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Abstract: A Long Short Term Memory (LSTM) based sales model has been developed to forecast
the global sales of hotel business of Travel Boutique Online Holidays (TBO Holidays). The LSTM
model is a multivariate model; input to the model includes several independent variables in addition
to a dependent variable, viz., sales from the previous step. One of the input variables, “number of
active bookers per day”, is estimated for the same day as sales. This need for estimation requires the
development of another LSTM model to predict the number of active bookers per day. The number of
active bookers is variable, so the predicted is used as an input to the sales forecasting model. The use
of a predicted variable as an input variable to another model increases the chance of uncertainty
entering the system. This paper discusses the quantum of variability observed in sales predictions for
various uncertainties or noise due to the estimation of the number of active bookers. For the purposes
of this study, different noise distributions such as normalized, uniform, and logistic distributions
are used, among others. Analyses of predictions demonstrate that the addition of uncertainty to
the number of active bookers via dropouts as well as to the lagged sales variables leads to model
predictions that are close to the observations. The least squared error between observations and
predictions is higher for uncertainties modeled using other distributions (without dropouts) with the
worst predictions being for Gumbel noise distribution. Gaussian noise added directly to the weights
matrix yields the best results (minimum prediction errors). One possibility of this uncertainty could
be that the global minimum of the least squared objective function with respect to the model weight
matrix is not reached, and therefore, model parameters are not optimal. The two LSTM models used
in series are also used to study the impact of corona virus on global sales. By introducing a new
variable called the corona virus impact variable, the LSTM models can predict corona-affected sales
within five percent (5%) of the actuals. The research discussed in the paper finds LSTM models to be
effective tools that can be used in the travel industry as they are able to successfully model the trends
in sales. These tools can be reliably used to simulate various hypothetical scenarios also.

Keywords: sales forecasting; uncertainty analysis; LSTM; corona; RNN; neural network; system
noise; predictive analytics

1. Introduction

Traditionally, various techniques such as Autoregression (AR) [1,2], Moving Average (MA) [3,4],
Exponential Smoothing (ES) [5], Hybrid Methods (HM) [6–8], and Autoregressive Integrated Moving
Average (ARIMA) [9] have been used to predict and forecast the dependent variable in a time
series [1–9]. These techniques have recently been used in conjunction with artificial neural network
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algorithms. Among these techniques, the ARIMA model has mostly outperformed others in precision
and accuracy [10].

With the recent advancement in computational power and more importantly the development
of more advanced machine learning techniques such as deep learning, new algorithms have been
developed to analyse and forecast time series data. Research [11,12] showed that newly developed
deep learning-based algorithms for forecasting time series data such as “Long Short-Term Memory
(LSTM)” are superior to traditional algorithms such as ARIMA models.

Recurrent neural networks with Long Short-Term Memory [13] (which are concisely referred to
as LSTMs) have emerged as effective and scalable models for several learning problems related to
sequential data. Earlier methods of forecasting time series data have either been tailored towards a
specific problem or did not scale to extended time dependencies. Scaling for seasonality is a challenge
in non-LSTM models requiring manual feature extraction [14,15]. LSTMs, on the other hand, are both
general in nature and effective at capturing long-term temporal dependencies. They are good at
extracting the patterns in the input feature space and handling the nonlinear and complex feature
interactions in the data without explicitly defining them. This makes LSTM models highly scalable
but more complex than the other time series models. As the name suggests, LSTMs memorize the
happenings of the distant past and the near past and balance out the two when making predictions
resulting in augmented accuracy.

One central challenge in any modeling exercise is understanding and handling the uncertainty
embedded in the model input (dependent variables) and that in the model parameters (constants).
Model constants are determined by fitting the model output to the observations in such a way that
the error in predictions is minimized, most often, in the least square sense. The model constants in
such a case are considered to be deterministic, as a given model constant has one and only one value
instead of a spread with a mean and a standard deviation. Such deterministic models predict one and
only one value of the output variable for a given set of input variables. A stochastic model, on the
other hand, has uncertainty built into the input variables and the model constants. As a result, instead
of predicting only a single value of the dependent variable, stochastic models predict a spread in the
dependent variable.

