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Abstract: Statistical hypothesis testing is among the most misunderstood quantitative analysis
methods from data science. Despite its seeming simplicity, it has complex interdependencies between
its procedural components. In this paper, we discuss the underlying logic behind statistical hypothesis
testing, the formal meaning of its components and their connections. Our presentation is applicable
to all statistical hypothesis tests as generic backbone and, hence, useful across all application domains
in data science and artificial intelligence.
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1. Introduction

We are living in an era that is characterized by the availability of big data. In order to emphasize
the importance of this, data have been called the ‘oil of the 21st Century’ [1]. However, for dealing
with the challenges posed by such data, advanced analysis methods are needed. A very important
type of analysis method on which we focus in this paper is statistical hypothesis tests.

The first method that can be considered a hypothesis test is related back to John Arbuthnot in
1710 [2,3]. However, the modern form of statistical hypothesis testing originated from the combination
of work from R. A. Fisher, Jerzy Neyman and Egon Pearson [4–8]. It can be considered one of the first
statistical inference methods and it is till this day widely used [9]. Examples for applications can be
found in all areas of science, including medicine, biology, business, marketing, finance, psychology
and social sciences. Specific examples in biology include the identification of differentially expressed
genes or pathways [10–14], in marketing it is used to identify the efficiency of marketing campaigns
or the alteration of consumer behavior [15], in medicine it can be used to assess surgical procedures,
treatments or the effectiveness of medications [16–18], in pharmacology to identify the effect of
drugs [19] and in psychology it has been used to evaluate the effect of meditation [20].

In this paper, we provide a primer of statistical hypothesis testing and its constituting components.
We place a particular focus on the accessibility of our presentation due to the fact that the understanding
of hypothesis testing causes in general widespread problems [21,22].

A problem with explaining hypothesis testing is that either the explanations are too
mathematical [9] or too non-mathematical [23,24]. However, a middle ground is needed for the
beginner and interdisciplinary scientist in order to avoid the study from becoming tedious and
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frustrating yet delivering all needed details for a thorough understanding. For this reason we are
aiming at an intermediate level that is accessible for data scientists having a mixed background [25].

In the following, we first discuss the basic idea of hypothesis testing. Then we discuss the seven
main components it consists of and their interconnections. After this we address potential errors resulting
from hypothesis testing and the meaning of the power. Furthermore, we show that a confidence interval
complements the value provided by a test statistic. Then we present an example that serves also as a
warning. Finally, we provide some historical notes and discuss common misconceptions of p-values.

2. Basic Idea of Hypothesis Testing

The principle idea of a statistical hypothesis test is to decide if a data sample is typical or
atypical compared to a population assuming a hypothesis we formulated about the population is true.
Here a data sample refers to a small portion of entities taken from a population, for example, via an
experiment, whereas the population comprises all possible entities.

In Figure 1 we give an intuitive example for the basic idea of hypothesis testing. In this
particular example the population consists of all ducks and the data sample is one individual duck
randomly drawn from the entire population. In statistics ‘randomly drawn’ is referred to as ‘sampling’.
In order to perform the comparison between the data sample and the population one needs to introduce
a quantification of the situation. In our case this quantification consists in a mapping from a duck to
a number. This number could correspond to, for example, the body weight, the beak size, the body
size or the hair length of a duck. In statistics this mapping is called test statistic.

A key component in hypothesis testing is of course a ‘hypothesis’. The hypothesis is a quantitative
statement we formulate about the population value of the test statistic. In our case it could be about
the body parts of a duck, for example, body size. A particular hypothesis we can formulate is: The
mean body size equals 20 cm. Such a hypothesis is called the null hypothesis H0.

Assuming now we are having a population of ducks having a body size of 20 cm including
natural variations. Due to the fact that the population consists of (infinite) many ducks and for
each we are obtaining such a quantification this results in a probability distribution, called the
sampling distribution, for the mean body size. Here it is important to note that our population
is a hypothetical population which obeys our null hypothesis. In other words, the null hypothesis
specifies the population completely.

Having now a numerical value of the test statistic, representing the data sample and the sampling
distribution, representing the population, we can compare both with each other in order to evaluate
the null hypothesis that we have formulated. From this comparison we obtain another numerical
value, called the p-values, which quantifies the typicality or atypicality of the configuration assuming
the null hypothesis is true. Finally, based on the p-values a decision is made.

