
machine learning &

knowledge extraction

Article

Learning DOM Trees of Web Pages by Subpath Kernel and
Detecting Fake e-Commerce Sites

Kilho Shin 1,*,†, Taichi Ishikawa 2, Yu-Lu Liu 3 and David Lawrence Shepard 4

����������
�������

Citation: Shin, K.; Ishikawa, T.; Liu,

Y.-L.; Shepard, D.L. Learning DOM

Trees of Web Pages by Subpath

Kernel and Detecting Fake

e-Commerce Sites. Mach. Learn.

Knowl. Extr. 2021, 3, 95–122. https://

doi.org/10.3390/make3010006

Received: 9 December 2020

Accepted: 10 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Centre, Gakushuin University, Tokyo 1718588, Japan
2 Information Networking Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA;

taichii@andrew.cmu.edu
3 Cyber Security Defense Department, Rakuten, Inc., Tokyo 1580094, Japan; yulu.liu@rakuten.com
4 Data Engineering, Evidation Health, Inc., San Mateo, CA 94402, USA; shepard.david@gmail.com
* Correspondence: yoshihiro.shin@gakushuin.ac.jp
† Current address: 1-5-1 Mejiro, Toshima, Tokyo 1718588, Japan.

Abstract: The subpath kernel is a class of positive definite kernels defined over trees, which has
the following advantages for the purposes of classification, regression and clustering: it can be
incorporated into a variety of powerful kernel machines including SVM; It is invariant whether
input trees are ordered or unordered; It can be computed by significantly fast linear-time algorithms;
And, finally, its excellent learning performance has been proven through intensive experiments in
the literature. In this paper, we leverage recent advances in tree kernels to solve real problems. As
an example, we apply our method to the problem of detecting fake e-commerce sites. Although
the problem is similar to phishing site detection, the fact that mimicking existing authentic sites is
harmful for fake e-commerce sites marks a clear difference between these two problems. We focus on
fake e-commerce site detection for three reasons: e-commerce fraud is a real problem that companies
and law enforcement have been cooperating to solve; Inefficiency hampers existing approaches
because datasets tend to be large, while subpath kernel learning overcomes these performance
challenges; And we offer increased resiliency against attempts to subvert existing detection methods
through incorporating robust features that adversaries cannot change: the DOM-trees of web-sites.
Our real-world results are remarkable: our method has exhibited accuracy as high as 0.998 when
training SVM with 1000 instances and evaluating accuracy for almost 7000 independent instances.
Its generalization efficiency is also excellent: with only 100 training instances, the accuracy score
reached 0.996.

Keywords: fake site detection; kernel method; web security

1. Introduction

Tree-structured data has been the focus of a great deal of machine learning research
for a long time. In 1979, Taï [1] extended Levenshtein edit distance [2] to trees, and since
then, we have been able to use distance measures to evaluate the similarity of trees. In
2001, Collins and Duffy [3] introduced the first instance of tree kernels and has opened new
avenues for leveraging a variety of powerful kernel machines to study trees. Furthermore,
recent work has shown that the subpath kernel is both more efficient and accurate than other
tree kernels: significantly fast algorithms that compute the subpath kernel in time linear
to the size of input trees (the number of vertices) have been proposed [4,5]; An intensive
experiment with various datasets has showed that the subpath kernel outperforms other
tree kernels in classification accuracy when used with SVM.

Thus, the recent advances in tree kernel methods have made it possible to leverage
powerful kernel machines for the purpose of analyzing various real tree data. Two of the
most important advantages of using kernel machines are the wide variety of methods

Mach. Learn. Knowl. Extr. 2021, 3, 95–122. https://doi.org/10.3390/make3010006 https://www.mdpi.com/journal/make

https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-0496-8962
https://doi.org/10.3390/make3010006
https://doi.org/10.3390/make3010006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/make3010006
https://www.mdpi.com/journal/make
https://www.mdpi.com/2504-4990/3/1/6?type=check_update&version=2

Mach. Learn. Knowl. Extr. 2021, 3 96

based on multivariate analysis, and the excellent generalization performance obtained even
when analyzing small datasets. In this regard, the main aims of this paper are to introduce:

• A generic system design for effective and efficient analysis of tree data with the
subpath kernel;

• A detailed application of the subpath kernel to document object model (DOM) trees,
an important example of tree data; and

• The remarkably high performance observed in analysis of DOM trees for detecting
fake e-commerce sites with the subpath kernel system.

Fake e-commerce sites have been serious threats to costumers and providers of e-
commerce. They pretend to be authentic sites that are authorized by companies operating
e-commerce platforms and attempt to obtain money by fraud, steal personal information
such as credit card numbers, ruin reputation of the platform operators, and so forth. The
number of reported incidents of fake e-commerce sites started to increase in 2012, and it
continues to increase rapidly. In Japan, the monetary damage reported in 2012 was merely
48 million JPY, but rapidly grew to 2.9 billion JPY in 2014 and 3.1 billion JPY in 2015.

Although fake e-commerce sites may seem akin to a popular class of malicious sites
referred to as phishing sites, there is a crucial difference. Phishing pages attempt to
resemble a single legitimate site, meaning they must mimic one particular site as closely as
possible. By contrast, fake e-commerce sites do not have any specific targets, and similarity
to specific existing authentic sites is even harmful for them, because the similarity may
raise consumers’ awareness of their illegality and as a result will shorten their lifetime.
Therefore, phishing detection approaches do not work with e-commerce fraud detection
sites, because they cannot be compared to a single known-good target site [6].

Nevertheless, it will be helpful to review the techniques developed for phishing
detection. Surveys in the literature (e.g., [7–10]) have reported that the major sources of
information consist of web-page contents, URLs of websites and blacklists.

• Web-page contents can provide information at the finest granularity, and the range of
features that can be extracted is the widest. The features of hyperlinked URLs [11],
linked images [11,12], and embedded executable codes [13] are all extracted from
page contents. Distributions of various information such as terms used [14], tag
contents [11], contents types [14] and terms’ TF-IDF values [15,16] are also useful
features. In exchange, the detailed investigation of web-page contents may cause
damages to users’ computers by executing malware included, and features extracted
from texts are prone to be language-specific. More importantly, content-based features
can be shallow in many cases, that is, it is not difficult for adversaries to alter them so
as to circumvent detection.

• The URL of a website can also provide useful information for phishing detection. The
features include not only tokens from the URL [15–17] but also metadata obtained
from external sources such as DNS [15], Google PageRank [15] and Amazon Alexa [14].
Because of the limit of the length of URL strings, the information obtained is also
limited. Link redirection and change of web-contents can be an effective circumvention
method, as well.

• A blacklist is created in a concentrative manner and specifies URLs of known phishing
sites. Since its trustworthiness is high, it is widely used in real services like Google
Safe Browsing [18] and eBay Toolbar [7]. Nevertheless, automated crawlers can be
easily detected, and also, changing web-contents can easily outdate it. The most
significant disadvantage of blacklists is the time difference between discovery of
phishing sites and their registration to blacklists. The most significant disadvantage
of blacklists is the time difference between discovery of phishing sites and their
registration on blacklists.

In this paper, we are interested in methods that can automatically detect newly born
(zero-day) fake websites. Therefore, the blacklist approach is out of the scope of this paper.
In general, use of machine learning techniques is known effective to detect zero-day attacks,

Mach. Learn. Knowl. Extr. 2021, 3 97

and the survey [19] introduces latest attempts to apply machine learning techniques to the
problem of detecting fake websites. Some leverage the remarkable advances of the research
on artificial neural networks (ANN) to obtain excellent detection accuracy [20–23], while
some rely on the established methods including SVM, Decision Tree, Random Forest and
Gradient Boosting [23,24].

Many of the reported methods that can detect zero-day fake sites show significantly
high accuracy rates of detection. For example, the accuracy of 0.999 is reported in [14,15].
They, however, rely on shallow features, such that adversaries can change their values
to bypass detection without insuperable difficulties. This is the problem of the existing
methods that we recognize and try to solve.

For the purpose, we develop a far more resilient approach. We propose a method
that takes advantage of the structural information of a web page’s document object model
(DOM) tree. A DOM tree of a web page is a tree that represents the nesting structure of its
hypertext markup language (HTML) tags. Figure 1 shows an extremely simple example of
an HTML document and the DOM tree that represents it. Real DOM trees usually include
thousands of vertices.

This approach is based on a discovery reached through joint investigation with the
National Police Agency of Japan and Rakuten Inc., an e-commerce company that is operat-
ing the largest e-commerce platform in Japan. Law enforcement agencies and e-commerce
companies have been cooperating to identify fake sites as quickly as possible in order
to minimize the damages to consumers. They collect information of fake sites through
complaint forms and allocate staff to analyze the collected information. Once they discover
fake sites, they add their URLs to public blacklists. This initiative has shut down thousands
of fake sites, usually very quickly. As a result of this policework, the average lifetime of a
fake site is short, and the criminals must continuously develop and release new fake sites
quickly. Because of this short lifespan, a single group of criminals must operate make fake
sites simultaneously in order to make profits worth the effort required to maintain a set
of short-lived sites. Thus, criminals cannot spend much time or effort developing each
new site from scratch. On the other hand, they have to make each site look different to
fool consumers. Changing content and layout is easy and affordable, but modifying page
structure is expensive. Thus, we expect that DOM trees of web-pages can carry effective
and sustainable features for the purpose of discriminating fake sites from authentic sites.

