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Abstract: The application of Empirical Line Method (ELM) for hyperspectral Atmospheric Compensation
(AC) premises the underlying linear relationship between a material’s reflectance and appearance. ELM
solves the Radiative Transfer (RT) equation under specialized constraint by means of in-scene white and
black calibration panels. The reflectance of material is invariant to illumination. Exploiting this property,
we articulated a mathematical formulation based on the RT model to create cost functions relating variably
illuminated regions within a scene. In this paper, we propose multi-layered regression learning-based
recovery of radiance components, i.e., total ground-reflected radiance and path radiance from reflectance
and radiance images of the scene. These decomposed components represent terms in the RT equation and
enable us to relate variable illumination. Therefore, we assume that Hyperspectral Image (HSI) radiance
of the scene is provided and AC can be processed on it, preferably with QUick Atmospheric Correction
(QUAC) algorithm. QUAC is preferred because it does not account for surface models. The output from
the proposed algorithm is an intermediate map of the scene on which our mathematically derived binary
and multi-label threshold is applied to classify shadowed and non-shadowed regions. Results from
a satellite and airborne NADIR imagery are shown in this paper. Ground truth (GT) is generated by
ray-tracing on a LIDAR-based surface model in the form of contour data, of the scene. Comparison of
our results with GT implies that our algorithm’s binary classification shadow maps outperform other
existing shadow detection algorithms in true positive, which is the detection of shadows when it is in
ground truth. It also has the lowest false negative i.e., detecting non-shadowed region as shadowed,
compared to existing algorithms.

Keywords: shadow mapping; empirical line method; hyperspectral imaging

1. Introduction

A high-fidelity hyperspectral imagery contains crucial spatial and spectral information of a given
scene. Presence of shadows causes significant challenges for both satellite and airborne data analyses.
Shadows cast by scene geometry or clouds cause hurdles in remote-sensing data analyses, including
inaccurate atmospheric compensation, biased estimation of Normalized Difference Vegetation Index
(NDVI), confusion in land cover classification, and anomalous detection of landcover variation. Therefore,
shadows are a significant source of noise in Hyperspectral Image (HSI) data, and their detection is a vital
pre-processing step in most analyses [1,2].
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Over the years, various methods of shadow detection proposed are object-based shadow detection
methods which classify clouds, their shadows, and non-shadowed regions by applying image segmentation
at different bandwidth images of HSI imagery, e.g., [3,4], and color invariance-based shadow detection
methods create RGB in invariant color space and exploit it for classification as in [5]. Some algorithms
use band indices to detect shadows in an HSI image [6,7]. Another class of algorithms require an a priori
Digital Surface Model (DSM) [8] or Terrestrial Laser Scanning data together with the HSI image to find
shadows cast from scene geometry [9].

Beril et al. [10] proposed a color-invariant function for detecting buildings. Once buildings are
detected, then they used the grayscale histogram of the image to detect shadows around the building
using the Otsu algorithm [11], their algorithm is referred to as Beril’s algorithm in the results. In another
contribution, Teke et al. [12] proposed a false color space consisting of red, green and near infrared (NIR)
bands. They dropped the blue color because it contains scattered light and removing it will increase the
contrast between shadow and non-shadow regions, and will facilitate detection. They have named their
algorithm the Land Use Land Cover classification method, or LULC in their code. Therefore, we will refer
to their work as LULC algorithm in our analysis. Sevim et al. [13] modified the C1,C2,C3 color space [14] to
accommodate the NIR band, and supplemented it to become the C′1,C′2,C′3,C′4 color space. We refer to their
work as RGBN algorithm. Gevers et al. [15] proposed color-invariance functions to separate shadow and
non-shadow regions; their algorithm is referred to as Gevers’ algorithm.

The approaches mentioned above are limited to use in particular bands, and may not use the complete
hyperspectral data. Our algorithm may ideally use HSI data and can be down-scaled to multispectral
imagery only in cases where data-acquisition sensor response is known. Spectral response is typically
available for most Earth-observation satellites. Our algorithm does not address RGB images because
QUAC [16] may not be applied to retrieve reflectance from RGB images. More importantly, our algorithm
provides a mathematical foundation for shadow detection based on the RT model and highlights the
sources of errors. Retrieval of radiance components by machine learning enables it to be extended for
shadow compensation.