Data sample: individual duck

Population of ducks
Mapping the data sample to:
(quantification)
- body weight
- beak size
- body size
- hair length

Formulate hypothesis about
the population:
- about same quantity

Figure 1. Intuitive example explaining the basic idea underlying an one-sample hypothesis test.
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On a technical note, we want to remark that due to the fact that in the above problem there is only
one population involved this is called an one-sample hypothesis test. However, the principal idea
extends also to hypothesis tests involving more than population.

3. Key Components of Hypothesis Testing

In the following sections, we will formalize the example discussed above. In general, regardless
of the specific hypothesis test one is conducting, there are seven components common to all hypothesis
tests. These components are summarized in Figure 2. We listed these components in the order they are
entering the process when performing a hypothesis test. For this reason they can be also considered as
steps of a hypothesis test. Due to the fact that they are interconnected with each other their logical
order is important. Overall this means a hypothesis test is a procedure that needs to be executed.
In the following subsections, we will discuss each of these seven procedural components in detail.

Main components of a statistical hypothesis test:

1. Select appropriate test statistic T
2. Define null hypothesis H0 and alternative hypothesis H1 for T
3. Find the sampling distribution for T, given H0 true
4. Choose significance level alpha
5. Evaluate test statistic t for sample data
6. Determine the p-values
7. Make a decision (accept H0 or reject H0)

TNH0

accept H0

FP

Type 1 error

reject H0

FN

Type 2 error
H1 TP

truth

decision

Figure 2. Main components that are common to all hypothesis tests.

3.1. Step 1: Select Test Statistic

Put simply, a test statistic quantifies a data sample. In statistics the term ‘statistic’ refers to any
mapping (or function) between a data sample and a numerical value. Popular examples are the mean
value or the variance. Formally, the test statistic can be written as

tn = T(D(n)) (1)

whereas D(n) = {x1, . . . , xn} is a data sample with sample size n. Here we denoted the mapping by T
and the value we obtain by tn. Typically the test statistic can assume real values, that is, tn ∈ R but
restrictions are possible.

A test statistic assumes a central role in a hypothesis test because by deciding which test statistic
to use one determines a hypothesis test to a large extend. The reason is that it will enter the hypotheses
we formulate in step 2. For this reason one needs to carefully select a test statistic that is of interest and
importance for the conducted study.

We would like to emphasize that in this step, we select the test statistics but we neither evaluate it
nor we use it yet. This is done in step 5.

3.2. Step 2: Null Hypothesis H0 and Alternative Hypothesis H1

At this step, we define two hypotheses which are called the null hypothesis H0 and the alternative
hypothesis H1. Both hypotheses make statements about the population value of the test statistic and
are mutually exclusive. For the test statistic t = T(D) we selected in step 1, we call the population
value of t as θ. Based on this we can formulate the following hypotheses:

null hypothesis: H0: θ = θ0
alternative hypothesis: H1: θ > θ0
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As one can see, the way the two hypotheses are formulated, the value of the population parameter
θ can only be true for one statement but not for both. For instance, either θ = θ0 is true but then the
alternative hypothesis H1 is false or θ > θ0 is true but then the null hypothesis H0 is false.

In Figure 2, we show the four possible outcomes of a hypothesis test. Each of these outcomes has
a specific name that is commonly used. For instance, if the null hypothesis is false and we reject H0 this
is called a ‘true positive’ (TP) decision. The reason for calling it ‘positive’ is related to the asymmetric
meaning of a hypothesis test, because rejecting H0 when H0 is false is more informative than accepting
H0 when H0 is true. In this case one can consider the outcome of a hypothesis test a positive result.

The alternative hypothesis formulated above is an examples for a one-side hypothesis. Specifically,
we formulated a right-sided hypothesis because the alternative assumes values larger than θ0.
In addition, we can formulate a left-sided alternative hypothesis stating

alternative hypothesis: H1: θ < θ0

Furthermore, we can formulate a two-side alternative hypothesis that is indifferent regarding the
side by

alternative hypothesis: H1: θ 6= θ0

Despite the fact that there are hundreds of different hypothesis tests [26], the above description
principally holds for all of them. However, this does not mean that if you understand one hypothesis
test you understand all but if you understand the principle of one hypothesis test you understand the
principle of all.