Using HTML tags as features for detecting fake websites has been proposed in the
literature. For example, the five categories recommended in [25] as important sources of
features are: web page text; web page source code; URLs; images; and, linkage, and HTML
tags are obtained from source codes of web pages. The tags are, however, used individually,
and their structural information is not incorporated into detection of fake websites. In
contrast, the method presented in this paper evaluates only the structural information of
HTML tags, that is, DOM trees, not the content of web pages, such as texts or images. This
does not mean, however, that features obtained from the other sources are useless. As
recommended in [25], it is desirable that real fake-website detection tools rely on features
from a variety of sources for robust performance, and we recommend including structural
features of DOM trees to measure similarity of web pages.

In [26], the relationship between elements of fake-website detection tools and users’
acceptance of the tools is studied. In particular, accuracy and speed are critical for earning
users’ acceptance. While structural information includes effective cues that can lead to
improvement in accuracy, analyzing structural information is generally costly in time. In
this regard, the subpath kernel can satisfy both of the seemingly contradictory requirements
of high accuracy and high efficiency. In fact, as we see in Section 5, the accuracy rate
observed in our experiments reaches as high as 0.998, and prediction of a single website
with a support vector machine (SVM) classifier requires only a few tens of milliseconds.

In addition, because a (positive definite) tree kernel can be viewed as a method to plot
trees as points in Euclidean (Hilbert) spaces, the subpath kernel can be combined with a
variety of multi-variate analysis methods including SVM, principal component analysis

Mach. Learn. Knowl. Extr. 2021, 3 98

(PCA), multiple regression analysis, and Gaussian process analysis, and we can select the
most effective analysis tool according to our objective.

The remainder of this paper is organized as follows. In Section 2, we give a description
of the data that we use in our research. In Section 3, we briefly review a theory of similarity
measures to evaluate similarity of DOM trees. Section 3.3.2 reviews tree kernels, the class
of measures that we use. Section 4 provides a specific description of the subtree kernel.
Section 5 describes our method, experiments, and further applications. Although the target
application in this paper is detection of fake e-commerce sites, it has larger applications.

<html>
<head>
<title></title><link></link>

</head>
<body>
<n>
<div><a></div>

</figure>
<table>
<tbody>
<tr><td></td><td></td></tr>
<tr><td></td><td></td></tr>
</tbody>

</table>
</body>

</html>

html

head

title
link

body

figure

div

a

img

table

tbody

tr

td td

tr

td td

Figure 1. An HTML document and the associated DOM tree.

2. The Data Used in Our Research

The initial form of the data that we use in our research is a list of URLs of real e-
commerce sites annotated relating to whether the sites of the URLs are fake or authentic.
We have obtained the data by different means for fake sites and authentic sites.

2.1. Positive Examples—Fake Sites

Rakuten, Inc. has provided us with a list of 3597 URLs of fake sites. Rakuten is a
Japanese electronic commerce and Internet company, which operates Rakuten Ichiba, the
largest e-commerce platform in Japan. Rakuten is a large target for fraud because it is
ranked 14th worldwide in revenue. The fake sites that Rakuten provided claim to be
authorized by Rakuten, but try to defraud consumers with low-quality goods, or products
that are never delivered.

To confront this threat, Rakuten has formed an Internet patrol team whose mission is
to investigate fraudulent sites. Their current method relies on manual investigation, which
they would like to improve through automation.

2.2. Negative Examples—Authentic Sites

The number of authentic sites found by the aforementioned investigation is very small
compared to the number of fake sites. Therefore, we need to collect a compatible number
of URLs of authentic sites to apply machine learning properly. For the purpose, we have
developed a crawler program that visits authentic sites by tracing links starting from a
Rakuten’s official site, https://ranking.rakuten.co.jp. This method produced 3349 URLs of
authentic sites.

We know, however, that the web-pages that this method collects include pages whose
purpose is not to sell goods to consumers. For example, our dataset includes Rakuten’s help
pages about its e-commerce platform and credit cards. Nevertheless, we decided to use all
of these pages for two reasons: first, the positive examples also include non-shopping sites;
and second, the percentage of such non-shopping pages is smaller than 1%, so their impact
to machine learning analysis is expected to be limited.

2.3. Partition into a Training and Validation Datasets

We have selected 500 fake sites and 500 authentic sites to include in a training dataset,
while the remaining 3097 fake sites and 2849 authentic sites are preserved for validation.

https://ranking.rakuten.co.jp

Mach. Learn. Knowl. Extr. 2021, 3 99

The training dataset will be used to train classifiers, while the validation dataset will be
used to evaluate how well the classifiers have been trained.

3. Similarity Measures for DOM Trees

As described, we expect that DOM trees include features that persist despite adver-
saries’ efforts to slip past detection attempts. Nevertheless, not all features of DOM trees
are appropriate to use for our purpose. In the following, we will describe what features of
DOM trees we should leverage in our proposal.

3.1. Measures Based on Shallow Features

Figure 2 shows histograms of the vertex number s(t), the leaf number l(t) and the
height h(t) of DOM trees t in the training dataset: a leaf is a vertex of t with no children; h(t)
is the length of the longest upward paths from a leaf to the root in t. We can observe that
the thresholds of 970, 498 and 23 for s(t), l(t) and h(t) can separate the distributions of fake
and authentic sites clearly, and the accuracy rates reach 0.941, 0.943 and 0.974, respectively.

Figure 2. The size, the number of leaves and the height of DOM trees of fake and authentic sites.

Despite the high accuracy of the methods, we cannot use them for our purpose,
because adversaries can easily change these values by adding dummy tags to HTML
documents without altering their logical meaning or layout. It is also important to note
that an appropriate detection method must not be affected by these indices. Otherwise,
adversaries can lower the effective detection accuracy by equalizing sizes of trees.

One alternative we might consider to evaluate the similarity of trees is the use of edit
distances with distance-based classifiers (for example, k-nearest-neighborhood). However,
this method also relies on shallow features. The edit distance is a widely used class of
dissimilarity measures and has been intensively studied for a long time. The Taï distance [1]
is a well-known example, and many variations have been derived from it. Among them,
the subpath distance, which is based on subpaths in trees, has proven to be excellent in
classification accuracy [27]: a subpath is an upward sequence of one or more contiguous
vertices of a tree (Figure 3). When SP(t) denotes the entire set of subpaths of a tree t, the
following formula defines the distance:

dSP(t1, t2) = |t1|+ |t2| − 2 ·max{|p| | p ∈ SP(t1) ∩ SP(t2)}.

html

head

title
link

body

figure

div

a

img

table

tbody

tr

td td

tr

td td

Figure 3. A subpath: tr:tbody:table.

This approach does not meet our purposes because dSP(t1, t2) relies on a single longest
subpath shared between t1 and t2. In fact, when t1 is fake and t2 is authentic, adversaries

Mach. Learn. Knowl. Extr. 2021, 3 100

can modify only a small portion of t1 limiting the resulting change to its logical meaning
and layout to the minimum so that t1 and t2 share a longer path, which results in a decrease
of dSP(t1, t2). Any variations of the Taï distance suffer from the same problem, since they
evaluate the similarity only by maximal shared substructures in the same way as the
subtree distance.

3.2. Measures Based on Deep Features

In this paper, we pursue measures that evaluate the similarity of the entire spectrum
distributions of substructures in trees.

For example, Figure 4 depicts spectrum distributions of SP(t) for a fake tree, an au-
thentic tree and a tree whose authenticity is unknown: the x axis represents subpaths that
appear in t, while the y axis indicates their occurrence numbers. Whether the third tree is
fake or authentic should be determined by to which the unknown spectrum distribution is
more similar, the first or the second. As mentioned, the edit distance dSP(t1, t2) leverages
only the length of the longest common subpaths that appear in the distributions and ignore
the remainder of the spectrum distributions.

Figure 4. Spectrum distributions of subpaths in trees. Detection is carried out based on which the distribution of an
unknown site is more similar to, the distribution for a fake site or the distribution for an authentic site.

In contrast, a similarity measure that we are pursuing should incorporate every
local similarity of the distributions into evaluation: the entire set of substructures of a
tree t (for example, SP(t)) determines a neighborhood system around vertices of t, and
hence, structural information around every vertex definitely affects the entire spectrum
distribution; It is difficult for adversaries to intentionally control changes of a spectrum
distribution, because every small change of a tree (for example, a substitution, insertion
and deletion of a vertex) will spread widely over the distribution.

We can search such measures from tow major categories: divergences and positive
definite mapping kernels.

• Kullback-Leibler divergence is the best known example, but it does not satisfy the
axiom of symmetry. The symmetric divergences include Jensen-Shannon divergence,
Bhattacharrya distance, Hellinger distance, Lp-norm and Brownian distance. Diver-
gences can be used with distance-based classifiers such as the nearest centroid and
k-nearest neighborhood algorithms for classification, and k-means and k-memoid
algorithms for clustering.

• A positive definite kernel K : X ×X → R can be viewed as an inner product operator
〈·, ·〉 of some inner product spaceH [28] (reproducing kernel Hilbert space, RKHS).
That is, by some mapping Φ : X → H, an element x ∈ X can be identified with a
vector Φ(x) ∈ H, and K(x, y) = 〈Φ(x), Φ(y)〉 holds. In particular, normalization of
K(x, y) yields the well-known cosine similarity.