2. Radiative Transfer Model-Based Relationship between Shadowed and Non-Shadowed Regions

The scope of this research is within optical shadowing, and therefore, the subsequent discussion
does not consider thermal radiance and shadowing and their relative terms in Radiative Transfer (RT)
equations. This section is divided into two parts—the first presents a general description of the RT equation
highlighting relevant parameters and elaborating the sources of errors and their impact on this work, and
the second establishes the proposed general relationship between variably illuminated regions based on
the RT equation.

2.1. Radiative Transfer Equation

The RT equation for at-sensor radiance within an optical spectrum is given as Equation (1), [17].

Ls(θi, θr, φ, ρ, Ωi) =

fr(θi, θr, φ)Es(θi)cos(θi)τi(θi)τr(θr)ρ + τr(θr)ρ
∫

F

∫∫
Ωi

fr(θi, θr, φ)cos(θi)LΩi
d (θi, φ)dΩi + Lp(θi, φ) (1)

where Ls is total at-sensor radiance, fr is the Bidirectional Reflection Distribution Function (BRDF) [18],
Es is exoatmospheric solar spectral irradiance, τi and τr are incident and reflected transmittance, Lp is
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path radiance, F is the view factor of sky, and solid angle Ωi is given as dΩi = sinθidθidφ. Equation (1) is
rephrased as Equation (2) for brevity.

Ls = (Lr + Ld)ρ + Lp (2)

where
Lr = fr(θi, θr, φ)Es(θi)cos(θi)τi(θi)τr(θr); (3)

Ld = τr(θr)
∫

F︸︷︷︸
e1

∫∫
Ωi

fr(θi, θr, φ)︸ ︷︷ ︸
e2

cos(θi)LΩi
d (θi, φ)dΩi (4)

The analytical form of Equation (1) is achieved by assuming Lambertian BRDF of material at the cost
of estimation error, which we will briefly derive. Moreover, we will subsequently describe error sources e1

(sky-view factor error) and e2 (BRDF error) of Equation (4).
Lambertian BRDF yields diffuse flux, which is computed by integrating diffuse radiance over the

hemisphere, which is related to Equation (5). A denotes the area on which flux is incident, E is the incident
irradiance on area A, and is given as E = Φ

A .

Φ =

∫ 2π

0

∫ π/2

0
Ld Acosθir2sinθidθidφ

r2 (5a)

Φ = Ld A
∫ 2π

0

∫ π/2

0
cosθisinθidθidφ︸ ︷︷ ︸

π

(5b)

E = Ldπ (5c)

The concept of spherical albedo of atmosphere and the property in Equation (5c) transforms
Equation (1) into Equation (6). Further description is found in [19–21]. Equation (6) forms the basis
of discussion in Section 2.2 where ELM calibration panels are described in terms of it.

Ls(ρ) = Lp +
τEg(0)ρ/π

1− sρ
(6)

where τ, Eg(0), and s are the total ground-to-sensor transmittance, global flux on the ground for ρ = 0,
and the spherical albedo of the atmosphere, respectively. τ is the sum of the direct and diffuse transmittance,

i.e., τ =τdir+τdiff. Equation (6) shows that the effective global flux Eg(ρ) = Eg(0)
1 - sρ depends on the ground

reflectance and spherical albedo [22].

2.1.1. BRDF Error

First, we briefly define Phong BRDF model to illustrate how Lambertian distribution is compared to
other materials’ BRDF. Phong BRDF is given as

fr =
ρd
π

+
ρs(n + 1)cosnα

2πcosθi
(7)

ρd is the diffuse reflection constant, n determines the angular divergence of the lobe, and ρs determines the
peak value or “strength” of the lobe [23]. Figure 1 depicts BRDF distribution for different values of ρd, ρs,
and n. Lambertian is a special case where ρs = n = 0, leaving only the first term of Equation (7). In Figure 1,
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the second row shows BRDF of some real materials which approximate those in Figure 1. Rubber’s BRDF
is closer to our assumption.

Components of reflected light based on Phong reflection model are ambient, diffuse, and specular
radiance, as shown in Figure 2. Ambient reflection is both in shadowed and non-shadowed regions [13].
Diffuse (Lambertian) is assumed in this work; therefore, the specular component is the actual source of
error, e1, of Equation (4). Ref. [13] assumes that the specular reflection can be ignored for most urban and
rural areas because these images are usually matte; we also maintain this assumption in this work.

ρd=0.6

ρs=0

n=0

ρd=0.4

ρs=0.1

n=5

ρd=0.49

ρs=0.05

n=30

ρd=0.3

ρs=0.2

n=50

Pure-rubber Pearl paint Red fabric Fruitwood Wood-stain

Figure 1. First row: Phong BRDF distribution for different values of ρd, ρs and n, refer. Second row: BRDF
distribution for different materials, using visible spectrum [24,25].