In order to connect the test statistic t, which is a sample value, with its population value θ

one needs to know the probability distribution of the test statistic. Because of this connection, this
probability distribution received a special name and is called the sampling distribution of the test statistic.
It is important to emphasize that the sampling distribution represents the values of the test statistic
assuming the null hypothesis is true. This means that in this case the population value of θ is θ0.

Let’s assume for now that we know the sampling distribution for our test statistic. By comparing
the particular value t of our test statistic with the sampling distribution in a way that is determined
by the way we formulated the null and the alternative hypothesis, we obtain a quantification for the
‘typicality’ of this value with respect to the sampling distribution, assuming the null hypothesis is true.

3.3. Step 3: Sampling Distribution

In our general discussion about the principle idea of a hypothesis test above, we mentioned that
the connection between a test statistic and its sampling distribution is crucial for any hypothesis test.
For this reason, we elaborate in this section on this point in more detail.

In this section, we want to answer the following questions:

1. What is the sampling distribution?
2. How to obtain the sampling distribution?
3. How to use the sampling distribution?

To 1.: First of all, the sampling distribution is a probability distribution. The meaning of this
sampling distribution is that it is the distribution of the test statistic T, which is a random variable, given
some assumptions. We can make this statement more precise by defining the sampling distribution of
the null hypothesis as follows.

Definition 1. Let X(n) = {X1, . . . , Xn} be a random sample from a population with Xi ∼ Ppop ∀i and
T(X(n)) be a test statistic. Then the probability distribution fn(x|H0 true) of T(X(n)), assuming H0 is true,
is called the sampling distribution of the null hypothesis or the null distribution.

Similarly, one defines the sampling distribution of the alternative hypothesis by fn(x|H1 true).
Since there are only two different hypotheses, H0 and H1, there are only two different sampling
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distributions in this context. However, we would like to note that sampling distributions are also
playing a role outside statistical hypothesis testing, for example, for estimation theory or data
Bootstrapping [27].

There are several points in the above definition we would like to highlight. First, the distribution
Ppop from which the random variables Xi are sampled can assume any form and is not limited to, for
example, a normal distribution. Second, the test statistic is a random variable itself because it is a
function of random variables. For this reason there exists a distribution that belongs to this random
variable in a way that the values of this random variable are samples thereof. Third, the test statistic
is a function of the sample size n and for this reason also the sampling distribution is a function of n.
That means, if we change the sample size n, we change the sampling distribution. Fourth, the fact that
fn(x|H0 true) is the probability distribution of T(X(n)) means that by taking infinite many samples
from fn(x|H0 true) in the form, T(X(n)) ∼ fn(x|H0 true), we can perfectly reconstruct the distribution
fn(x|H0 true) itself. The last point allows under certain conditions a numerical approximation of the
sampling distribution, as we will see in the following example.

Examples

Suppose we have a random sample X(n) = {X1, . . . , Xn} of size n whereas each data point Xi
is sampled from a gamma distribution with α = 4 and β = 2, that is, Xi ∼ gamma(α = 4, β = 2).
Furthermore, let’s use the mean value as a test statistic, that is,

tn = T(X(n)) =
1
n

n

∑
i=1

Xi (2)

In Figure 3A–C, we show three examples for three different values of n (in A n = 1, in B n = 3 and
in C n = 10) when drawing E = 100,000 samples X(n), from which we estimate E = 100,000 different
mean values T. Specifically, in Figure 3A–C we show density estimates of these 100,000 values. As
indicated above, in the limit of infinite many samples E, the approximate sampling distribution Ps(n, E)
will become the (theoretical) sampling distribution, that is,

fn(x|H0 true) = lim
E→∞

Ps(n, E) (3)

as a function of the sample size n.
For n = 1, we obtain the special case that the sampling distribution is the same as the underlying

distribution of the population Ppop, which is in our case a gamma distribution with the parameters α =

4 and β = 2, shown in Figure 3A. For all other n > 1, we observe a transformation in the distributional
shape of the sampling distribution, as seen in Figure 3B,C. However, this transformation should
be familiar to us because from the Central Limit Theorem we know that the mean of {X1, . . . , Xn}
independent samples with mean µ and variance σ2 follows a normal distribution with mean µ and
standard deviation σ/

√
n, that is,

X̄ ∼ N(µ,
σ√
n
). (4)

We notice that this result is only strictly true in the limit of large n. However, in Figure 3D, we show
a qq-plot that demonstrates that already for n = 10 the resulting distribution, Ps(n = 10, E = 100,000),
is quite close to such a normal distribution (with the appropriate parameters).
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Figure 3. In Figure (A–C) we show approximate sampling distributions for different values of the
sample size n. Figure (A) shows Ps(n = 1, E = 100,000) which is equal to the population distribution of
Xi. Figure (D) shows a qq-plot comparing Ps(n = 10, E = 100,000) with a normal distribution.