K(x, y)√
K(x, x)K(y, y)

=
〈Φ(x), Φ(y)〉
‖Φ(x)‖‖Φ(y)‖ = cos θ.

More importantly, by identifying X as a subspace of H, we can extensively apply
many useful multivariate analysis techniques to X including PCA for feature extrac-
tion, SVM classifier for classification, the kernel k-means algorithm for clustering,
and Gaussian process analysis for regression. A positive definite mapping kernel [27],
in addition, evaluates spectrum distributions.

Mach. Learn. Knowl. Extr. 2021, 3 101

Although both divergences and positive definite mapping kernels can be used for
our purpose of evaluating the similarity between DOM trees, this paper deploys the latter,
since the advantage of multivariate analysis is significant.

3.3. Prior Work on Tree Mapping Kernels
3.3.1. Positive Definite Mapping Kernels

The mapping kernel is a generalization of the well-known convolution kernel [29] and
is defined as follows.

For sets x and y, we call a subset µ ⊆ x× y a mapping from x to y and allocate a set
of mappings Mx,y to each pair (x, y). Hence, when X denotes a family of sets, we have
a mapping systemM determined byM = {Mx,y | (x, y) ∈ X ×X}. Furthermore, we let
k : Ω×Ω→ R be an arbitrary kernel defined over Ω =

⋃
x∈X x. Then, the mapping kernel

associated with X and k is determined by

KM,k(x, y) = ∑
µ∈Mx,y

∏
(v,w)∈µ

k(v, w). (1)

For example, a convolution kernel is a mapping kernel with the setting of MH
x,y =

{{(v, w)} | v ∈ x, w ∈ y} and is of the form of

KMH,k(x, y) = ∑
(v,w)∈x×y

k(v, w).

Positive definiteness of a kernel allows us to view it as the inner product operator
of some inner product space (RKHS). With respect to positive definiteness of mapping
kernels, we have

Theorem 1. (Shin et al. [30].) The following are equivalent.

1. KM,k is positive definite, if k is positive definite.
2. M is transitive, that is, if µ ∈ Mx,y and ν ∈ My,z, then the composition ν ◦ µ is in Mx,z.

For more details, refer to Appendix A.

3.3.2. Tree Mapping Kernels

In this paper, a tree always means a rooted ordered tree. A rooted ordered tree
is equipped with two orders of vertices: a generation order and a traversal order; A
generation order determines an ancestor-to-descendant relation of vertices; v < w indicates
that v is an ancestor of w; In particular, v � w means that v is the immediate ancestor
(parent) of w; The traversal order ≺, on the other hand, determines a left-to-right relation;
The nearest common ancestor of v and w is denoted by v ∧ w. In Figure 3, for example,
html < figure, body � figure, head ≺ figure and figure ∧ tbody = body hold. For a
formal description, refer to Appendix B.

Furthermore, we assume the vertices of trees are all labeled: We denote the labeling
function by ` : Ω→ A, where Ω is the entire set of labeled vertices of our target trees and
A is the alphabet of labels.

When x ⊆ Ω and y ⊆ Ω represent two trees, a mapping set Mx,y to be used for a
mapping kernel should be determined so that it reflects the interior structures of x and y.
The minimum requirements for µ ∈ Mx,y are:

1. µ is a one-to-one partial mapping;
2. µ preserves the generation orders of x and y, that is, µ(v) < µ(w), if, and only if,

v < w;
3. µ preserves the generation orders of x and y, that is, µ(v) ≺ µ(w), if, and only if,

v ≺ w;

In [31], 32 different mapping systems are defined, and the associated tree mapping
kernels are investigated. Among them, we see two examples.

Mach. Learn. Knowl. Extr. 2021, 3 102

• The elastic tree kernel [32] is an important example of tree kernels in the literature and
is also defined as an instance of mapping kernels with mapping sets ME

x,y determined
so that µ ∈ ME

x,y satisfies (1) v∧w ∈ Dom(µ), if {v, w} ⊆ Dom(µ), and (2) µ(v∧w) =

µ(v) ∧ µ(w). Figure 5 exemplifies µ ∈ ME
x,y.

• The subpath kernel [4,33] is also a mapping kernel determined by MSP
x,y , which consists

of µ ⊂ x × y such that Dom(µ) and Ran(µ) are subpaths. Figure 6 exemplifies
µ ∈ MSP

x,y ,

v1

v2

v3

v4

v5

x

w1

w2

w3

w4 w5

y

Figure 5. Agreement subtrees and {(vi, wi)}i=1,...,5 ∈ ME
x,y.

v1

v2

v3

v4

x

w1

w2

w3

w4

y

Figure 6. Subpaths and {(vi, wi)}i=1,...,4 ∈ MSP
x,y.

For the interior kernel k : Ω ×Ω → R to be used in Equation (1), we can use the
following kernel with two weight parameters α and β:

kα,β(v, w) = (α− β)δ`(v),`(w) + β =

{
α, if `(v) = `(w);
β, otherwise.

(2)

It is easy to see that kα,β is positive definite, if α ≥ β ≥ 0. For the elastic and subpath
tree kernels, we further constrain β to be zero.

3.3.3. A Comparison of Tree Mapping Kernels

In [31,33], tree mapping kernels obtained from Equations (1) and (2) are comprehen-
sively investigated with respect to the classification accuracy when used with support
vector classifiers (SVC). A mapping systemM is chosen out of 32 different types including
ME

x,y and MSP
x,y , while (α, β) moves over grid points in the region of 0 ≤ β ≤ α ≤ 1. The

comparison is based on averaged ten-fold cross validation scores (accuracy scores) across
ten independent datasets.

Figure 7 shows the result of the comparison focusing on the best six tree kernels
investigated. For the subpath, parse and elastic tree kernels, β was fixed to zero, while α
was adjusted to show the best accuracy performance. For the other kernels, both α and β

Mach. Learn. Knowl. Extr. 2021, 3 103

were adjusted. In the chart, the values in the hatched rectangles show the averaged rank
of each kernel, while the figures in parentheses that follow kernel names are p-values of
Hommel test [34] as recommendation by [35]. We should remark that the subpath kernel
overwhelmingly outperforms the other kernels.

1 2 3 4 5 6

1.1 Subpath kernel (Control)

3.55SPI kernel [31] (3.1× 10−3)

3.75Parse tree kernel [3] (3.4× 10−3)

3.95 Elastic tree kernel [32] (2.0× 10−3)

4.0 CPI kernel [31] (1.6× 10−3)

4.65 CD kernel [30] (0.1× 10−3)

Figure 7. The averaged ranks and the p-values of Hommel test, displayed between parentheses, of
the parse tree kernel [3], the elastic tree kernel [32], the SPI, CPI and CD kernels [30] with the subpath
kernel as control. The red thick line represents the critical distance for the significance level 0.01.

3.4. Conclusion on Kernel Selection

To confirm the superiority of the subpath kernel in classification accuracy, we run an
additional experiment using a dataset with 25 fake DOM trees and as many authentic DOM
trees. In the experiment, we compare the subpath kernel with 59 tree kernels including
the kernels tested in [31,33]. Figure 8 shows the result. The accuracy scores are measured
through ten-fold cross validation. Only the subpath kernel marks 1.0 accuracy, while
the scores of all the other kernels falls between 0.54 and 0.93. Thus, the subpath kernel
outperforms even for the dataset of this paper.

Figure 8. Comparison of the subpath Kernel (SPK) with other major tree kernels in accuracy. The
dataset used consists of 50 fake DOM trees and 50 authentic DOM trees.

In addition, the subpath kernel has the following advantages.

• Linear time algorithms to compute the subpath kernel are known [4,5]. Since the time
complexity of computing other tree kernels is mostly of the quadratic order of the

Mach. Learn. Knowl. Extr. 2021, 3 104

size of input trees, this advantage is significant. In particular, this enables real-time
detection of fake large-scale DOM trees with thousands of vertices.

• The definition of the subpath kernel is invariant no matter whether trees are ordered
or unordered. Although DOM trees are derived as ordered trees, adversaries may
change the traversal order of vertices without impacting their logical meaning or
layout. Thus, we see that the results by the subpath kernel is secure against the attack
of changing the traversal order.

4. The Subpath Kernel

In this section, we look into the subpath kernel more closely.

4.1. Efficient Computing of the Subpath Kernel

In [5], a linear-time algorithm to compute the subpath kernel is presented. It takes a
least common prefix (LCP) array as an input, and LCP are computed from a suffix array
extracted from trees [5].

4.1.1. Extraction of Suffixes

For better efficiency of computation, the first step of suffix array extraction is assign-
ment of unique identifier to HTML tags. In this section, we use the following assignment.
3:html 4:head ... 6:title 7:link 8:body 9:js 10:div ... 13:img ...
17:a ... 21:span 22:form 23:table 24:tbody 25:tr 26:td ... 65:figure ...