Ambient Diffuse Specular Cumulative

Figure 2. Phong reflection, components (Ambient, Diffuse, Specular) and their cumulative effect [26].

2.1.2. Sky-View Factor Error

3-D geometry in the scene tends to cause visual occlusion to the sky-view Line of Sight (LoS). Sky-view
LoS is quantified as a sky-view factor and normalized between zero and one, where zero is complete
occlusion and one is clear sky-view [27]. This occlusion is one of the causes of shadow casting (apart from
clouds, partial solar eclipse, etc.). Therefore, the presence of this error in the estimation would enhance the
discrimination between shadowed and non-shadowed regions; hence it facilitates detection of variable
illumination.
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2.2. Proposed Radiative Transfer Model-Based General Relationship between Variably Illuminated Regions

ELM represents the at-sensor radiance from in-scene white and black calibration panels. Radiance
reflected from the white panel Lw and black panel Lb is deduced from Equation (6) and shown in Equations
(8) and (9), respectively.

Lw = Lp +
τEg(0)/π

1− sρ
(8)

Lb = Lp (9)

In Equation (8), Lw radiance includes both path radiance and total ground-reflected radiance, which
are the first and second terms, respectively. We introduce two parameters α and β in Equation (10) that
represent the total ground-reflected radiance and path radiance, respectively, and brings the convention to
Equation (10), which is called the ELM equation.

ρ = αLs + β (10)

where α and β are,
α = 1/(Lw − Lb) (11)

β = Lb/(Lw − Lb) (12)

Reflectance ρ is independent of illumination conditions, and enables us to rephrase Equation (10) as
Equation (13), emphasizing only parameters α and β.

⇒ f (α, β) = Ls =
ρ− β

α
(13)

We rewrite Equation (10) for shadowed (sub-scripted S) and non-shadowed (sub-scripted NS) regions
of the scene as Equations (14) and (15), respectively.

ρ = αNSLsNS(ρ) + βNS (14)

ρ = αSLsS(ρ) + βS (15)

Equating Equations (14) and (15) we get Equation (16).

LsNS =
αSLsS(ρ) + βS − βNS

αNS
(16a)

LsNS =
αSLsS(ρ) + ∆β

αNS
(16b)

where ∆β = βS − βNS. Equation (16) is rephrased as Equation (17).

LsNS = γLsS(ρ) + δ (17)

where

γ = αS/αNS (18a)

δ = ∆β/αNS (18b)
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Equation (17) shows γ and δ that are two unknown parameters responsible for illumination variability
between shaded and non-shaded regions. Ideally, if γ = 1 and δ = 0, there is no variability in illumination
across the scene.

3. Proposed Multi-Layered Regression Learning Algorithm

In the previous section, a general relationship between illumination under shadowed and
non-shadowed region within an HSI image is established. Estimation of discriminant parameters αNS, βNS,
αS, and βS is vital for good detection. We divide our learning algorithm into three phases: (i) regression
learning; (ii) feature learning; and (iii) classification, as shown in Figure 3.

Regression Learning for tentative estimation of parameters α,α* 

(total ground reflected radiance) and β,β* (path radiance)
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Figure 3. Design of proposed multi-layered regression learning algorithm is shown to have three phases: (i)
regression learning; (ii) feature learning; and (iii) classification. Inputs are radiance and reflectance images
that are randomly sampled to find neutral (both shadowed/non-shadowed regions) parameter estimates for
αG and βG. A kernel of size 3 used for kernel-based linear regression parameters are αK and βK , representing
a more localized and homogeneous (either shadowed or non-shadowed regions) estimate. In Phase II, more
discriminating parameters are found in the second layer of regression learning, which rectifies parameters
estimated by the previous phase. Two non-linear filter layers are shown. Eventually, the classifier layer
segregates shadowed and non-shadowed regions.

During learning, Equation (10) becomes Equation (19), where ρ̃ is the approximate reflectance at
any given search iteration, while reflectance computed from QUAC is the reference reflectance, referred
in Equation (20). Therefore, the cost function J(α, β), to minimize is given in Equation (21), which is
illustrated in Figure 4.

ρ̃ = αLs + β (19)

ρQUAC = ρ (20)

J(α, β) =
min
α, β
{ρ− ρ̃} (21)
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Figure 4. Regression learning reduces error ê to find parameters α (total ground-reflected radiance) and β

(path radiance).