We would like to remind that the Central Limit Theorem holds for arbitrarily iid (independent
and identically distributed) random variables {X1, . . . , Xn}. Hence, the sampling distribution for the
mean is always the normal distribution given in Equation (4).

There is one further simplification we obtain by applying a so called z-transformation of the mean
value of X̄ to Z by

Z =
X̄− µ

σ/
√

n
(5)

because the distribution of Z is a standard normal distribution, that is,

Z ∼ N(0, 1). (6)

Now, we reached an important point where we need to ask ourself if we are done. This depends
on our knowledge about the variance. If we know the variance σ2 the sampling distribution of our
transformed mean X̄, we called Z, is a standard normal distribution. However, if we do not know
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the variance σ2, we cannot perform the z-transformation in Equation (5), because this transformation
depends on σ. In this case, we need to estimate the variance of the random sample {X1, . . . , Xn} by

σ̂2 =
1

n− 1

n

∑
i=1

(
Xi − X̂

)2
. (7)

Then we can use the estimate for the variance to use it for the following t-transformation

T =
X̄− µ

σ̂/
√

n
. (8)

Despite the fact that this t-transformation is formally similar to the z-transformation in Equation (5)
the resulting random variable T does not follow a standard normal distribution but a Students’
t-distribution with n− 1 degrees of freedom (dof). We want to mention that this holds strictly for
Xi ∼ N(µ, σ), that is, normal distributed samples.

The following Table 1 summarizes the results from this section regarding the sampling distribution
of the z-score (Equation (5)) and the t-score (Equation (8)).

Table 1. Sampling distribution of the z-score and the t-score.

Test Statistic Sampling Distribution Knowledge about Parameters

z-score N(0,1) σ2 needs to be known
t-score Students’ t-distribution, n − 1 dof none

3.4. Step 4: Significance Level α

The significance level α is a number between zero and one, that is, α ∈ [0, 1]. It has the meaning

α = P(Type 1 error) = P(reject H0|H0 true ) (9)

giving the probability to reject H0 provided H0 is true. That means it gives us the probability of making
a Type 1 error resulting in a false positive decision.

When conducting a hypothesis test, we have the freedom to choose this value. However, when
deciding about its numerical value one needs to be aware of potential consequences. Possibly the most
frequent choice of α is 0.05, however, for Genome-Wide Association Studies (GWAS) values as low as
10−8 are used [28]. The reason for such a wide variety of used values is in the possible consequences in
the different application domains. For GWAS, Type 1 errors can result in wasting millions of Dollars
because follow-up experiments in this field are very costly. Hence, α is chosen very small.

Finally, we want to remark that formally we obtain the value of the right-hand side of Equation (9)
by integrating the sampling distribution, as given by Equation (13) (discussed below).

3.5. Step 5: Evaluate Test Statistic from Data

This step is our connection to the real world, as represented by the data, because everything until
here has been theoretical. For D(n) = X(n) = {x1, . . . , xn} we estimate the numerical value of the test
statistic selected in Step 1 giving

tn = T(D(n)). (10)

Here tn represents a particular numerical value obtained from the observed data D(n). Due to the
fact that our data set depends on the number of samples n, also this numerical value will be dependent
on n. This is explicitly indicated by the subscript.
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3.6. Step 6: Determine the p-Values

For determining the p-values of a hypothesis test, we need to use the sampling distribution
(Step 3) and the estimated test statistic tn (Step 5). That means the p-values results from a comparison
of theoretical assumptions (sampling distribution) with real observations (data sample) assuming H0

is true. This situation is visualized in Figure 4 for a right-sided alternative hypothesis. The p-values is
the probability for observing more extreme values than the test statistic tn assuming H0 is true

p = P(observe × at least as extreme as |t| |H0 is true) = P(x ≥ |t| |H0 is true) (11)

Formally it is obtained by an integral over the sampling distribution

p =
∫ ∞

tn
fn(x′|H0 true)dx′ (12)

The final decision if we reject or accept the null hypothesis will be based on the numerical value
of p.