Businesses face various type of uncertainties for a number of reasons that could be related to
operational challenges, finances, technology, and nature. This uncertainty also finds its way in the
forecasting model in the form of random noise associated with input data and the residual error in the
model training. Analysis of uncertainty is performed to understand [16,17] when the model predictions
are underconfident and when they are overconfident. This analysis is performed by quantifying
prediction intervals [18,19] and applying these predictions in decision making.

The uncertainties in predictions can be described in a probabilistic framework [20], which has a
central role in machine learning models. Statistics provides us with a way [21] to present the data not
as measurements but as estimates with error (uncertainties). Uncertainty in models also affects the
model selection process [22] and plays a role in hyperparameter optimization. In this study, we used
dropouts in the neural network layers and introduced random noise in both the inputs and model
weights to measure uncertainty. We discussed how dropouts in the neural network are more effective
in measuring uncertainty without compromising model accuracy and complexity.

This paper summarizes the results of research performed to understand how uncertainty impacts
predictions and compares the performance of deterministic and stochastic models. Furthermore,
the study also investigates the impact of uncertainty in input variables versus uncertainty in model
constants on the prediction accuracy of the dependent variable. Different mathematical distributions
for uncertainties were modeled. LSTM models are used to predict sales forecasts for a complete month
and uncertainty analyses are performed with respect to the same. A brief description of the LSTM
model architecture is provided in the next section.
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2. Theoretical Foundations

LSTM Architecture

The central idea behind the LSTM architecture [23] is a memory cell, which can maintain its
state over time, and nonlinear gating units, which regulate the information flow into and out of the
cell. A common LSTM unit is composed of a cell, an input gate, an output gate, and a forget gate.
A schematic of a simple LSTM block can be seen in Figure 1. The cell remembers values over arbitrary
time intervals, and the three gates regulate the flow of information into and out of the cell.
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where xt: Input vector at time t; at: Input activation at time t as defined in Equation (1); it: Input gate at
time t as defined in Equation (2); ft: Forget gate at time t as defined in Equation (3); ot: Output gate at
time t as defined in Equation (4); st: Internal state at time t as defined in Equation (5); st−1: Internal
state at time t − 1; outt: Model output at time t; outt−1: Model output at time t − 1.

Input gate determines the new data that get stored in the cell through a sigmoid layer followed by
a tanh layer. The initial sigmoid layer, called the “input door layer”, identifies the values that will be
modified. Next, a tanh layer makes a vector of new candidate values that could be added to the state.

The forget gate decides on the information that needs to be discarded from the cell state using
a sigmoid layer that outputs a number between 0 and 1, where 1 means “completely keep this”,
and 0 implies “completely ignore this”.

Output gate determines the information (yield) that goes out of each cell. The yielded value will
be based on the cell state along with the filtered and newly added data.

Let xt ∈ R
M be the input vector at time t, T be the number of LSTM blocks, and M be the number

of inputs. Then, we get the following weights for an LSTM layer:
Input weights: Wxs, Wxi, Wx f , Wxo ∈ R

T×M for activation, input, forget, and output gate, respectively.
Recurrent weights: Whs, Whi, Wh f , Who ∈ R

T×T for activation, input, forget, and output gate, respectively.
Bias weights: bs, bi, b f , bo ∈ R

T for activation, input, forget, and output gate, respectively.
Symbols of matrix products:

�: Represents the elementwise product or Hadamard product.
⊗: Represents the outer product.
·: Represents the inner product.