A complete flowchart of multi-layered learning is shown in Figure 5.

Figure 5. Flowchart of the proposed multi-layered regression learning algorithm. Parameters α, β

with subscript “G” denote global, and “K” denotes local (under the kernel). Moreover, the parameter
subscript “NS” denotes non-shadowed and “S” denotes shadowed regions. ρ stands for reflectance, and t
denotes threshold.
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3.1. Regression Learning Phase

This phase is denoted as Phase I in Figure 3 and is further sub-divided into two steps:

• Global Search: Search for αG and βG estimates of Equation (19) on random samples drawn from the
whole image given a global search across the scene, as shown in Figure 3.

• Local Search: Create a 3× 3 kernel and search for parameters αK and βK in the kernel only i.e., localized
search.

3.1.1. Global Search

Satellite/airborne images cover a larger landscape where the number of bands is more contiguous in
HSI images. The high-resolution image has an immediate implication of an increase in both computing
and memory requirements. To reduce these requirements, we introduced random sampling on the whole
image. A random sampler selects several samples from the whole image and regression learning is
performed on these samples to estimate Empirical Line Method (ELM) parameters. As the input image
and samples contain neutral (both shadowed and non-shadowed) regions, parameters αG and βG also
represent the same. Equation (6) for global search case is reformulated in Equation (22).

ρG = αGLsG + βG (22)

An estimate of Lw and Lb found in this phase is shown in Figure 6.

(a) White Panel Estimation

(b) Black Panel Estimation

Figure 6. White and black panel estimates from global search.
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3.1.2. Local Search

In this part of regression learning, a 3 × 3 kernel is used. A smaller kernel provides a rationale for the
assumption that pixels under the kernel are homogeneously illuminated. Correctness of this assumption
is further reinforced for high-resolution images that possess lower ground-sampling distance (GSD). Due
to learning on a sliding kernel, this search is more time-consuming than the global one. Outputs from this
step are parameter (αK,βK) maps. An estimate of LwK and LbK for 465.611 nm is shown in Figure 7. In this
case, we reformulate Equation (6) as Equation (23). Figure 8 shows the sliding kernel, and it is input and
output parameters.

ρK = αK LsK + βK (23)

(a) 10×10 Kernel Sliding Window

(b) 3×3 Kernel Sliding Window

Figure 7. Intermediate Map extracted by proposed method on coarse (10×10) and fine (3×3) sliding
window ROI.
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Input reflectance (ρQUAC) image Input radiance (Ls) image

αK, βK

3x3 kernel

 (homogenously illuminated)

ρK
LsK

Figure 8. Kernel-based regression performs search for localized parameters αK and βK that are only
within kernel.

3.2. Feature-Learning Phase

In the previous phase, we have found both global and local parameters, although we assume that
since a smaller kernel has homogeneous illumination it is yet to be ascertained whether it is shadowed or
non-shadowed. This phase will establish the discriminant function, first for tentative and then for the final
classification. Components of feature-learning phase in Figure 3 are described in the subsequent sections.

3.2.1. Preliminary Classification

Global radiance LsG is estimated by inclusion of both shadowed and non-shadowed regions. LsK is
however assumed to be either of them. A global and local version of Equation (13) is given as

f (αK, βK) = LsK =
ρK − βK

αK
(24a)

f (αG, βG) = LsG =
ρG − βG

αG
(24b)

In this phase, a ratio between f (αK,βK) and f (αG,βG) is calculated by Equation (25), which yields
approximate threshold t̃.

g(αG, βG, αK, βK) =
f (αK, βK)

f (αG, βG)
= t̃ (25)
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t̃ =

{
> 1 , f (αK, βK) = f (αNS, βNS), (Non-shadowed)
< 1 , f (αK, βK) = f (αS, βS), (Shadowed)

(26)

The kernel region is assigned a shadow or non-shadow label based on Equation (26). If the value of t is
greater than one, then the region under the kernel is more likely to be non-shadowed than otherwise. The
above is under the intuitive assumption that the scene has more non-shadowed regions than shadowed
ones. This provides a preliminary classification as shown in Figures 3 and 5, and leads us to either
(LsNS,αNS,βNS) or (LsS,αS,βS) of Equation (16a), as per our assumption. The selection of either of these
parameter sets is shown as two potential flows in Figure 5.