Furthermore, we can use the following integral

α =
∫ ∞

θc
fn(x′|H0 true)dx′ (13)

to solve for θc. That means, the significance level α implies a threshold θc. This threshold can also be
used to make a decision about H0.

We would like to emphasize that due to the fact that the test statistic is a random variable also the
p-values is a random variable since it depends on the test statistic [29].

x

fn(x|H0 true )

reject H0accept H0

θ0 θc tn

α =
∫ ∞

θc
fn(x′|H0 true)dx′

p =
∫ ∞

tn
fn(x′|H0 true)dx′

Figure 4. Determining the p-values from the sampling distribution of the test statistic.

Remark 1. The sample size n has an influence on the numerical analysis of the problem. For this reason the
test statistic and the sampling distribution are indexed by it. However, it has no effect on the formulation and
expression of the hypothesis because we make statements about a population value that hold for all n.

3.7. Step 7: Make a Decision about the Null Hypothesis

In the final step we are making a decision about the null hypothesis. In order to do this there
are two alternative ways. First, we can make a decision based on the p-values or, second, we make a
decision based on the value of the test statistic tn.
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1. Decision based on the p-values:

If p < α reject H0 (14)

2. 2. Decision based on the threshold θc:

If tn > θc reject H0 (15)

In case we cannot reject the null hypothesis we accept it.

4. Type 2 Error and Power

When making binary decisions there is a number of errors one can make [30]. In this section, we
go one step back and take a more theoretical look on a hypothesis test with respect to the possible errors
one can make. In section ‘Step 2: Null hypothesis H0 and alternative hypothesis H1’ we discussed that
there are two possible errors one can make, a false positive and a false negative and when discussing
Step 4, we introduced formally the meaning of a Type 1 error. Now we extend this discussion to the
Type 2 error.

As mentioned previously, there are only two possible configurations one needs to distinguish.
Either H0 is true or it is false. If H0 is true (false) it is equally correct to say H1 is false (true). Now, let’s
assume H1 is true. For evaluating the Type 2 error we require the sampling distribution assuming H1

is true. However, for performing a hypothesis test, as discussed in the previous sections (see Figure 2),
we do not need to know the sampling distribution assuming H1 is true. Instead, we need to know the
sampling distribution assuming H0 is true because this distribution corresponds to the null hypothesis.
The good news is the sampling distribution assuming H1 is true can be easily obtained if we make the
alternative hypothesis more precise. Let’s assume we are testing the following hypothesis.

null hypothesis: H0: θ = θ0
alternative hypothesis: H1: θ > θ0

In this case H0 is precisely specified because it sets the population parameter θ to θ0. In contrast,
H1 limits the range of possible values for θ but does not set it to a particular value.

For determining the Type 2 error we need to set θ in the alternative hypothesis to a particular
value. So let’s set the population parameter θ = θ1 in H1 for θ1 > θ0. In Figure 5 we visualize the
sampling distribution for H1 and H0.

If we reject H0 when H1 is true, this is a correct decision and the green area in Figure 5 represents
the corresponding probability for this, formally given by

1− β = P(reject H0|H1 is true) =
∫ ∞

θc
fn(x′|H1 true )dx′. (16)

For short this probability is usually denoted by 1− β and called the power of a test.
On the other hand, if we do not reject H0 when H1 is true, we make an error, given by

β = P(Type 2 error) = P(do not reject H0|H1 is true). (17)

This is called a Type 2 error. In Figure 5, we highlight the Type 2 error probability in orange.
We would like to emphasize that the Type 1 error and the Type 2 error are both long-run

frequencies for repeated experiments. That means both probabilities give the error when repeating the
exact same test many times. This is in contrast to the p-values, which is the probability for a given data
sample. Hence, the p-values does not allow to draw conclusions for repeated experiments.
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θ

fn(x|H0 true )

reject H0accept H0

θ0

θ

fn(x|H1 true )

power: 1− β

θ1

accept H1reject H1

Type 1 error: α

Type 2 error: β

Figure 5. Visualization of the sampling distribution for H0 and H1 assuming a fixed sample size n.

