EM1⊗M1

[
||V −V′||

]
− EM2⊗M2

[
||V −V′||

]
. (A17)

Recall that in this section the aim is to estimate class prevalences by solving the optimisation
problem in Equation (A12). To do so by means of minimising the Energy distance, fix a function
h : X → R and choose as probability measures M1 and M2 the distributions of h(X) under the
probability measures Q and q P[X ∈ · |Y = 1] + (1− q) P[X ∈ · |Y = −1] whose distance is minimised
in Equation (A12):

M1(D) = Q[h(X) ∈ D],

M2(D) = q P[h(X) ∈ D |Y = 1] + (1− q)P[h(X) ∈ D |Y = −1],

for 0 ≤ q ≤ 1 and D ⊂ R such that all involved probabilities are well-defined. With this choice for M1

and M2, it follows from Equation (A17) that

dE(M1, M2) = 2 q EQ⊗P+

[
|h(V)− h(V′)|

]
+ 2 (1− q)EQ⊗P−

[
|h(V)− h(V′)|

]
− EQ⊗Q

[
|h(V)− h(V′)|

]
− q2 EP+⊗P+

[
|h(V)− h(V′)|

]
− (1− q)2 EP−⊗P−

[
|h(V)− h(V′)|

]
− 2 q (1− q)EP+⊗P−

[
|h(V)− h(V′)|

]
, (A18)

with P+ = P[X ∈ · |Y = 1] and P− = P[X ∈ · |Y = −1]. The unique minimising value q̂ of q for the
right-hand side of Equation (A18) is found to be

q̂ =
A
B

, with (A19)

A = EQ⊗P− [|h(V)− h(V′)|]− EQ⊗P+ [|h(V)− h(V′)|]
− EP−⊗P− [|h(V)− h(V′)|] + EP+⊗P− [|h(V)− h(V′)|],

B = 2 EP+⊗P− [|h(V)− h(V′)|]− EP−⊗P− [|h(V)− h(V′)|]− EP+⊗P+ [|h(V)− h(V′)|].
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The fact that there is a closed-form solution for the estimate q̂ in the two-class case is one of the
advantages of the Energy distance approach.

When both the training and the test samples are finite, all the sub-terms of A and B in
Equation (A19) can be empirically estimated in a straight-forward way. For the semi-finite
version of Equation (A19), when the training sample is infinite, the terms EQ⊗P− [|h(V) − h(V′)|]
and EQ⊗P+ [|h(V) − h(V′)|] have to be replaced by empirical approximations based on a sample
(x1,Q, . . . xn,Q) ∈ Rn of features of instances generated under the test population distribution Q(X),
while the population measures for P− and P+, respectively, are kept:

EQ⊗P− [|h(V)− h(V′)|] ≈ EP−

[
1
n

n

∑
j=1
|h(xj,Q)− h(V)|

]
,

EQ⊗P+ [|h(V)− h(V′)|] ≈ EP+

[
1
n

n

∑
j=1
|h(xj,Q)− h(V)|

]
.

(A20)

Accordingly, for the case where in the setting of Section 2.1 with the double binormal model
the training sample is infinite, the following formulae have been coded for Equation (A20) and the
terms A and B in Equation (A19), with h(x) = P[Y = 1 |X](x) = 1

1+exp(a x+b) (parameters a, b as in
Equation (3a)):

EP−

[
1
n

n

∑
j=1
|h(xj,Q)− h(V)|

]
=

1
n

∫ ∞

−∞
ϕµ,σ(x)

n

∑
j=1

∣∣ 1
1 + exp(a x + b)

− 1
1 + exp(a xj,Q + b)

∣∣ d x,

EP+

[
1
n

n

∑
j=1
|h(xj,Q)− h(V)|

]
=

1
n

∫ ∞

−∞
ϕν,σ(x)

n

∑
j=1

∣∣ 1
1 + exp(a x + b)