In practice, t̃ is noisy data across the optical spectrum. Therefore, non-linear filtering is applied to
it for smoothing and creating an intermediate map. As filtering is applied on both global and kernel
thresholds t̃ and tK, respectively, it is discussed later in Section 3.3.

3.2.2. Regression Learning for Parameter Rectification

To create a more reliable discriminant threshold function than that of Equation (26), we need to
establish a relationship between our processed parameters to bring it in the shape of Equation (16).
Global and local processing has provided us with a mathematical basis for tentative classification, which
is plausible under the laws of physics. We suppose that the kernel region is labelled, by preliminary
classification, as non-shadowed which implies that we found (LsNS,αNS,βNS); however (LsS,αS,βS) of
Equation (16a) are yet to be determined for the region under the kernel. We rewrite Equation (16a),
for convenience.

LsNS =
αSLsS(ρ) + βS − βNS

αNS
(27)

LsS,αS,βS are determined by another layer of regression learning. The cost function Q(LsS, αS, βS),
to minimize is given in Equation (21), which is illustrated in Figure 9.

ρ̃ = αLsS + βS (28)

ρ = αNSLsNS + βNS (29)

Q(LsS, αS, βS) =
min

LsS, αS, βS
{ρ− ρ̃} (30)

(ρ , estimated from 

preliminary classification)

Figure 9. Regression learning reduces error ê to find parameters αS (total ground-reflected radiance in the
shadow region) and βS (path radiance in shadow region) and LS (total radiance under shadow region).
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This learning is performed by Algorithm 1. After this learning phase, we estimated all unknown
parameters of Equation (27), therefore we may rewrite Equation (25) as Equations (32) and (31). Please
note that this equation is only for the kernel region, which has the same reflectance ρ and has shadow and
non-shadow parameters instead of global and local.

Algorithm 1 Gradient-descent algorithm for global/kernel-based search

1: Let HSI Radiance Image be “L” with “s” samples and “b” bands, and its reflectance estimated by Run

QUAC to find reflectance R
2: Assign outputs Lw and Lb as two zeros vector of “b”
3: Let stepSize be 0.01 with a decay of 0.995
4: while (∆Lw ≤ 1 ×10−10 and ∆Lb ≤ 1 ×10−10) do
5: Select 2 pixels at random
6: Estimate δLw and δLb for selected pixels by ELM equation
7: Lw = (1 − stepSize) ×Lw + stepSize ×δLw

8: Lb = (1 − stepSize) ×Lb + stepSize ×δLb

9: stepSize = stepSize × decay

It is extremely important to note that if preliminary classification finds (αK,βK) = (αNS,βNS) then t
takes the form of Equation (31). If it finds (αK,βK) = (αS,βS) then t takes the form of Equation (32).

g(αNS, βNS, αS, βS) =
f (αNS, βNS)

f (αS, βS)
= t (31)

g(αS, βS, αNS, βNS) =
f (αS, βS)

f (αNS, βNS)
= t (32)

Replacing both numerator and denominator of Equations (31) and (32) by right-hand side of
Equation (13) in their respective form, we get Equations (33) and (34).

t =
αNS(ρ− βS)

αS(ρ− βNS)
(33)

t =
αS(ρ− βNS)

αNS(ρ− βS)
(34)

Threshold t is a better estimate than t̃, because both parameters are computed for the region under
the kernel. This process is termed as rectification in Figures 3 and 5. When the kernel slides through the
image, it estimates t at each iteration. On completion, it creates an intermediate map for the whole image.
As we discussed in Section 3.2.1, both t̃ and t are computed for all bands of HSI image and tend to get very
noisy at some bands. This problem is tackled by filtering, which is covered in Section 3.3.

3.3. Filtering

Filtering is a supplementary but vital step for the performance of detection. This is the third and
final layer of regression learning. Here we estimate an activation function for a non-linear filter based
on Equation (35a). The cost function J(x, t) finds the value of threshold scalar x which maximizes h(x, t).
The subscript k shows the band number of the HSI image with B bands. Threshold t is estimated from
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Equations (33) and (34) and t̃ is found from (25), respectively. We applied this filter on our test dataset
which reduces noise, as shown in Figure 10.

h(x, t) =
B

∑
k=1

e−(x−tk) (35a)

J(x, t) =
max

x
{h(x, t)} (35b)

The gradient-descent algorithm finds x in pseudo-code presented in Algorithm 2. Figure 10 shows
output after filtering. Intermediate maps are created after the filtering process.