The gates are defined as:
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Input activation: at = tanh(Wxs·xt + Whs·outt−1 + bs); (1)
Input gate: it = σ(Wxs·xt + Whs·outt−1 + bs); (2)
Forget gate: ft = σ

(
Wx f ·xt + Wh f ·outt−1 + b f

)
; (3)

Output gate: ot = σ(Wxo·xt + Who·outt−1 + bo); (4)
Internal state: st = at � it + ft � st−1; (5)
Output outt = tanh(st) � ot. (6)

Backpropagation:
The deltas inside the LSTM block are then calculated as

dot = tanh(st)doutt

dst = (1− tanh2(st))doutt

d ft = st−1dst

dst−1 = dst + ftdst

dit = atdst

dat = itdst

The updates in the weights can be formulated as

dWxo =
∑

t
ot(1− ot)xtdot

dWxi =
∑

t
it(1− it)xtdit

dWx f =
∑

t
f (1− ft)xtd ft

dWxs =
∑

t

(
1− a2

t

)
xtdat

And,
dWho =

∑
t
ot(1− ot)ht−1dot

dWhi =
∑

t
it(1− it)ht−1dit

dWh f =
∑

t
f (1− ft)ht−1d ft

dWhs =
∑

t

(
1− a2

t

)
ht−1dat

dht−1 = ot(1− ot)Whodot + it(1− it)Whidit + ft(1− ft)Wh f d ft +
(
1− a2

t

)
Whcdat

Having understood the mathematical formulation of an LSTM model, the next step is to discuss
the approach taken to model the sales forecasting using the LSTM algorithm.

3. Materials and Methods

In this section, we present the approach to modeling sales forecasts. The sales forecasting model
has two underlying LSTM models, as shown in Figure 2. The first model predicts the number of
active bookers on a given day, and the prediction is based on the daily lag of active bookers, yearly
lag of active bookers, day of the week, and month of the year variables. The output of the bookers
model was used as an input in the second LSTM model, which forecasted the global sales. The sales
forecasting model had the inputs such as sales from the previous step, yearly lag of sales (accounts
for the seasonality), day of the week, month of the year, active bookers count, and sales per active
booker. Each sequence of dataset fed into an LSTM cell that consisted of the previous seven (7) days
of data. Both the models made predictions one time step [24] at a time, and these predictions were
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used as inputs to make predictions at the next time step. Both the models (active booker count and
sales forecast) have two LSTM layers of 100 neurons each, followed by an output dense layer with
one neuron.
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To model uncertainty in a neural network model, there could be several approaches e.g.,
Monte Carlo [25] simulation, Bayesian Neural Network [26], and use of Dropouts in between the LSTM
layers. A study conducted by Yarin Gal and Zoubin Ghahramani [16] showed how uncertainty can be
modeled with dropouts in Neural Networks to improve the performance of log-likelihood and RMSE
compared to existing state-of-the-art methods. In deep neural networks, dropout is a technique that is
used to avoid overfitting.

Figure 3 shows a high-level pictorial representation of the three components of the model where
uncertainties could lie.Mach. Learn. Knowl. Extr. 2020, 2 FOR PEER REVIEW  6 
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For the purposes of this study, the predictions were made and compared with actual observations
using the above models (Figure 2) and the following approaches (cases).

Case 1: Deterministic approach: In this approach, dropouts are not used at the time of predictions.
Case 2: Stochastic dropout approach: In this approach, dropouts [27] are used at both training

and prediction stages. Three combination of models are run for stochastic dropout approach, viz.

a. The dropouts are only used in the active booker count model and not in the sales model at the
time of prediction,

b. The dropouts are only used in the sales model and not in the active booker count model at the
time of prediction,

c. The dropouts are used in both the sales and the active booker count models at the time
of prediction.
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A recurrent dropout with a dropout rate of 20% and a kernel dropout with dropout rate of 10%
in the LSTM layers were used. Figure 4 shows a schematic representation of dropouts in neural
network layers.
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Case 3: Stochastic noise in predicted active booker count and sales: In this approach, instead
of using dropouts at the time of prediction, various noise distributions are used to add uncertainty in
the models. Uncertainty can exist in both active booker count and sales forecasting models. Gaussian,
uniform, triangular [28], logistic [29], and Gumbel [30] distributions are used for the noise inputs.
While adding noise in the models, the standard deviation is kept the same as observed in the stochastic
dropout models with 0 mean. Gaussian, uniform, and triangular noises are symmetric distributions
with around 0 mean. Logistic and Gumbel distributions are skewed towards a nonzero positive mean
and are used to model extreme values. The other distributions such as log-normal [31], exponential [32]
distributions are also considered but not used because they only add a positive noise in the model.
Then the three combination of models as described in the stochastic dropout approach (Case 2) were
run for each of the above five (5) noise distributions.