− 1
1 + exp(a xj,Q + b)

∣∣ d x,

EP−⊗P− [|h(V)− h(V′)|] = 4
∫ ∞

−∞

ϕµ,σ(x)Φµ,σ(x)
1 + exp(a x + b)

d x− 2
∫ ∞

−∞

ϕµ,σ(x)
1 + exp(a x + b)

d x, (A21)

EP+⊗P− [|h(V)− h(V′)|] = 2
∫ ∞

−∞

ϕµ,σ(x)Φν,σ(x)
1 + exp(a x + b)

d x−
∫ ∞

−∞

ϕµ,σ(x)
1 + exp(a x + b)

d x

+ 2
∫ ∞

−∞

ϕν,σ(x)Φµ,σ(x)
1 + exp(a x + b)

d x−
∫ ∞

−∞

ϕν,σ(x)
1 + exp(a x + b)

d x,

EP+⊗P+ [|h(V)− h(V′)|] = 4
∫ ∞

−∞

ϕν,σ(x)Φν,σ(x)
1 + exp(a x + b)

d x− 2
∫ ∞

−∞

ϕν,σ(x)
1 + exp(a x + b)

d x.

Appendix A.2.3. Prevalence Estimation by Minimising the Kullback–Leibler Distance

In this section, the approach to prevalence estimation based on minimising the Kullback–Leibler
distance is presented. Note that the Kullback–Leibler distance is also called Kullback–Leibler
divergence (e.g., in [31]). In practical applications, this approach is equivalent to maximum likelihood
estimation of the class prevalences. Due to the asymptotic efficiency of maximum likelihood estimators
in terms of the variances of the estimates, this approach can serve as an absolute benchmark for what
can be achieved in terms of short confidence intervals. Saerens et al. [18] made the EM-algorithm
version of the approach—as a possibility to obtain the maximum likelihood estimate [32]—popular in
the machine learning community.

Let M1 and M2 be two probability measures on the same domain. Assume that both M1 and M2

are absolutely continuous with respect to a measure λ on the same domain, with densities

f1 =
d M1

d λ
and f2 =

d M2

d λ
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respectively. If the densities f1, f2 are positive, the Kullback–Leibler distance of M2 to M1 is then
defined as

dKL(M2||M1) =
∫

f1 log
(

f1

f2

)
dλ. (A22)

In contrast to the Hellinger and Energy distances, which are introduced in Appendices A.2.1 and
A.2.2, respectively, the Kullback–Leibler distance is not symmetric in its arguments, i.e., in general
dKL(M2||M1) 6= dKL(M1||M2) may occur. In Equation (A22), the lack of symmetry is indicated by
separating the arguments not by a comma but by the sign ||. However, while dKL is not a metric it still
has the properties dKL(M2||M1) ≥ 0 and dKL(M2||M1) = 0 if and only if M1 = M2.

The choice M1 = Q(X) and M2 = q P[X ∈ · |Y = 1] + (1− q)P[X ∈ · |Y = −1] leads to a
computationally convenient Kullback–Leibler version of the minimisation problem in Equation (A12).
One has to assume that there are a measure λ on the feature space X and densities fQ, f+ and f−

such that

fQ(X) =
d Q(X)

d λ
> 0,

f+(X) =
d P[X ∈ · |Y = 1]

d λ
,

f−(X) =
d P[X ∈ · |Y = −1]

d λ
, and

f+(X) + f−(X) > 0

This gives the following optimisation problem:

q̂ = arg min
0≤q≤1

∫
fQ log

(
fQ(X)

q f+(X) + (1− q) f−(X)

)
dλ

= arg max
0≤q≤1

EQ
[
log
(
q f+(X) + (1− q) f−(X)

)]
= arg max

0≤q≤1
EQ [log (q (R(X)− 1) + 1)] , (A23)

where the density ratio R(X) is defined by

R(X) =
f+(X)

f−(X)

and additionally it must hold that f−(X) > 0. Under fairly general smoothness conditions,
the right-hand side of Equation (A23) can be differentiated with respect to q. This gives the following
necessary condition for optimality in Equation (A23):

0 = EQ

[
R(X)− 1

q̂ (R(X)− 1) + 1

]
. (A24)

When both the training and the test samples are finite, the right-hand side of Equation (A24) as a
function of q̂ can be empirically estimated in a straight-forward way.