A suffix is a sequence of the identifiers of HTML tags of a subpath from a vertex of a
DOM tree to the root. Figure 9 exemplifies a DOM tree and all the suffixes extracted from it.
Since the DOM tree consists of 17 vertices, 17 suffixes are extracted. For example, a subpath
tr:tbody:table:body:html corresponds to a suffix [25,24,23,8,3]. In the suffix array,
suffixes are sorted in the lexicographical order. A linear-time algorithm to compute the
sorted suffix array is presented in [4].

html

head

title
link

body

figure

div

a

img

table

tbody

tr

td td

tr

td td

[[3], [4,3], [6,4,3], [7,4,3], [8,3], [10,65,8,3],
[13,17,10,65,8,3], [17,10,65,8,3], [23,8,3], [24,23,8,3],
[25,24,23,8,3], [25,24,23,8,3], [26,25,24,23,8,3],
[26,25,24,23,8,3], [26,25,24,23,8,3], [26,25,24,23,8,3],
[65,8,3]]

Figure 9. A DOM tree and the associated suffix array. The subpath consisting of red vertices and red
edges in the left tree chart corresponds to the suffix displayed in red in the right suffix array.

4.1.2. Generation of Least Common Prefix Arrays

To generate an LCP array for two trees x and y, the suffix arrays of x and y are first
merged and are the sorted in a lexicographical order. Table 1 shows an example: suffixes
extracted from x of Figure are displayed in red, while y in black.

The LCP length for a suffix in the merged array is determined by the length of the
longest common prefix between the suffix and the next suffix. For example, the suffixes of
[26,25,10,24,23,8,3] and [26,25,24,23,8,3] are adjacent, and their longest common
prefix is [26,25]. Therefore, the LCP length assigned to [26,25,10,24,23,8,3] is two as
displayed in red. −1 is assigned to the last suffix.

4.2. Understanding the Decay Factor α

When computing KSP(x, y), a subpath with n vertices shared between x and y is
counted by a factor of αn. Therefore, the contribution of long subpaths increases, as α
becomes greater. To be precise, if a subpath with n vertices is shared by x and y, they also

Mach. Learn. Knowl. Extr. 2021, 3 105

share i subpaths with n + 1− i vertices, and therefore, its contribution to the kernel value
is evaluated by

γ(n, α) =
n

∑
i=1

iαn+1−i =

 α
α−1

(
αn+1−1

α−1 − n− 1
)

, if α 6= 1;
n(n+1)

2 , if α = 1.

Figure 10 shows the change of the ratio γ(10,α)
γ(m,α) , when m and α changes. We see that a

single subpath with ten vertices is equivalent to 91 subpaths with two vertices for α = 1.5,
and the number rapidly decreases as m increases and α decreases.

Table 1. An LCP array.

Suffixes LCP ∈ x?

3 1 0
3 0 1
4,3 0 0
6,4,3 0 0
7,4,3 0 0
8,3 2 0
8,3 0 1
10,24,23,8,3 1 1
10,65,8,3 0 0
13,17,10,65,8,3 0 0
17,10,65,8,3 0 0
23,8,3 3 0
23,8,3 0 1
24,23,8,3 4 0
24,23,8,3 0 1
25,10,24,23,8,3 1 1
25,24,23,8,3 5 0
25,24,23,8,3 0 0
26,25,10,24,23,8,3 7 1
26,25,10,24,23,8,3 2 1
26,25,24,23,8,3 6 0
26,25,24,23,8,3 6 0
26,25,24,23,8,3 6 0
26,25,24,23,8,3 0 0
65,8,3 −1 0

Figure 10. Transition of γ(10, α)/γ(m, α) when m moves (left) and α moves (right).

Mach. Learn. Knowl. Extr. 2021, 3 106

5. The Proposed Method

After seeing the entire picture of the steps of our detection system, we see experimental
results on the performance of each step. In the experiments, we use iMac Pro with 14 core
2.5 GHz Intel Xeon W and 128 Gbyte memory.

5.1. The Entire Picture

Figure 11 depicts the entire structure of our proposed system. HTML mark-up doc-
uments are first input into an HTML parsing/sanitization program, which extract DOM
trees from them after eliminating and correcting non-standardized descriptions included.
The obtained DOM trees are input into a suffixes extracting program (Section 4.1.1), and
the obtained suffix arrays are stored in a database. Since the suffix array of a DOM tree
will be used for multiple times to compute the subpath kernel values with other DOM
tree, storing the suffix array in a database will be beneficial to improve the efficiency of the
entire process.

In the next step, the necessary subpath kernel values are computed. When a training
dataset consists of DOM trees x1, . . . , xn, the complete Gram matrix

G(x1, . . . xn) =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)

.

Is computed. k(xi, xj) is the normalized value of the subpath kernel value KSP deter-
mined by

k(xi, xj) =
KSP(xi, xj)√

KSP(xi, xi)
√

KSP(xj, xj)
.

The normalization is necessary to eliminate undesirable effects caused by different
sizes of DOM trees (Section 3.1). For the prediction purpose, kernel values are computed
only between the DOM trees in a test dataset and the DOM trees that comprise support
vectors in the training dataset. To compute the subpath kernel value KSP(x, y), the LCP
array between x and y is first computed (Section 4.1.2), and then, it is input into the
linear-time algorithms presented in [5].

Suffixes Extraction

HTM
L Parsing/Sanitization

Training
HTML
Data

Test
HTML
Data

Labels

DATABASE

Param
eter

Optim
ization

M
anual

Verification

True Labels

LCP Array Generation

Prediction

Predicted Labels

Subpath
KernelCom

putation

Optimal
Parameters

Figure 11. The overall process flow.

Mach. Learn. Knowl. Extr. 2021, 3 107

In the step of parameter optimization, the optimal values for the two hyper-parameters
of the decay factor α and the regulation coefficient C of SVC are computed through a grid
search algorithm.

In the prediction step, a separating hyper-plane in the reproducing kernel Hilbert
space is computed with the training dataset and the associated optimal hyper-parameters,
and then, a predicted label of a DOM tree in the test dataset is computed by SVC.

5.2. Suffixes Extraction

The suffix array extraction program of our system takes a batch of DOM trees as inputs,
and then, computes the associated suffix arrays efficiently through parallel computation.
Figure 12 shows the averaged time in milliseconds to extract suffix arrays from a single
DOM tree, when changing the batch size from 50 to 1000. Although the time scores for
n = 50 and 100 are higher because of the overhead of parallel computation, we see that our
program can process a single DOM tree in 20 milliseconds on average.

5.3. Gram Matrix Generation

Since a Gram matrix is symmetric, to compute an n-dimensional Gram matrix, com-
putation of n(n+1)

2 kernel values is necessary. Hence, the effect of deploying parallel
computation is expected to be greater than used for suffix array extraction.

Figure 13 shows the total run-time scores of computing Gram matrices for n that
varies from 50 to 1000. Although the total run-time (the blue line) should be in theory
proportional to the number of kernel values to compute (the orange line), we can see a gap
between them that is caused by the overhead of using parallel computation.

In fact, Figure 14 plots the averaged computation time to compute a single kernel
value, that is, the ratio of the total run-time to the number of kernel values. the effect
of the overhead is evident, when n is small. As n increases, the contribution of parallel
computation becomes remarkable, and the averaged time only as great as 60 microseconds.

5.4. Hyper-Parameter Optimization

To build optimal models, there are two adjustable hyper-parameters: the decay factor
α for the subpath kernel and the regulation coefficient C for SVC. Our program for hyper-
parameter optimization performs a simple grid search by changing α from 0.1 to 2.0 with
an interval 0.1 and log10 C from −5 to 5 with an interval 1. The total number of different
combinations of α and C to test is 220. For evaluation of each combination of α and C,
cross-validation scores with five folds are used. We evaluate the performance of this step
from both efficiency and accuracy points of view.

Figure 12. Time for suffix array extraction per DOM tree.

Mach. Learn. Knowl. Extr. 2021, 3 108

Figure 13. Time for Gram matrix generation.

Figure 14. Time for kernel computation per kernel value.

Figure 15 shows that the relationship between the total run-time for optimizing the
hyper-parameters and the size n of training datasets can be fit to an increasing regression
line with a determination coefficient as high as 0.968. Furthermore, the run-time for
n = 1000 is 3004 s≈ 50 min. Due to the excellent generalization performance of SVC, we can
obtain good models even for n ≤ 1000, and hence, model updates can be performed quickly.

Figure 16a consists of a plane view and a contour plot of the cross-validation scores
(accuracy scores) obtained through the grid search for n = 1000. Except that there is a
steep drop-off where the score falls from 1.0 to 0.857 within the rectangular area with
1.4 ≤ α ≤ 12.0 and −5 ≤ log10 C ≤ −1, the score is mostly 1.0.

When investigating the cases of fake and authentic sites separately (Figure 16b,c,
the accuracy score for the fake sites, computed by TP

TP+FN , varies within a narrow range
between 0.976 and 1.0, while the score for the authentic site, computed by TN

TN+FP , has a
steep drop-off in the same rectangular area as the score for the entire dataset.

For the smaller training datasets we have tested, we observe the same property for
most of cases (Figure 17). In particular, the maximum cross-validation is 1.0 for all the cases
including when the dataset size is as small as 50.

Mach. Learn. Knowl. Extr. 2021, 3 109

Figure 15. Time for hyper-parameter optimization. The formula of the regression line is y = 2.80x + 47.0, and the determi-
nation coefficient is R2 = 0.968.

(a) All (b) Fake (c) Authentic

1

2

2

max = 1.000, min = 0.857 max = 1.000, min = 0.976 max = 1.000, min = 0.714

Figure 16. Five-fold cross validation scores for the training dataset of size 1000. In a wide area, the score is as high as 1.0.