Connections between Power and Errors

From Figure 5 we can see the relation between power (1− β), Type 1 error (α) and Type 2 error (β),
summarized in Figure 6. Ideally, one would like to have a test with a high power and low Type 1 error
and low Type 2 error. However, from Figure 5 we see that these three entities are not independent from
each other. Specifically, if we increase the power (1− β) by changing α we increase the Type 1 error
(α) because this will reduce the critical value θc. In contrast, reducing α leads to an increase in Type 2
error (β) and a reduction in power. Hence, in practice, one needs to make a compromise between the
ideal goals.

1 − α =P(accept H0| H0 true)H0

accept H0

α = P(reject H0| H0 true)

reject H0

β = P(reject H0| H1 true)H1 1 − β =P(accept H0| H1 true)

truth

decision

Figure 6. Overview of the different errors as a result from hypothesis testing and their
probabilistic meaning.
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For the discussion above, we assumed a fixed sample size n. However, as we discussed in the
example of section ‘Step 3: Sampling distribution’, the variance of the sampling distribution depends
on the sample size via the standard error in the way

σ(n)2 =
σ2

pop

n
(18)

This opens another way to increase the power and to minimize the Type 2 error by increasing the
sample size n. By keeping the population means θ0 and θ1 unchanged but increasing the sample size
n′ to a value larger than n, that is, n′ > n, the sampling distributions for H0 and H1 become narrower
because their variances decrease according to Equation (18). Hence, as a consequence of an increased
sample size the overlap between the distributions, as measured by β, is reduced leading to an increase
in the power and a decrease in Type 2 error for an unchanged value of the significance level α. In the
extreme case for n→ ∞ the power approaches 1 and the Type 2 error 0, for a fixed Type 1 error α.

From this discussion the importance of the sample size in a study becomes apparent as a control
mechanism to influence the resulting power and the Type 2 error.

5. Confidence Intervals

The test statistic is a function of the data (see Step 1 in Section 3.1) and, hence, it is a random
variable. That means there is a variability of a test statistic because its value changes for different
samples. In order to quantify the interval within which such values fall, one uses a confidence interval
(CI) [31,32].

Definition 2. The interval I = [a, b] is called a confidence interval for parameter θ if it contains this parameter
with probability 1− α for α ∈ [0, 1], that is,

P
(
a ≤ θ ≤ b

)
= 1− α. (19)

The interpretation of a CI I = [a, b] is that for repeated samples the confidence intervals of these
are expected to contain the true θ with probability 1− α. Here it is important to note that θ is fixed
because it is a population value. What is random is the estimate of the boundaries of the CI, that is, a
and b. Hence, for repeated samples, θ is fixed but I is a random interval.

The connection between a 1− α confidence interval and a hypothesis test for a significance level
of α is that if the value of the test statistic falls within the CI then we do not reject the null hypothesis.
On the other hand, if the confidence interval does not contain the value of the test statistic, we reject
the null hypothesis. Hence, the decisions reached by both approaches agree always with each other.

If one does not make any assumption about the shape of the probability distribution, for example,
symmetry around zero, there are infinite many CIs because neither the starting nor the ending values
of a and b are uniquely defined but follow from assumptions. Frequently, one is interested in obtaining
a CI for a quantile separation of the data in the form

P

(
qα/2 ≤ θ ≤ q1−α/2

)
= 1− α (20)

whereas qα/2 and q1−α/2 are quantiles of the sampling distribution with respect to 100α/2% respectively
100(1− α/2)% of the data.

5.1. Confidence Intervals for a Population Mean with Known Variance

From the central limit theorem we know that the sum of random variables θ̂ = 1/n ∑ xi is normal
distributed. If we normalize this by
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Z =
θ̂ −E[θ̂]

σ(θ̂)
(21)

then Z follows a standard normal distribution, that is, N(0, 1), whereas σ(θ̂) is the standard error

σ(θ̂) =
σ√
n

(22)

of θ̂.
Adjusting the definition of a confidence interval in Equation (20) to our problem gives

P

(
qα/2 ≤ Z ≤ q1−α/2

)
= 1− α (23)

with

qα/2 = −zα/2 (24)

q1−α/2 = zα/2 (25)

Here the values of ±zα/2 are obtained by solving the equations for a standard normal distributed
probability

P
(
Z < −zα/2

)
= α/2 (26)

P
(
Z > zα/2

)
= α/2 (27)

Using these and solving the inequality in Equation (23) for the expectation value gives the
confidence interval I = [a, b] with

a = θ̂ − zα/2σ(θ̂) = θ̂ − zα/2
σ√
n

(28)

b = θ̂ + zα/2σ(θ̂) = θ̂ + zα/2
σ√
n

(29)

Here we assumed that σ is know. Hence, the above CI is valid for a z-test.