Case 4: Stochastic noise on weights: In this approach [33–35], Gaussian noise is added to the
model weights (model constants). As described in the previous section, there are two LSTM layers in
each model. The Gaussian noise is added in two ways, viz.

a. 0 mean and fixed (0.1 and 0.2) standard deviation;
b. 0 mean and fixed percentage (10% and 20%) of weight.

Then the three combination of models as described in the stochastic dropout approach (Case 2)
were run for each of the two cases.

Historical, daily global hotels sales data from 1 January 2017 to 14 January 2020 were used for
training the model. The forecasting models were trained on an 8-cpu Ubuntu Linux server with
32 gigabyte memory The percentage error between predicted sales vs. actual sales for the month of
January 2020 was used as the error metric for the comparison of the performance of various models.
This is referred to as observed error in Table 1
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Table 1. Summary of sales forecast predictions for various approaches. * represents cases where the
predictions are statistically significantly different from those of the deterministic model.

Model Description Observed Error p-Value of t-Test vs.
Deterministic Model

Deterministic 4.02% -

Stochastic—Dropout

Active Booker Count and Sales Uncertainty 2.81% <0.001 *

Active Booker Count Only Uncertainty 3.88% <0.001 *

Sales Only Uncertainty 3.10% <0.001 *

Stochastic—Noise on
Bookers and Sales

Active Booker Count
Uncertainty

Normal Noise 4.17% 0.008 *

Uniform Noise 4.50% 0.001 *

Triangular Noise 4.16% 0.032 *

Logistic Noise 4.13% 0.239

Gumbel Noise 5.09% <0.001 *

Sales Uncertainty

Normal Noise 3.92% 0.240

Uniform Noise 4.00% 0.877

Triangular Noise 4.18% 0.558

Logistic Noise 3.33% 0.043 *

Gumbel Noise 8.00% <0.001 *

Active Booker Count
and Sales Uncertainty

Normal Noise 4.12% 0.422

Uniform Noise 4.47% 0.016 *

Triangular Noise 4.02% 0.960

Logistic Noise 4.68% 0.007 *

Gumbel Noise 9.42% <0.001 *

Stochastic—Noise
on Weights

Active Booker Count
and Sales Uncertainty

Noise STD: 0.1 2.13% 0.010 *

Noise STD: 0.2 1.06% <0.001 *

Noise STD: 10% 1.48% <0.001 *

Noise STD: 20% −1.58% <0.001 *

Active Booker Count
Uncertainty

Noise STD: 0.1 2.45% 0.024 *

Noise STD: 0.2 2.70% 0.067

Noise STD: 10% 2.27% 0.014 *

Noise STD: 20% 2.07% 0.008*

Sales Uncertainty

Noise STD: 0.1 2.00% 0.002 *

Noise STD: 0.2 1.40% <0.001 *

Noise STD: 10% 1.50% <0.001 *
Noise STD: 20% −1.33% <0.001*

4. Tests and Results

The models were evaluated on the total sales predicted for the month of January 2020 with the
starting prediction date of 15 January 2020. Results of various model runs for conditions explained in
the previous section are summarized in Table 1.

A quick look at the data shows that the best predictions are for the stochastic model with noise
in weights (model constants) and worst for the case where noise is embedded in the input dataset.
Within the latter case, worst predictions were observed for Gumbel noise distribution that modeled
Generalized Extreme Value distribution. The predictions suggest that noise in the input dataset is
not related to extremes and that no extreme (extraordinarily high or low) sale will happen. The sales
predictions for models with noise in input variables (with the exception of Gumbel distribution) are
very similar to the sales predictions of the deterministic model. This can be confirmed by analyzing
the p-value of the two tailed t-test [36]. These results suggest that the current dataset does not have too
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much variation in input values and that active booker count and sales are close to being deterministic.
In other words, there is very little uncertainty in the input dataset, and perturbation in the values does
not alter the results (output sales forecast) significantly. Another possibility could be that noise in the
input dataset does not follow any of the mathematical distributions used.