Mach. Learn. Knowl. Extr. 2021, 3 110

Size = 50 Size = 100

(a) All (b) Fake (c) Authentic (a) All (b) Fake (c) Authentic

max = 1.000 max = 1.000 max = 1.000 max = 1.000 max = 1.000 max = 1.000

Size = 200 Size = 300

(a) All (b) Fake (c) Authentic (a) All (b) Fake (c) Authentic

0.885 to 1.000 0.950 to 1.000 0.770 to 1.000 0.823 to 1.000 0.967 to 1.000 0.647 to 1.000

Size = 400 Size = 500

(a) All (b) Fake (c) Authentic (a) All (b) Fake (c) Authentic

0.860 to 1.000 0.970 to 1.000 0.720 to 1.000 0.862 to 1.000 0.972 to 1.000 0.724 to 1.000

Size = 600 Size = 700

(a) All (b) Fake (c) Authentic (a) All (b) Fake (c) Authentic

0.850 to 1.000 0.977 to 1.000 0.700 to 1.000 0.864 to 1.000 0.969 to 1.000 0.729 to 1.000

Size = 800 Size = 900

(a) All (b) Fake (c) Authentic (a) All (b) Fake (c) Authentic

0.878 to 1.000 0.960 to 1.000 0.755 to 1.000 0.856 to 1.000 0.956 to 1.000 0.711 to 1.000

Figure 17. Cross validation scores for training datasets of size = 50, 100, 200, 300, 400, 500, 600, 700, 800 and 900.

5.5. Prediction

Next, using the 5946 validation examples, we test only the parameter combinations
that have shown the highest cross-validation score of 1.0. Figure 18a shows the obtained
accuracy scores. Interestingly, it turns out that the score drops rapidly from 0.98 to 0.8,
when the decay factor exceeds 1.3. This implies that overfitting has occurred. When we
focus on the fake sites, as Figure 18b shows, the range of the accuracy score is very narrow
between 0.999 and 0.992, and the identification problem of fake sites turns out not to be
sensitive to hyper-parameter selection. On the other hand, Figure 18c shows that learning
of authentic sites with a decay factor higher than 1.3 is likely to generate overfitting models,
whose accuracy score can be as low as 0.579.

Mach. Learn. Knowl. Extr. 2021, 3 111

As seen in Section 4.2, the subpath kernel with a high decay factor evaluates longer
shared subpaths more significantly. Hence, the results of the validation shows that pages
of authentic sites are better characterized by shorter subpaths rather than longer subpaths.

Furthermore, Figure 19 shows the results of validation when we use training datasets
whose size are smaller than 1000. Surprisingly, even small datasets can exhibit very high
accuracy, and for example, a dataset with only 50 examples shows the accuracy score
of 0.994. Also, we can observe overfitting occurring in the same way and under almost
the same conditions as when we use a dataset of size 1000, and SVC shows the best
accuracy performance when the parameters are selected from the area of 0.9 ≤ α ≤ 1.1 and
0 ≤ log10 C ≤ 5.

Once the hyper-parameters α and C are specified, we will be able to make prediction
on which unknown sites are fake or authentic based on their DOM trees.

The first step of prediction is the step to train an SVC based on the hyper-parameter
values obtained in the previous optimization process and the training dataset used. The
output of training SVC is a model that specifies the separating hyperplane computed
through training.

In our system, we assume that, once an SVC is trained, we continue to use the same
SVC to make many predictions. Hence, the time efficiency of training an SVC is not
significantly critical.

(a) All (b) Fake (c) Authentic

max = 0.998 max = 0.999 max = 1.000

min = 0.798 min = 0.992 min = 0.579

Figure 18. Accuracy scores for 5946 validation examples with a model that has learnt 1000 training examples.

Mach. Learn. Knowl. Extr. 2021, 3 112

Size = 50 Size = 100

(a) All (b) Fake (c) Authentic (a) All (b) Fake (c) Authentic

0.967 to 0.994 0.937 to 0.989 0.974 to 1.000 0.971 to 0.996 0.972 to 0.996 0.947 to 1.000

Size = 200 Size = 300

(a) All (b) Fake (c) Authentic (a) All (b) Fake (c) Authentic

0.971 to 0.995 0.969 to 0.997 0.974 to 1.000 0.823 to 0.997 0.982 to 0.999 0.632 to 1.000

Size = 400 Size = 500

(a) All (b) Fake (c) Authentic (a) All (b) Fake (c) Authentic

0.823 to 0.998 0.986 to 0.999 0.632 to 1.000 0.811 to 0.998 0.985 to 0.999 0.605 to 1.000

Size = 600 Size = 700

(a) All (b) Fake (c) Authentic (a) All (b) Fake (c) Authentic

0.811 to 0.998 0.996 to 0.999 0.605 to 1.000 0.811 to 0.998 0.973 to 0.999 0.605 to 1.000

Size = 800 Size = 900

(a) All (b) Fake (c) Authentic (a) All (b) Fake (c) Authentic

0.811 to 0.998 0.989 to 0.999 0.605 to 1.000 0.811 to 0.998 0.992 to 0.999 0.605 to 1.000

Figure 19. Accuracy scores for 5946 validation examples with models that have learnt n training examples: n = 50, 100, 200,
300, 400, 500, 600, 700, 800, 900.

Figure 20 shows the runtime t in seconds to train an SVC when the size n of a dataset
varies. When excluding one outlier (n = 400), the relation between t and n fits to a line
with determination coefficient 0.990. When n = 400, the objective function has converged
exceptionally slowly, and the program of libSVM [36] has reached the default upper limit
of 10,000,000 iterations. Including this exceptional datum, the total runtime for training
does not one minute largely. We can conclude that

Mach. Learn. Knowl. Extr. 2021, 3 113

Figure 20. Time for training an SVC.

The actual output of training an SVC is a subset of examples of a training dataset,
which uniquely determines a hyperplane. To make a prediction on a new DOM tree,
it suffices to compute the kernel values between the new DOM tree and the support
vectors Since these DOM trees have been converted into suffix arrays in the suffix arrays
extraction process, computing these kernel values can be performed very quickly by taking
advantages of the algorithm introduced by [5].

In fact, Figure 21 shows the averaged runtime to make a prediction for a single un-
known DOM tree and the number of support vectors for eleven training datasets with
different sizes. We can see that the runtime and the number of support vectors are faithfully
proportional. Although the runtime for n = 200 is exceptionally high, it is only 65 millisec-
onds. For the other datasets the scores are lower than 25 milliseconds. This indicates that
our system can sufficiently realize real-time detection of fake sites.

1

Figure 21. Time for prediction and number of support vectors.

5.6. Comparison in Accuracy Performance

Table 2 exhibits the results of comparison of our method trained by 100 and 1000 data,
respectively, against seven benchmark methods for phishing site detection in terms of
accuracy performance. The accuracy performance is evaluated using four measures of
precision, recall, F-score and accuracy rate, if possible. We see that our method trained with
1000 data (500 fake and 500 authentic) outperforms the others for all of the four measures.
Interestingly, even when our method is trained with only 100 data, the measurements are
almost compatible with the best of the benchmark methods.

Mach. Learn. Knowl. Extr. 2021, 3 114

Table 2. Comparison in accuracy performance of our method (Subpath Kernel) against benchmark methods: PREC. = TP
TP+FP ;

RECALL = TP
TP+FN ; F-SCORE = 2×TP

2×TP+FP+FN ; ACC. = TP+TN
TP+FP+FN+TN .

Method Test Dataset Train Evaluation

Authentic Fake /Test Prec. Recall F-Score Acc.

Subpath Kernel (100) 2849 3097 1/60 0.988 1.000 0.994 0.994
Subpath Kernel (1000) 2849 3097 1/6 0.999 1.000 0.999 0.999

Whittaker et al. [15] 1,499,109 16,967 6/1 0.989 0.915 0.951 0.999
Cantina [16] 2100 19 – 0.212 0.89 0.342 0.969
PhishStorm [17] 48,009 48,009 9/1 0.984 0.913 0.947 0.949
PhishShield [37] 250 1600 – 0.999 0.971 0.985 0.966
Yang et al. [21] 22,390 22,445 44/1 0.994 0.986 0.996 0.989
Sonmez et al. [23] – – – – – – 0.953
Tyagi et al. [38] – – – – – – 0.984

Mainly because the datasets used for the evaluation are different according to the
methods, we cannot statistically conclude that our method is superior to the benchmark
methods. However, we should emphasize that our method leverages robust features
derived from distributions of subpaths in DOM trees. In contrast, the benchmark methods
mainly rely on shallow features, which the adversaries can alter without difficulties.

Furthermore, we should note the fact that our method exhibited high accuracy per-
formance using small datasets for training and significantly larger datasets for testing.
This observation should be a clear evidence that indicates the excellent generalization
performance of our method. The practical meanings of this observation are: we can re-
duce the frequency of model renewal; and the model renewal by itself can be performed
significantly efficiently.

6. Conclusions

We have shown a method to realize highly accurate and real-time detection of fake
e-commerce sites based on DOM tree similarity. We demonstrated its accuracy and speed
on a real dataset provided by Rakuten. While the efficiency and performance of our
method alone make it compelling, another advantage is the minimal amount of training
data required. We believe our method has the potential to increase the safety of e-commerce
solutions. Not only does it detect fake sites quickly and with high accuracy, given that it
requires only small training data sets, it allows web security software to update itself more
quickly against new threats as they emerge.