5.2. Confidence Intervals for a Population Mean with Unknown Variance

If we assume that σ is not know then the sampling distribution of a population mean is Student’s
T-distribution and σ needs to be estimated from samples by the sample standard deviation s. In this
case a similar derivation as above results in

a = θ̂ − tα/2
s√
n

(30)

b = θ̂ + tα/2
s√
n

(31)

Here ±tα/2 are critical values for a Student’s T-distribution, obtained similarly as in
Equations (26) and (27). Such a CI is valid for a t-test.

5.3. Bootstrap Confidence Intervals

In case a sampling distribution is not given in analytical form numerical approaches need to be
used. In such a situation a CI can be numerically obtained via nonparametric Bootstrap [33]. This is
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the most generic way to obtain a CI. By utilizing the augmented definition in Equation (20) for any test
statistic θ̂ the CI can be obtained from

P

(
q̂α/2 ≤ θ̂ ≤ q̂1−α/2

)
= 1− α (32)

whereas the quantiles q̂α/2 and q̂1−α/2 are directly obtained from the data resulting in I = [q̂α/2, q̂1−α/2].
Such a confidence interval can be used for any statistical hypothesis test.

We would like to emphasize that in contrast to Equation (20) here the quantiles q̂α/2 and q̂1−α/2
are estimates of the quantiles qα/2 and q1−α/2 from the sampling distribution. Hence, the obtained CI
is merely an approximation.

6. An Example and a Warning

Finally, we are providing a practical example for an one-sample t-test that will also serve as a
warning. In Figure 7 we show a worked example for a data set D defining the major components
of a t-test.

Data from experiment: D= {0.2, 0.3, 0.1, 0.5, 0.1}
Main components of an one-sample t-test:
1. Select appropriate test statistic T: t-score
2. Define null hypothesis H0 and alternative hypothesis H1
3. Find the sampling distribution for T, given H0 true: Student t-distribution
−→ use t.test

4. Choose significance level alpha: α = 0.05
5. Evaluate test statistic t for sample data: 3.2071
6. Determine the p-values: 0.01634
7. Make a decision (accept H0 or reject H0):
−→ Reject H0

H0: θ = 0

H1: θ > 0
←−

Figure 7. Example for an one-sample t-test conducted by using the statistical programming language R.
The test can be performed by using the shown data D.

On the left-hand side of Figure 7 a summary of the test is presented and on the right-hand side of
Figure 7 we show a script in the programming language R providing the numerical solution to the
problem. R is a widespreadly used programming language to study statistical problems [34]. The
solution script is only two lines, in the first the data sample is defined and in the second the hypothesis
test is conducted. The command ‘t.test’ has arguments that specify the used data and the type of
the alternative hypothesis. In our case we are using a right-sided alternative indicated by ‘greater’.
In addition, the null hypothesis needs to be specified. In our case we used the default which is θ = 0,
however, by using the argument ‘mu’ one can set different values.

From this example one can learn the following. First, the practical execution of a hypothesis test
with a computer is very simple. In fact, every hypothesis test assumes a similar form as the provided
example. Second, due to the simplicity, all complexity of a hypothesis test, as discussed in the previous
sections of this paper, is hidden behind the abstract computer command ‘t.test’. However, from this
follows that a deeper understanding of a hypothesis test cannot be obtained by the practical execution
of problems if cast into a black-box frame (in the above example ‘t.test’ is the black-box). The last point
maybe counterintuitive if one skips the above discussion, however, we consider this one cause for the
widespread misunderstanding of statistical hypothesis tests in general.
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7. Historical Notes and Misinterpretations

The modern formulation of statistical hypothesis testing, as discussed in this paper, has not been
introduced as one theory but it evolved from two separately introduced theories and accompanied
concepts. The first method is due to Fisher [4] and the second due to Neyman and Pearson [8]. Since
about the 1960s an unified form was established (some call this null hypothesis significance testing
(NHST)) in the literature as it is used to date [35,36].