Figure 10. Effect of filtering on a given pixel.
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Algorithm 2 Gradient-descent algorithm to estimate h(x, t)

1: For an n-dimensional input ’t’ and ’M’ be the maximum number of iterations
2: Let the initial value of ’x’ be mean(t)
3: Let output hx be h(x, t)
4: Let stepSize be 0.01 with a decay of 0.995
5: for i = 1 to M do
6: hd = h((x-stepSize), t)
7: hi = h((x+stepSize), t)
8: if hx < hd then
9: hx = hd

10: x = x − stepSize
11: if hx < hi then
12: hx = hi

13: x = x + stepSize
14: stepSize = stepSize × decay

3.4. Classification

The threshold map generated by Feature learning and filtering represents multiple levels of illumination.
Therefore, we may generate a binary or multi-label classification from this intermediate map.

3.4.1. Binary Map

To create a binary map, our approach is similar to Equation (26) threshold function, shown in
Equation (36) as:

t =

{
> 1 , (Non-shadowed)
< 1 , (Shadowed)

(36)

Figure 7b,c show the binary map for Selene HSI dataset using 10× 10 and 3× 3 kernel sizes, respectively.

3.4.2. Multi-Label Classification

In practice, any decrease in radiance caused by shadows may include soft and hard shadows,
depending on the amount of direct radiance blockage and scattering, which causes multi-level illumination.
In order to accommodate this case when a user-defined threshold is also not a priori, dual marching squares
algorithm [28] is used to automate the process. By employing this algorithm, multiple levels of illumination
are separated in different contour levels, as covered in Section 5.1.3. In this algorithm, one may define
several levels to generate the contour map accordingly.

4. Experimental and Validation Data

4.1. Experimental Data

For experimental validation, we have used two real images. Our algorithm is tested on the Selene
SCIH23 dataset [29] which was acquired by the Defence Science and Technology Laboratory (DSTL)
covering 0.4 to 2.5 µm. It is a registered image which is separately taken from HySpex VNIR-1600 (160
bands) and SWIR-384 (288 bands) sensors mounted on the same airborne platform. This scene was
acquired near Salisbury, UK, on 12 August 2014 BST 13:00:04. The registered image has a GSD of 70 × 70
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cm, QUAC was applied using ENVI software for atmospheric compensation. The second image is
taken from AVIRIS (224 bands), covering Modesto, California (Long 121◦17′45.9′′ N Lat 37◦56′44.37′′

W to 121◦4′50.31′′ N 37◦51′55.67′′ W) on 10 February 2015 BST 22:00:04. The latter is publicly available
from https://aviris.jpl.nasa.gov/. RGB images of Selene and Modesto scenes are shown in Figure 11a,b,
respectively.

(a)

(b)

Figure 11. Experimental HSI imagery (a) Selene SCI H23 (0.4 µm–2.51 µm, 448 bands), UK; (b) AVIRIS
Modesto (0.36 µm–2.49 µm, 224 bands), California, USA.

4.2. Validation Data

The Selene SCIH23 scene’s terrain was mapped with a high-resolution LIDAR to create a
contour-based DSM of the scene. This DSM is used in a ray-tracer to generate a shadow map, which
is termed as ground truth for Selene results. Modesto does not have DSM data available. Therefore,
classification performance is tested on visual perception only.

5. Results and Validation

In this section, we will present results of the Selene and Modesto scenes. Construction of GT for the
Selene scene enables us to provide a more quantitative validation for it by means of confusion matrix,

https://aviris.jpl.nasa.gov/
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while for Modesto, it is more qualitative and evaluated visually. For comparative analysis, we have
considered both classical methods exploiting descriptor-based shadow detection from RGB input, as in
Gevers [15], and Beril [10] (see [30] for source code), and methods that take in multispectral radiance
input, as in RGBN [13] requiring RGB and a single NIR band, and false-color shadow detection method,
LULC [12] (see [31] for source code), requiring five input bands within 0.3 µm to 2.5 µm.

5.1. Selene Scene

Firstly, the algorithm is executed on the Selene SCI H23 scene for both global and local search
sub-phases of the regression learning phase. This scene has several white and black calibration panels
planted, providing us with a GT for comparison of estimated global Lw and Lb.