Author Contributions: K.S. developed the core idea of applying the subpath kernel to fake website
detection; K.S. and T.I. contributed equally to prototyping, performing experiments, writing text
and generating graphics; Y.-L.L. prepared the datasets used in the experiments and gave technical
advice as an information security expert; D.L.S. offered guidance as an expert in machine learning
and contributed to the writing process. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was partially supported by the Grant-in-Aid for Scientific Research (JSPS
KAKENHI Grant Number 17H00762) from the Japan Society for the Promotion of Science.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable (The original fake e-commerce sites are no
longer available because, as a result of this research, most were shut down).

Acknowledgments: The authors received valuable information on cyber crimes committed relating
to fake e-commerce sites from Hyogo Prefectural Police.

Mach. Learn. Knowl. Extr. 2021, 3 115

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. A Theory of Positive Definite Kernels

A real-valued kernel is a symmetric bivariable function K : X ×X → R defined over
a set X . A positive definite kernel, on the other hand, is defined by

Definition A1. A kernel K : X × X → R is positive definite, if, and only if, ∑n
i=1 ∑n

j=1 cicj

K(xi, xj) ≥ 0 holds for any n ∈ N, {x1, . . . , xn} ⊆ X and {c1, . . . , cn} ⊆ R.

The simplest example of positive definite kernels is a dot product over a finite dimen-
sional vector space X = Rn: the dot product of vvv = (v1, . . . , vn) and www = (w1, . . . , wn) in
Rn is determined by vvv ·www = ∑n

i=1 viwi. In reverse, Theorem A1 asserts that any positive
definite kernel can be viewed as an inner product defined over a linear space.

An n-dimensional matrix [K(xi, xj)]i,j=1,...,n given for {x1, . . . , xn} ⊂ X is referred to
as a Gramian matrix, and K is positive definite, if, and only if, the Gramian matrix for any
{x1, . . . , xn} ⊂ X has no negative eigenvalues [28]. For a positive definite kernel, we have

Theorem A1. (Schönberg [28]). K is positive definite, if, and only if, there exists a projection π of
X into a real Hilbert spaceH with inner product 〈·, ·〉 such that K(x, y) = 〈π(x), π(y)〉 for any
(x, y) ∈ X ×X . ThisH is called the reproducing kernel Hilbert space (RKHS).

A Hilbert space H is a linear space with inner product such that any Cauchy series
with respect to the topology induced from the inner product converges to a point inH. The
dimension of the RKHS of finite X is bounded above by |X |.

WhenX j RD, positive definite kernels is commonly used to obtain linear separability,
an important condition to apply some classifiers such as the support vector classifier (SVC).
If a hyperplane separates sets of positive examplesP = {vvv1, . . . , vvvm} and negative examples
N = {www1, . . . , wwwn}, we say that P and N are linearly separable. For P and N that are not
linearly separable, we can leverage Theorem A1 to map the points of X in a Hilbert space
H so that the images of P and N become linearly separable inH. For this purpose, we can

use Gaussian kernels, also known as RBF kernels, defined by G(xxx, yyy) = exp
(
− ‖xxx−yyy‖2

2σ2

)
,

for example.
Theorem A1 proves its merits, when the elements of X are not vectors. In fact, we

assume that X is a space of (DOM) trees in this paper. The projection π maps trees to
points inH, and hence, we become capable to apply multivariate analysis to the projected
points. Moreover, many techniques of multivariate analysis rely only inner products
of the projected points, and their inner products can be computed through the kernel
function. This proves to be significantly faster in many cases than direct computation of
inner products inH, which can be highly dimensional.

To obtain positive definite kernels for trees, the convolution kernel and Haussler’s
theorem are a fundamental tool. We assume a kernel k : Ω×Ω→ R defined over a set Ω
and let X consist of finite subsets of Ω. For (x, y) ∈ X ×X ,

K(x, y) = ∑
(v,w)∈x×y

k(v, w)

Defines a convolution kernel. In our setting, Ω is a space of vertices, and k is a
similarity function for vertices. A typical example of k is Kronecker’s delta function δv,w on
labels of vertices: if two vertices v and w have the same label, k(v, w) = 1, and k(v, w) = 0,
otherwise. Moreover, we denote a tree with a vertex set x ⊆ Ω by the same symbol x, and
therefore, the associated convolution kernel is a tree kernel.

Haussler’s theorem asserts.

Mach. Learn. Knowl. Extr. 2021, 3 116

Theorem A2. (Haussler [29]). If k is positive definite, the associated convolution kernel K is
positive definite.

Appendix B. Rooted Ordered Trees

We first define rooted trees. In this paper, we define a rooted tree as a particular class
of partially ordered sets.

We let (V,≤) be a partially ordered set. Hence, the following hold: v ≤ v; v = w if
v ≤ w and w ≤ v; v ≤ u if v ≤ w and w ≤ u. We denote v < w, if v ≤ w and v 6= w.

Definition A2. A partially ordered set (V,≤) is a rooted tree, if, and only if, the following
conditions are met.

1. The root r ∈ V exists such that r ≤ v for any v ∈ V.
2. For any v ∈ V, Vv = {w | w ≤ v} is totally ordered.

In the definition, V means a set of vertices of a tree, and the order ≤ determine a
generation order. We say v ∈ V is an ancestor of w ∈ V, if v < w holds. If v is the nearest
ancestor of w, we denote v � w and say that v is the parent of w and w is a child of v. A
vertex with no children is called a leaf. Also, the nearest common ancestor v ∧ w is defined
for {v, w} ⊆ V by

Definition A3. The nearest common ancestor v ∧ w is the maximum vertex of Vv,w = {u ∈ V |
u ≤ v, u ≤ w}.

For any (v, w) ∈ V ×V, v ∧ w always exists and is unique.
On the other hand, a rooted tree t with an entire set of leaves L is called an ordered

tree, when

Definition A4. If the leaves is numbered by L = {l1, . . . , l|L| so that li ∧ lj ∧ lk = li ∧ lk holds
for any 1 ≤ i < j < k ≤ L, we say that the tree is ordered.

Figure A1 exemplifies a numbering of leaves of an ordered tree. Also, a leaf numbering
canonically introduces a traversal order among vertices.

html

head

1 2

body

figure

div

a

3

table

tbody

tr

4 5

tr

6 7

Figure A1. An ordered tree.

Definition A5. For two distinct vertices v and w of a rooted ordered tree (V,≤), we define v ≺ w,
if, and only if, max{i | li ≥ v} < min{i | li ≥ w} holds.

In Figure A1, head ≺ body follows max{i | li ≥ head} = 2 < 3 = min{i | li ≥ body}.

Appendix C. Edit Distances for Trees

We briefly study edit distances for trees. In particular, we introduce the constrained
distance (Appendix C.3) and the degree-two distance (Appendix C.4).

Mach. Learn. Knowl. Extr. 2021, 3 117

Appendix C.1. Taï Distance and Its Variations

Levenshtein [2] first defined the first instance for strings, and later, Taï [1] extended
it to trees. The Taï distance is defined as the minimum length of paths from a tree t1 to
another tree t2 in the entire graph of trees. The graph includes trees as vertices, while an
edge is defined between a tree and another, if, and only if, one is converted into the other
by substitution, deletion or insertion of a single vertex. For example, Figure A2 depicts the
shortest path t1 → t2 → t3 → t4, and hence, the Taï distance of t1 and t2 is 3. Many efforts
to improve the Taï edit distance in particular in terms of computational efficiency followed,
and we have many variations [39–47] (See Appendix C),

t1

t4

t2

t3

Delete
Substitute for

Insert

Figure A2. Taï distance between t1 and t4 is three.

Taï distance is not only the first tree edit distance proposed in the literature but also
the most common. An important problem Taï distance is its high computational complexity.
Computing Taï distances for unordered rooted trees is known NP-hard. Although its com-
putational complexity for ordered rooted trees is polynomial-time, the original algorithm
presented in [1] required significantly heavy computation in practice.

Much effort has been made to develop efficient algorithms to compute Taï distances.

• Zhang and Shasha [40] proposed an algorithm of
O(|X||Y|min(w(X), h(X))min(w(Y), h(Y))) -time: X and Y denote rooted ordered
trees; |X|, w(X) and h(X) denote the size (the number of vertices), the width (the
number of leaves) and the height (the length of the longest path from the root to a leaf)
of X. According to shapes of trees, this varies between O(|X||Y|) and O(|X|2|Y|2).

• Klein [48] improved the efficiency to O(|X|2|Y| log |y|)-time by taking advantage of
decomposition strategies [49].

• Demaine et al. [50] further optimized this technique and presented an algorithm of
O(|X|3)-time. Demaine’s algorithm is the fastest in terms of the asymptotic evalua-
tions, but it easily lapses into the worst case. Therefore, the algorithm of Zhang and
Shasha in fact outperforms Demaine’s algorithm in many practical cases.

• RTED, an algorithm that Pawlik and Augsten [51] have developed, not only has
the same asymptotic complexity as Demaine’s algorithm but also almost always
outperforms the competitors in practice.

Furthermore, the space complexity of Zhang’s algorithm, Demaine’s algorithm and
RTED is O(|X||Y|), which is practically small.

Although the aforementioned improvement in efficiency was remarkable, the asymp-
totic time complexity of O(|X|3) is still too heavy for some practical applications. In the
literature, several new distances have been proposed to take over Taï distance. In the
following, we introduce two of the most important examples of them.