Briefly, Fisher introduced the concept of a p-values while Neyman and Pearson introduced
the alternative hypothesis as complement to the null hypothesis, type I and type II errors and the
power. There is an ongoing discussion about the differences of both concepts see, for example,
References [37–39], which is in general very difficult to follow because these involve also philosophical
interpretations of those theories. Unfortunately, these differences are not only of interest for historical
reasons but lead to contaminations and misunderstandings of the modern formulation of statistical
hypothesis testing because often arguments are taken out of context and properties differ among the
different theories [40,41]. For this reason, we discuss some of those in the following.

1. Is the p-values the probability that the null hypothesis is true given the data?

No, it is the probability of observing more extreme values than the test statistic, if the null
hypothesis is true, that is, P(x ≥ |t| |H0 is true) see Equation (11). Hence, one assumes already
that H0 is true for obtaining the p-values. Instead, the question aims to find P(H0|D).

2. Is the p-values the probability that the alternative hypothesis is true given the data?

No, see question (1). This would be P(H1|D).
3. If the null hypothesis is rejected, is the p-values the probability of your rejection error?

No, the rejection error is the type I error given by α.
4. Is the p-values the probability to observe our data sample given the null hypothesis is true?

No, this would be the Likelihood.
5. If one repeats an experiments does one obtain the same p-values?

No, because p-valuess do not provide information about the long run frequencies of repeated
experiments as the type I or type II errors. Instead, they give the probability resulting from
comparing the test statistic (as a function of the data) and the null hypothesis assumed to be true.

6. Does the p-values give the probability that the data were produced by random chance alone?

No, despite the fact that the data were produced by H0 assuming it is true. The p-values does not
provide the probability for this.

7. Does the same p-values from two studies provide the same evidence against the null hypothesis?

Yes, but only in the very rare case if everything in the two studies and the formulated hypotheses
is identical. This includes also the sample sizes. In any other case, p-valuess are difficult to
compare with each other and no conclusion can be drawn.

We think that many of the above confusions are a result from verbal interpretations of the theory
by neglecting mathematical definitions of used entities. This is understandable since many people
interested in the application of statistical hypothesis testing have not received formal training in the
underlying probability theory. A related problem is that a hypothesis test is exactly set-up to answer
one question and that is based on a data sample to reject a null hypothesis or not. There are certainly
many more questions experimentalists would like to have answers for, however, a statistical hypothesis
test is not designed for these. It is only possible to derive some related answers to questions that are
closely related to the set-up of the hypothesis test. For this reason in general it is a good strategy to
start answering any question in the context of statistical hypothesis testing by looking at the basic
definition of the involved entities because only these are exact and provide unaltered interpretations.
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8. The Future of Statistical Hypothesis Testing

Despite the fact that the core methodology of statistical hypothesis testing is dating back many
decades questions regarding its interpretation and practical usage are to date under discussion [42–46].
This is due to the involvedness and complexity of the methodology demanding a thorough education
because otherwise problems are implicated [47] and even unsound designs may be overlooked [12].
Furthermore, there are constantly new statistical hypothesis tests being developed that built upon the
standard methodology, for example, by using novel test statistics [48–50]. Given the need to make sense
of the increasing flood of data, we are currently facing in all areas of science and industry, statistical
hypothesis testing provides a tool for binary decision making. Hence, it allows to convert data into
decisions. Due to the need for scientific decision making a future without statistical hypothesis testing
is hard to imagine.

9. Conclusions

In this paper we provided a primer on statistical hypothesis testing. Due to the difficulty of the
problem, we were aiming at an accessible level of description and presented the bare backbone of
the method. We avoided application domain specific formulations in order to make the knowledge
transfer easier to different application areas in data science including biomedical science, economics,
management, politics, marketing, medicine, psychology or social science [50–55].

Finally, we would like to note that in many practical applications one does not perform one but
multiple hypothesis tests simultaneously. For instance, for identifying the differential expression of
genes or the significant change of stock prices. In such a situation one needs to apply a multiple testing
correction (MTC) for controlling the resulting errors [56–59]. This is a highly non-trivial and a complex
topic for itself that can lead to erroneous outcomes if not properly addressed [60].
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