5.1.1. Result of Regression Learning on Whole Image (Global Search)

The comparative result for global search sub-phase is shown in Figure 6. The Normalized Root Mean
Square Error (NRMSE) for Lw is 20.62%, which shows that the algorithm can reconstruct the white panel
with substantial accuracy. The deviation in the blue region shows under-estimation of scattering/sky
radiance, while lower magnitude in NIR is due to over-estimation of the adjacency effect, which is primarily
caused by the abundance of vegetation in the background scene. The NRMSE for Lb is 76.66%, which is
higher than Lw, it shows that the adjacency effect is over-estimated, hence the estimated black panel looks
similar to the vegetating signature. These errors were incurred due to QUAC reflectance, which is the
reference for calculating the Lw and Lb in our algorithm.

5.1.2. Results of Kernel-Based Regression Learning (Local Search)

Figure 7a shows the GT shadow map generated from ray-tracer on DSM. Figure 7b,c show results of
local search sub-phase. In the case of former, the algorithm was run with a coarse kernel (10 × 10) and the
latter with a fine (3 × 3) kernel. Better separation of shadowed and non-shadowed regions is visible with
3 × 3 kernel compared to its coarse counterpart.

In case of the fine kernel, shadows due to bumps on the terrain are also captured which seems to be
missing from the coarser one.

5.1.3. Results of Classification

• Intermediate and Binary maps

Algorithms adopted for comparative analysis create an intermediate map and apply manual threshold
as suggested by respective authors. We propose a cut-off value of 1 due to the ratio between shadow
and non-shadow radiance. Intermediate maps of all algorithms for the Selene scene are shown in
Figure 12. After applying respective threshold values, we get binary classification maps for the Selene
scene as shown in Figure 13. The Selene scene has shadowed regions near trees and concrete fields.
The concrete field has some buildings that are casting shadows there. The grass field has a few bumps
and has some stand-alone tree distribution along the track.

The binary map for the Selene scene GT is constructed by applying a threshold on the DSM contour
data. Similarly, the binary map of all competitive algorithms is also constructed. A confusion
matrix of each algorithm against GT is tabulated, which is shown in Table 1. Because the area
of the non-shadowed region is significantly larger, covering 92.6377% of the scene, compared to
the shadowed region, covering 7.3623% as estimated from the DSM binary map, we divide by the
cardinality in the table to minimize bias in overall percentage accuracy.
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(a) Ground truth (mean of all bands in shadow map created by ray-tracing on DSM
geometry)

(b) Gevers’ Algorithm [15]

(c) RGBN Algorithm [13]

(d) Beril’s Algorithm [10]

(e) LULC Algorithm [12]

(f) Proposed Algorithm

Figure 12. SELENE: Intermediate maps extracted by shadow detection methods before thresholding for a
binary classification map.
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(a) Ground Truth: (Thresholding the Ground Truth map of Figure 12 (a) creates a binary map.)

(b) Gevers: It detects roads and concrete field as shadows because they have lower reflectance.

(c) RGBN: Similar to Gevers, it detects roads and concrete field as shadows.

(d) Beril: It only detects some building shadows on the concrete field.

(e) LULC: It detects shadows on both vegetation and concrete field regions, as expected. A portion
of road is also detected as shadow.

(f) Proposed: Similar to LULC, it also detects shadows on both vegetation and concrete field
regions. Similarly, a portion of road is also detected as shadow, but it is slightly thinner.

Figure 13. SELENE: Binary classification map separating shadow and non-shadow regions.
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Table 1. Evaluation of accuracy of the methods in Figure 13 where true positive and true negative is
successful detection of shadowed and non-shadowed areas respectively compared with ground truth (GT)
DSM simulated map, and ”n” represent cardinality.

Method n(True Positive)
n(GT Shadow)

× 100 n(False Positive)
n(GT Shadow)

× 100 n(True Negative)
n(GT Non-Shadow)

× 100 n(False Negative)
n(GT Non-Shadow)

× 100

Gevers 28.9013% 112.1443% 89.7015% 5.5403%

RGBN 27.1437% 108.9442% 89.9558% 5.6801%

Beril 0% 0.2418% 98.5948% 7.8373%

LULC 39.5298% 72.6458% 92.8406% 4.6957%

Proposed 40.4656% 64.4731% 93.4901% 4.6213%

The average of true positive and true negative of Gevers, RGBN, Beril, LULC, and the proposed method are 59.3014%,
58.5497%, 49.2974%, 66.1852%, and 66.9779% respectively.

• Multi-level Classification

The DSM-based GT shadow map in Figure 14 shows contours; therefore, the shadow map from our
algorithm is also converted to contour levels. Both datasets are generated to have four contour levels
and are compared one to one. The first layer has the lowest accuracy, with 53.09%, which is in the
non-shadowed region. The second layer has a partial shadowed region; a raise in the accuracy is
observed in this case. As we step further to Layer 3 and Layer 4, which appear to capture shadowed
regions, the accuracy increased to 69.6% and 88.2%, respectively.