For the semi-finite setting according to Section 2.1 with infinite training sample, it can be assumed
that the density ratio R is fully known by the specification of the model. In contrast, the test population
distribution Q(X) of the features is only known through a sample (or empirical distribution) x1,Q, . . . ,
xn,Q that was sampled from Q(X). Replacing the expectation with respect to Q in Equation (A24) with
a sample average gives the equation

0 =
n

∑
i=1

R(xi,Q)− 1
q̂ (R(xi,Q)− 1) + 1

(A25a)
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as an approximative necessary condition for q̂ to minimise the Kullback–Leibler distance in
Equation (A23). Solving Equation (A25a) results in an approximation q̂n of q̂ and therefore Q[Y = 1].

It is not hard to see (see, for instance, Lemma 4.1 of [33]) that Equation (A25a) has a unique
solution q̂n with 0 ≤ q̂n ≤ 1 if and only if

R(xi,Q) 6= 1 for at least one i,
1
n

n

∑
i=1

R(xi,Q) ≥ 1 and
1
n

n

∑
i=1

1
R(xi,Q)

≥ 1. (A25b)

If Equation (A25b) holds, the solution of Equation (A25a) is q̂n = 0 if and only if 1
n ∑n

i=1 R(xi,Q) = 1
and the solution is q̂n = 1 if and only if 1

n ∑n
i=1

1
R(xi,Q)

= 1. For the purpose of this paper, clipping is
applied when solving Equation (A25a). In the literature on prevalence estimation, clipping is applied
routinely (see, e.g., [2]). In general, one should be careful with clipping because the fact that there is
no estimate between 0 and 1 could be a sign that the assumption of prior probability shift is violated.
This is not an issue in the setting of this paper because prior probability shift is created by the design
of the simulation study.

Since, as shown in the proof of Lemma 4.1 of Tasche [33], it is not possible that both
1
n ∑n

i=1 R(xi,Q) < 1 and 1
n ∑n

i=1
1

R(xi,Q)
< 1 occur, it makes sense to set

• q̂n = 0 if 1
n ∑n

i=1 R(xi,Q) ≤ 1; and
• q̂n = 1 if 1

n ∑n
i=1

1
R(xi,Q)

≤ 1.

Equation (A25a) happens also to be the first-order condition for the maximum likelihood estimator
of the test population prevalence of the positive class Q[Y = 1], see Peters and Coberly [26]. A popular
method to determine the maximum likelihood estimates for the class prevalences in mixture proportion
problems such as the one of this paper is to deploy an Expectation Maximisation (EM) approach [18,32].
However, in the specific semi-finite context of this paper, and more generally in the two-classes case,
it is more efficient to solve Equation (A25a) directly by an appropriate numerical algorithm (see,
for instance, the documentation of the R-function “uniroot”).

The confidence and prediction intervals based on q̂, as found by solving the empirical version of
Equation (A24) or Equation (A25a), are determined with the following two methods:

• Method MLboot: Bootstrapping the samples x1,P+ , . . ., xm+ ,P+ , x1,P− , . . ., xm− ,P− , and x1,Q, . . .,
xn,Q from Section 2.3 and creating a sample of q̂n by solving Equation (A25a) for each of the
bootstrapping samples.