While the noise in input variables does not yield better predictions when compared to the
deterministic model, randomly dropping the hidden units (neurons or cells) at each update during
training using the dropout functionality of the LSTM model seems to improve predictions. The best
predictions were observed when dropouts were applied to simulate uncertainty in both the active booker
count and sales. This suggests that variability in the actual dataset is reduced by filtering out extreme
values leading to better predictions. This contrasts with the case where every data point (and neuron)
is included in training the LSTM models but with implicit uncertainty as demonstrated above.

The next step is to analyze the uncertainty in the model weights (model constants) coupled with
dropouts in neural network layers, and its impact on sales predictions. The results summarized in
Table 1 show that when noise was added to the model weights either as absolute value at 0.1 and 0.2 or
as 10% and 20% deviation from the mean, the predictions were closest to the actual sales. The best
observations were made for the case when noise with a standard deviation of 0.2 was added to the
weights of both the active booker count and sales LSTM models. The p-values also indicate that
predictions were significantly different from those of the deterministic model. Uncertainty in model
weights seems to suggest that model convergence during training has more room to be worked on, or
that the number of neurons and LSTM layers was not adequate. It is also possible that shallowness of
the LSTM model in terms of fewer neurons and LSTM layers made model weights less deterministic.

For confidentiality reasons, sales numbers in this paper were scaled between 0 and 1; however,
the variations in the actual and predicted sales numbers were preserved. The charts in Figure 5 show a
comparison of predicted vs. actual sales on a daily level for the month of January 2020 for various
versions of deterministic and stochastic models. Charts in Appendices A and B show the results of all
the remaining possible combinations (active booker count only, sale only, and active booker count and
sales) for the four cases given above.

Towards the end of the month (25 January onwards), we observed a deviation between predicted
vs. actual sales. This happened because of the outbreak of corona virus. This had an impact on sales.
The model overpredicted the sales because of the long-term memory, and it needed more data to build
short term memory to realize the drastic impact of the virus on sales.

While it is worthwhile to understand the impact of uncertainty and noise in data on predictions,
it would be interesting to extend the study to analyze the impact of corona virus spread on sales.
One can determine the loss in sales by letting the model predict sales in the corona-free environment
and then compare it to actual sales. Several such “what-if” simulations can be conducted using the
models developed.

Impact of Corona Virus Outbreak on February 2020 and March 2020 Sales

Models with the best predictions, as determined in the previous section, were used to predict the
sales for the months of February and March 2020. In other words, the following models were used:

1. Stochastic dropout model with both active booker count and sales uncertainty;
2. Noise in weights with 0.2 standard deviation in active booker count and sales models;
3. Noise in weights with 20% standard deviation in active booker count and sales models.
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Figure 5. Actual vs. predicted January sales for various cases: deterministic model; stochastic—normal
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of active booker count only stochastic models, and sales only stochastic models are shown in the
Appendices A and B. The shaded area represents the range of stochastic variance (uncertainty) in the
model predictions.

For this study, a time-period that severely impacted the global sales due to corona virus outbreak,
was chosen. The predictions were made on 15 February 2020, and then, the forecasts were compared
with the actual sales to assess the impact of the corona virus outbreak.

Figure 6 shows that the impact of corona outbreak on sales was mild at the beginning of February,
the impact became severe only in the last week of February. Table 2 summarizes the predictions for the
loss in sales made by the three models discussed above.Mach. Learn. Knowl. Extr. 2020, 2 FOR PEER REVIEW  11 
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Table 2. Impact of corona virus on sales.