Appendix C.2. Mappings Associated with Edit Paths

In Section 3.1, we have introduced a graph of trees so that the vertices of the graph are
trees, while an edge connecting two trees X and Y means that X is converted into Y by a
single edit operation, which is one of substituting a new label for the label of a vertex of X,

Mach. Learn. Knowl. Extr. 2021, 3 118

deleting a vertex of X and inserting a vertex of Y (Figure A2). An edit path, on the other
hand, is a path in the graph, and therefore, represents a sequence of edit operations that
converts the source tree into the destination tree.

An edit path from X to Y associates a vertex v of X which the edit path does not delete
with a vertex µ(v) of Y with which the edit path replaces the v. The entire collection of
such (v, µ(v)) determines a mapping, that is, a subset µ ⊆ X × Y. For simplicity, we let
the same symbols of X and Y denote the vertex sets of the trees X and Y. We call this µ
the mapping associated with the edit path. A mapping associated with an edit path is
one-to-one. Furthermore, Taï proved

Theorem A3. (Ref. [1]). For rooted ordered trees X and Y, a mapping µ ⊆ X × Y is associated
with some edit path, if, and only if, µ preserves the generation and traversal orders of X and Y.

This theorem also asserts that MT
X,Y is identical to the set of mappings associated with

edit paths. With MT
X,Y, Taï distance is determined by

dT(X, Y) = |X|+ |Y| − ∑
(v,w)∈MT

X,Y

(δv,w + 1).

The function δv,w is 1, if the labels of v and w are identical, and 0, otherwise.

Appendix C.3. The Constrained Distance

The constrained distance [52] is defined by imposing the certain constraint described
below on mappings of Taï distance. Zhang has also presented an efficient algorithm to
compute constrained distances, whose time and space complexity is O(|X||Y|). Although
Richter [53] independently introduced the structure-respecting distance tailoring Taï distance
to particular applications, Bille [54] has shown the identity between the constrained and
structure-respecting distances.

To describe the constraint of the constrained distance, we have to introduce the concept
of separable vertex sets.

Definition A6. We let S and T be two subsets of vertices of a tree and let S∧ (T∧) denote the
nearest common ancestors of the vertices in S (T). S and T are separable, if, and only if, neither
S∧ ≤ T∧ nor S∧ ≥ T∧ holds.

Definition A7. A mapping µ ⊆ X × Y is said to be separable, if, and only if, (1) µ preserves
the generation and traversal orders of X and Y and (2) µ(S) and µ(T) are separable in Y for any
separable subsets S and T in in X.

The partial mapping depicted by Figure A3 is separable.

Definition A8. An edit path of Taï distance is said to be separable, if, and only if, the associated
mapping is separable.

We denote the entire set of separable edit paths from X to Y by ΠS
X,Y and the entire

set of mappings associated with edit paths in ΠS
X,Y by MS

X,Y. Then, the constraint distance
dC(X, Y) is determined by

dC(X, Y) = min
π∈ΠS

X,Y

|π| = |X|+ |Y| − ∑
(v,w)∈MS

X,Y

(δv,w + 1).

Mach. Learn. Knowl. Extr. 2021, 3 119

v1 v2 v3

v4

v5

x

w1 w2 w3

w5

w4

y

Figure A3. A separable mapping {(vi, wi)}i=1,1...,5 ∈ MS
x,y.

Appendix C.4. The Degree-Two Distance

The degree-two distance [41] imposes the following constraint on the primitive edit
operations of deletion and insertion: roots must not be deleted or inserted; only vertices
with degree one and two can be deleted and inserted. The degree of a vertex is the number
of edges that the vertex has, and the degree-two distance is the minimum length of edit
paths under this constraint. The time and space complexity of the degree-two distance is
O(|X||Y|).

Figure A4 exemplifies an edit path of the degree-two distance. In X, the vertex vd is of
degree one, and hence, we can delete it under the constraint of the degree-two distance.
By deleting vd, the degree of vb has changed from three to two in X2, and hence, we are
allowed to delete it. Also, we can insert v f between va and vg, because the resulting degree
of v f in X5 is two. For the same reason, we can insert vd below v f . The length of this edit
path is five. Also, it is easy to see that the shortest edit path under the constraints, and
hence the degree-two distance between X and Y turns out to be five. We have

Theorem A4. For µ ⊆ X×Y that preserves the generation and traversal orders, µ be a mapping
associated with an edit path of the degree-two distance, if, and only if, (v ∧ v′, w ∧ w′) ∈ µ holds
for any (v, w) ∈ µ and (v′, w′) ∈ µ.

Thus, we see that ME
x,y is identical to the entire set of mapping associated with edit

paths of the degree-two distance. Hence, the degree-two distance dD2(X, Y) between X
and Y is determined by

dD2(X, Y) = |X|+ |Y| − ∑
(v,w)∈ME

X,Y

(δv,w + 1).

a

b

ec d

X

a

b

ec

X2

a

ec

X3

a

gc

X4

a

c

f

g

X5

a

c

f

d g

Y
Delete vd Delete vb Substitute vg for ve Insert v f Insert vd

Figure A4. An edit path of the degree-two distance.

Appendix D. Divergences

When we let p and q denote two probability (density) distributions, Kullback-Leibler

divergence defined by KL(p‖q) =
∫
−p(x) log

q(x)
p(x)

dx is the best known example. Since

KL(p‖q) = KL(q‖p) does not always hold, we may use Jensen-Shannon divergence 1
2 ·

KL(p‖(p+ q)/2)+ 1
2 ·KL(q‖(p+ q)/2) and KL(p‖q)+KL(q‖p) alternatively. Other exam-

ples include Bhattacharrya distance − ln BH(p‖q) and Hellinger distance
√

1− BH(p‖q)
with Bhattacharyya coefficient BH(p‖q) =

∫ √
(p(x)q(x)dx, and Lo-norm

p

√∫
|p(x)− q(y)|pdx and Brownian distance 1−

∫
min{p(x), q(x)}dx.

Mach. Learn. Knowl. Extr. 2021, 3 120

Appendix E. Positive Definite Kernels and RKHS

Appendix E.1. Properties of of Positive Definite Kernels

We let K : X × X → R be positive definite. By Theorem A1, K(x, y) is identical to
a inner product 〈π(x), π(y)〉 in a reproducing kernel Hilbert space H. π : X → H is an
embedding. Hence, the properties stated below follow from properties of inner products.

Proposition A1. For positive definite K : X ×X → R, the following hold.

1. K(x, x) ≥ 0.
2. If K(x, x) = 0, then K(x, y) = 0 for any y
3. |K(x, y)| ≤

√
K(x, x)K(x, y). This inequality is known as the Cauchy-Schwartz inequality.

4. d(x, y) =
√

K(x, x) + K(y, y)− 2K(x, y) determines a distance over X . This property is
follows from the cosine formula.

The following algebraic operations for positive definite kernels preserve posi-
tive definiteness.

Proposition A2. We let K and Ki : X × X → R be positive definite for i = 1 and 2. Then,
we have

1. For a ≥ 0 and b ≥ 0, the linear combination aK1 + bK2 is positive definite.
2. The product K1 · K2 is positive definite.
3. For any non-negative integer n ≥ 0, the power Kn is positive definite.
4. For any polynomial f (X) ∈ R[X] with only positive coefficients, f (K) is positive definite.

Even if a real number r ∈ R is positive, Kr is not necessarily positive definite. If Kr is
always positive definite for r > 0, K is said to be infinitely divisible.

If K(x, x) = 0, x is trivial in the sense that it is projected to the zero vector in RKHS.
Thus, we eliminate all x with K(x, x) = 0 from X and assume that K(x, x) > 0 for any x.
Then, we can define the normalized kernel of K by

KN (x, y) =
K(x, y)√

K(x, x)K(y, y)
.

Proposition A3. We let K : X ×X → R be a kernel with K(x, x) > 0. K is positive definite, if,
and only if, its normalization KN is positive definite.

This property follows from Lemma A1 and Proposition A2.

Lemma A1. For arbitrary function f : X → R, K(x, y) = f (x) f (y) determines a positive
definite kernel.

Appendix E.2. RKHS for Finite Sets

If X is a finite set, the associated reproducing kernel Hilbert spaceH turns out to be
a finitely dimensional inner product space. Furthermore, we can explicitly constitute the
projection mapping π : X → R|X | with the property of K(x, y) = π(x)Tπ(y). This can be
proven easily as follows.

We let G be the Gramian matrix induced from a positive definite K and a finite set
X = {x1, . . . , xn}:

G =

K(x1, x1) . . . K(x1, xn)
...

. . .
...

K(xn, x1) . . . K(xn, xn)

.

By Schure decomposition, G = UTAU holds for some orthogonal matrix U ∈ Rn×n

and some upper triangular matrix A ∈ Rn×n. G is normal (GGT = GTG), and hence, A

Mach. Learn. Knowl. Extr. 2021, 3 121

turns out to be normal as well. Since a normal triangular matrix is always diagonal, A is a
diagonal matrix and its diagonal elements constitute the eigenvalues of G. In particular, all
of the diagonal elements of A are non-negative, since G is positive (semi-)definite, and a
diagonal matrix

√
A such that

√
A
√

A = A can be determined. Hence, we have

G = (
√

AU)T(
√

AU).

We let
√

AU = [v1, . . . , vn] with column vectors vi ∈ Rn and define π by π(xi) = vi.
K(xi, xj) = vi

Tvj holds.