• Method MLinf: Asymptotic approximation by making use of the central limit theorem for
maximum likelihood estimators (see, e.g., Theorem 10.1.12 of [27]). According to this limit
theorem,

√
n (q̂n −Q[Y = 1]) converges for n → ∞ toward a normal distribution with mean 0

and variance v given by

v =
1

EQ

[(
R(X)− 1

q (R(X)− 1) + 1

)2
] , (A26a)

where q is the true positive class prevalence of the population underlying the test sample.
The right-hand side of Equation (A26a) is approximated with an estimate vn that is based on a
sample average:

vn =
n

n

∑
i=1

(
R(xi,Q)− 1

q̂n (R(xi,Q)− 1) + 1

)2 , (A26b)

where q̂n denotes the—unique if any—solution of Equation (A25a) in the unit interval [0, 1] and
x1,Q, . . . , xn,Q was generated under the test population distribution Q(X). In the binormal setting
of Section 2.1, the density ratio R(x) is given by Equation (3b) if the training sample is infinite
and can be derived from the posterior class probabilities obtained by logistic regression if the
training sample is finite.
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Appendix B. Analysis of Error Adjusted Bootstrapping

Without mentioning explicitly the notion of prediction intervals, Daughton and Paul [11]
considered the problem of how to construct prediction intervals for the realised positive class
prevalence with correct coverage rates. Their “error adjusted bootstrapping” approach works for crisp
classifiers only.

Let g be a crisp classifier as defined in Appendix A.1. In the notation of that section. it then
holds that

Q[Y = 1] = Q[Y = 1 | g(X) = 1]Q[g(X) = 1] + Q[Y = 1 | g(X) = −1]Q[g(X) = −1]. (A27)

Hence, the event “an instance in the test sample turns out to have a positive label” can be
simulated in three steps:

1. Apply the classifier g to the bootstrapped features of an instance in the test sample.
2. If a positive label is predicted by g, simulate a Bernoulli variable with success probability Q[Y =

1 | g(X) = 1]. If a negative label is predicted by g, simulate a Bernoulli variable with success
probability Q[Y = 1 | g(X) = −1].

3. In both cases, if the outcome of the Bernoulli variable is success, count the result as positive class,
otherwise as negative class.

By Equation (A27), the probability of the positive class in this experiment is the prevalence of the
positive class in the test population distribution. Repeat the experiment for all the instances in the
bootstrapped test sample. Then, the relative frequency of the positive outcomes of the experiments
is an approximate realisation of the relative frequency of the positive class labels in the test sample
which in the same way as by the binomial approach described in Section 2.3 can be used to construct a
bootstrap prediction interval.

Daughton and Paul [11] noted that this approach worked if the “predictive values” Q[Y =

1 | g(X) = 1] and Q[Y = 1 | g(X) = −1] of the test sample (Q[Y = 1 | g(X) = 1] is also called
“precision” in the literature) were the same as in the training sample and hence could be estimated in
the training sample:

Q[Y = 1 | g(X) = 1] = P[Y = 1 | g(X) = 1], Q[Y = 1 | g(X) = −1] = P[Y = 1 | g(X) = −1]. (A28)

Unfortunately, Equation (A28) does not hold under prior probability shift as is implied by the
following representation of the precision in terms of TPR = P[g(X) = 1 |Y = 1], FPR = P[g(X) =

1 |Y = −1] and test population prevalence p:

P[Y = 1 | g(X) = 1] =
p TPR

p (TPR− FPR) + FPR
. (A29)

Under prior probability shift, TPR and FPR are not changed, but p changes. Hence, by replacing
p with q 6= p on the right-hand side of Equation (A29), it follows that

Q[Y = 1 | g(X) = 1] =
q TPR

q (TPR− FPR) + FPR
6= P[Y = 1 | g(X) = 1].

Therefore, under prior probability shift, the approach by Daughton and Paul [11] is unlikely
to work in general. See Table 3 in Section 3.1 for a numerical example. It is not clear if requiring
that Equation (A28) holds results in defining an instance of dataset shift which might occur in the
real world.
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