Stochastic Dropout—Active Booker Count and Sales Uncertainty

Duration Actual Sales Predicted Sales Business Impact

15 February to 29 February 7.46 9.90 −24.7%

1 March to 15 March 1.19 10.77 −89.0%

Total (15 February to 15 March) 8.65 20.68 −58.2%

Noise STD: 0.2 Active Booker Count and Sales Uncertainty

Duration Actual Sales Predicted Sales Business Impact

15 February to 29 February 7.46 11.19 −33.3%

1 March to 15 March 1.19 11.62 −89.8%

Total (15 February to 15 March) 8.65 22.81 −62.1%

Noise STD: 20% Active Booker Count and Sales Uncertainty

Duration Actual Sales Predicted Sales Business Impact

15 February to 29 February 7.46 10.66 −30.0%

1-March to 15-March 1.19 11.12 −89.3%

Total (15 February to 15 March) 8.65 21.78 −60.3%

The impact of the corona virus outbreak was extremely severe in March with a drop of 89.0% to
89.8% in sales till 15 March. The drop in sales in the second half of February was in the range of 24.7%
to 33.3%. The loss for a one month period of 15 February to 15 March was around 58% to 62%.

Figure 7 shows that the LSTM model can predict the impact of corona virus on sales by adding a
new binary input variable called the corona virus impact variable. The variable determines whether
the sales are impacted by the virus spread or not. The model was quite accurately able to predict sales
when the new variable was added. Sales were predicted to be substantially higher if the variable was
not included in the model.Mach. Learn. Knowl. Extr. 2020, 2 FOR PEER REVIEW  12 
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Figure 7. Model predictions with and without the corona virus impact.

This study shows the power of LSTM based models to conduct “what-if” studies that otherwise
would have been impossible to study in a real and practical environment. The same model can be used
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to understand how the sales would come back to normal levels once the menace of the virus has been
conquered. The LSTM model can be integrated with models predicting when the impact of corona
virus would end. Furthermore, the LSTM model can be used to perform sensitivity analysis to fathom
differential change in sales with respect to differential change in the number of key account managers.
This would allow the judicious hiring of key account managers. Similarly, we can study how much the
increase in sales would be for every percentage increase in number of agencies (clients). Adding new
variables to the model allows for the simulation of more scenarios. The possibilities are endless, and
the use of complex and accurate machine learning techniques lend more credibility to the analyses.

5. Conclusions and Future Work

LSTM modeling is an effective technique that can be used in the travel industry as it is able to
successfully model the nonlinear trends and variations in sales over time. Multiple ways of modeling
uncertainties in an LSTM model are presented. Uncertainties can be modeled using dropouts as noise
added to input variables and as gaussian noise added to the model weights. We observed that the
prediction accuracy of an LSTM model can be improved by using dropouts, and even more effectively,
by adding noise to the constants of the model. Uncertainty in the model weights has the biggest impact
on the model predictions suggesting that reduced depth (number of layers) of the LSTM model can
be compensated by adding noise to model parameters. Perhaps, a model with more neurons and
LSTM layers would lead to more accurate deterministic predictions that would, however, require
more data. The impact of corona virus on hotel business could be quantified, as the models have
the flexibility to include or drop input variables, making LSTMs all the more desirable. While the
sales forecasts were made at a global level, the same can be performed at the source market (country)
level. Uncertainty in country-specific models can be researched, and a study can be conducted to see
how these uncertainties correlate with the uncertainty at a global level. Models can be developed
for other lines of business such as airlines, car rental, and sightseeing to name a few. The nature of
uncertainties can then be compared across product lines. Owing to their credibility in generating
accurate predictions, LSTM models can be used to study various hypothetical scenarios, the results of
which can be trusted for business expansion.
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Figure A1. Actual vs. predicted sales forecast of (1) stochastic dropout models and (2) noise embedded 
in predicted pales and active booker count input variables. The y-axis represents the normalized sales, 
whereas the x-axis represents the dates of January 2020. The shaded area represents the range of 
stochastic variance (uncertainty) in the model predictions. 

Figure A1. Actual vs. predicted sales forecast of (1) stochastic dropout models and (2) noise embedded
in predicted pales and active booker count input variables. The y-axis represents the normalized sales,
whereas the x-axis represents the dates of January 2020. The shaded area represents the range of
stochastic variance (uncertainty) in the model predictions.
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