(a) DSM Contour Layer 1 (b) Proposed Layer 1 (53.097% match)

(c) DSM Contour Layer 2 (d) Proposed Layer 2 (59.269% match)

(e) DSM Contour Layer 3 (f) Proposed Layer 3 (69.69% match)

(g) DSM Contour Layer 4 (h) Proposed Layer 4 (88.216% match)

Figure 14. SELENE: Multi-level classification as contour layers 1 to 4, with decreasing order of illumination
(1 = non-shadow, 4 = shadow).
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5.2. Modesto Scene

The Modesto scene does not have DSM data. Therefore, ground truth for this scene is not available.
The evaluation, in this case, is rather qualitative, based on visual perception. Intermediate maps of all
algorithms of interest for the Modesto scene are shown in Figure 15. Their binary counterparts are in
Figure 16. The proposed algorithm appears to classify the scene into three regions: (i) with clouds, (ii) with
shadows, and (iii) the lit ground region. After the threshold is applied to the intermediate map, the scene
is classified into shadowed and non-shadowed regions, as shown in Figure 16.

(a) Ground Truth RGB (b) Gevers [15] (c) RGBN [13]

(d) Beril [10] (e) LULC [12] (f) Proposed

Figure 15. MODESTO: Intermediate maps extracted by shadow detection methods before thresholding for
a binary classification map.
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(a) Ground Truth RGB (b) Gevers (c) RGBN

(d) Beril (e) LULC (f) Proposed

Figure 16. MODESTO: Binary classification map separating shadow and non-shadow regions.

6. Discussion

The Selene scene GT shadow map enables us to quantify the results of comparative algorithms in
context. The proposed algorithm is shown to have 40.46% true positive, i.e., correct detection of a shadow
region compared to other counterparts. In this case, the LULC algorithm is marginally inferior to our
algorithm, yielding 39.52%. Beril, RGBN, and Gevers reach 0%, 27.14%, and 28.90%, respectively. In terms
of false positive, i.e., detecting non-shadow as a shadow, our algorithm continues to perform better than
other algorithms, reaching 64% compared to 72.64% of LULC, 112.14% of Gevers, and 108.94% of RGBN.
Although Beril shows a lower value of 0.24%, it should be noted that it is the most biased performer,
detecting 98% of the region as non-shadowed. Ignoring the Beril algorithm due to bias, our algorithm
tops the true-negative detection as well, i.e., detecting non-shadowed region correctly. Our result is 93.49%
compared to 92.8%, 89.9%, and 89.7% of LULC, RGBN, and Gevers algorithms, respectively. Finally, our
algorithm is also the best performer in false negative, i.e., detecting non-shadow as a shadow, yielding
only 4.62% compared 4.69%, 5.68%, and 5.54% of LULC, RGBN, and Gevers algorithms, respectively. We
conclude that LULC is marginally inferior to our algorithm while others are completely outperformed.

For the Modesto scene, a qualitative evaluation was performed, and it looks like our algorithm
performed reasonably well in this dataset.

In the case of multi-label classification of the Selene scene, GT and our algorithm intermediate maps
were divided into four contour levels. Firstly, we can demonstrate the ability of this proposed approach to
estimate shadows without any manual input from the user. Moreover, as Figure 14 manifests, the accuracy
of the proposed method increased on contour levels from non-shadow top layer with 53% to shadowed
bottom layer with 88% accuracy.
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We believe that this direction of RT-based methods for shadow-map detection is more faithful than
other intensity and band index-based methods. Moreover, it can be conveniently extended to shadow
compensation work.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Atmospheric Compensation
BRDF Bidirectional Reflection Distribution Function
DSM Digital Surface Model
ELM Empirical Line Method
GSD Ground-Sampling Distance
GT Ground Truth
HSI Hyperspectral Image/Imaging
LIDAR Light Detection and Ranging
LoS Line of Sight
LULC Land Use Land Cover
MSI Multispectral Image/Imaging
NDVI Normalized Difference Vegetation Index
NIR Near Infrared
NRMSE Normalized Root Mean Square Error
NS Non-Shadow
QUAC QUick Atmospheric Correction
RGB Red Green Blue
RGBN Red Green Blue NIR
RT Radiative Transfer
S Shadow
SWIR Short-Wave Infrared
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