References
1. Taï, K.C. The tree-to-tree correction problem. J. ACM 1979, 26, 422–433. [CrossRef]
2. Levenshtein, V.I. Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 1966, 10, 707–710.
3. Collins, M.; Duffy, N. Convolution Kernels for Natural Language. In Advances in Neural Information Processing Systems 14

[Neural Information Processing Systems: Natural and Synthetic, NIPS 2001]; MIT Press: Cambridge, MA, USA, 2001; pp. 625–632.
4. Kimura, D.; Kashima, H. Fast Computation of Subpath Kernel for Trees. arXiv 2012, arXiv:1206.4642.
5. Shin, K.; Ishikawa, T. Linear-time algorithms for the subpath kernel. In Proceedings of the 29th Annual Symposium on

Combinatorial Pattern Matching (CPM 2018), Qingdao, China, 2–4 July 2018; pp. 22:1–22:13.
6. Corona, I.; Biggio, B.; Contini, M.; Piras, L.; Corda, R.; Mereu, M.; Mureddu, G.; Ariu, D.; Roli, F. DeltaPhish: Detecting Phishing

Webpages in Compromised Websites. arXiv 2017, arXiv:1707.00317. Available online: https://arxiv.org/abs/1707.00317
(accessed on 13 January 2021).

7. Zhang, Y.; Egelman, S.; Cranor, L.; Hong, J. Phinding Phish: Evaluating anti-phishing tools. In Proceedings of the 14th Anual
Network and Distributed System Security Symposium, San Diego, CA, USA, 28 February–2 March 2007.

8. Li, L.; Helenius, M. Usability Evaluation of Anti-Phishing Toolbars. J. Comput. Virol. 2007, 3, 163–184. [CrossRef]
9. Abbasi, A.; Chen, H. A comparison of tools for detecting fake websites. Computer 2009, 42, 78–86. [CrossRef]
10. Marchal, S.; Asokan, N. On Designing and Evaluating Phishing Webpage Detection Techniques for the Real World. In Proceed-

ings of the 11th USENIX Workshop on Cyber Security Experimentation and Test (CSET 18), Baltimore, MD, USA, 11–13 August
2018; USENIX Association: Baltimore, MD, USA, 2018.

11. Corona, I.; Biggio, B.; Contini, M.; Piras, L.; Corda, R.; Mereu, M.; Mureddu, G.; Ariu, D.; Roli, F. DeltaPhish: Detecting Phishing
Webpages in Compromised Websites. Lect. Notes Comput. Sci. 2017, 10492, 370–388.

12. Liu, W. An antiphishing strategy based on visual similarity assessment. IEEE Internet Comput. 2006, 10, 58–65.
13. Satish, S.; Babu, K.S. Phishing Websites Detection Based on Web Source Code and URL in the Webpage. Int. J. Comput. Sci. Eng.

Commun. 2013, 1, 1–5.
14. Marchal, S.; Saari, K.; Singh, N.; Asokan, N. Know Your Phish: Novel Techniques for Detecting Phishing Sites and Their Targets.

In Proceedings of the 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS), Nara, Japan, 27–30
June 2016; pp. 323–333.

15. Whittaker, C.; Ryner, B.; Nazif, M. Large-Scale Automatic Classification of Phishing Pages. In Proceedings of the NDSS ’10, San
Diego, CA, USA, 28 February–3 March 2010.

16. Zhang, Y.; Hong, J.I.; Cranor, L.F. Cantina: A Content-based Approach to Detecting Phishing Web Sites. In Proceedings of
the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; ACM: New York, NY, USA, 2007;
pp. 639–648. [CrossRef]

17. Marchal, S.; François, J.; State, R.; Engel, T. PhishStorm: Detecting Phishing With Streaming Analytics. IEEE Trans. Netw. Serv.
Manag. 2014, 11, 458–471. [CrossRef]

18. Gerbet, T.; Kumar, A.; Lauradoux, C. (Un)Safe Browsing; Technical Report RR-8594; INRIA: Talence, France, 2014.
19. Raut, P.; Vengurlekar, H.; Shete, R. A Survey of Phishing Website Detection Systems. Int. Res. J. Eng. Technol. 2020, 7, 1145–1148.
20. Vazhayil, A.; Vinayakumar, R.; Soman, K.P. Comparative Study of the Detection of Malicious URLs Using Shallow and Deep

Networks. In Proceedings of the 9th International Conference on Computing, Communication and Networking Technologies
(ICCCNT), Bengaluru, India, 10–12 July 2018; pp. 1–6. [CrossRef]

21. Yang, P.; Zhao, G.; Zeng, P. Phishing Website Detection Based on Multidimensional Features Driven by Deep Learning. IEEE
Access 2019, 7, 15196–15209. [CrossRef]

22. Shima, K.; Miyamoto, D.; Abe, H.; Ishihara, T.; Okada, K.; Sekiya, Y.; Asai, H.; Doi§, Y. Classification of URL bitstreams using
bag of bytes. In Proceedings of the 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN),
Paris, France, 19–22 February 2018; pp. 1–5. [CrossRef]

23. Sönmez, Y.; Tuncer, T.; Gökal, H.; Avcı, E. Phishing web sites features classification based on extreme learning machine. In Pro-
ceedings of the 2018 6th International Symposium on Digital Forensic and Security (ISDFS), Antalya, Turkey, 22–25 March 2018;
pp. 1–5. [CrossRef]

http://doi.org/10.1145/322139.322143
https://arxiv.org/abs/1707.00317
http://xxx.lanl.gov/abs/1707.00317
http://dx.doi.org/10.1007/s11416-007-0050-4
http://dx.doi.org/10.1109/MC.2009.306
http://dx.doi.org/10.1145/1242572.1242659
http://dx.doi.org/10.1109/TNSM.2014.2377295
http://dx.doi.org/10.1109/ICCCNT.2018.8494159
http://dx.doi.org/10.1109/ACCESS.2019.2892066
http://dx.doi.org/10.1109/ICIN.2018.8401597
http://dx.doi.org/10.1109/ISDFS.2018.8355342

Mach. Learn. Knowl. Extr. 2021, 3 122

24. Machado, L.; Gadge, J. Phishing Sites Detection Based on C4.5 Decision Tree Algorithm. In Proceedings of the 2017 International
Conference on Computing, Communication, Control and Automation (ICCUBEA), Maharashtra, India, 17–18 August 2017;
pp. 1–5. [CrossRef]

25. Abbasi, A.; Zhang, Z.; Zimbra, D.; Chen, H.; Nunamaker, J.F. Detecting Fake Websites: The Contribution of Statistical Learning
Theory. MIS Q. 2010, 34, 435–461. [CrossRef]

26. Zahedi, F.M.; Abbasi, A.; Chen, Y. Fake-Website Detection Tools: Identifying Elements that Promote Individuals’ Use and
Enhance Their Performance. J. Assoc. Inf. Syst. 2015, 16, 2. [CrossRef]

27. Shin, K.; Niiyama, T. The mapping distance—A generalization of the edit distance—And its application to trees. In Proceedings
of the 10th International Conference on Agent and Artificial Intelligence, ICAART 2018, Madeira, Portugal, 16–18 January 2018;
Volume 2, pp. 266–275.

28. Berg, C.; Christensen, J.P.R.; Ressel, R. Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions; Springer:
Berlin/Heidelberg, Germany, 1984.

29. Haussler, D. Convolution Kernels on Discrete Structures; UCSC-CRL 99-10; Dept. of Computer Science, University of California at
Santa Cruz: Santa Cruz, CA, USA, 1999.

30. Shin, K.; Kuboyama, T. A generalization of Haussler’s convolution kernel—Mapping kernel. In Proceedings of the ICML 2008,
Helsinki, Finland, 5–9 June 2008.

31. Shin, K.; Kuboyama, T. A Comprehensive Study of Tree Kernels. In JSAI-isAI Post-Workshop Proceedings; Lecture Notes in
Articial Intelligence 8417; Springer: Berlin/Heidelberg, Germany, 2014; pp. 329–343.

32. Kashima, H.; Koyanagi, T. Kernels for Semi-Structured Data. In Proceedings of the 9th International Conference on Machine
Learning (ICML 2002), Sydney, Australia, 8–12 July 2002; pp. 291–298.

33. Shin, K. A Theory of Subtree Matching and Tree Kernels based on the Edit Distance Concept. Ann. Math. Artif. Intell. 2015.
[CrossRef]

34. Hommel, G. A stagewise rejective multiple test procedure based on a modified Bonferroni tests. Biometrika 1988, 75, 383–386.
[CrossRef]

35. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Theory 2006, 7, 1–30.
36. Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. 2001. Available online: https://www.csie.ntu.edu.tw/

~cjlin/libsvm/ (accessed on 12 January 2021).
37. Rao, R.S.; Ali, S.T. PhishShield: A Desktop Application to Detect Phishing Webpages through Heuristic Approach. Procedia

Comput. Sci. 2015, 54, 147–156. [CrossRef]
38. Tyagi, I.; Shad, J.; Sharma, S.; Gaur, S.; Kaur, G. A Novel Machine Learning Approach to Detect Phishing Websites. In

Proceedings of the 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 22–23
February 2018; pp. 425–430. [CrossRef]

39. Jiang, T.; Wang, L.; Zhang, K. Alignment of trees—An alternative to tree edit. Theor. Comput. Sci. 1995, 143, 137–148. [CrossRef]
40. Zhang, K.; Shasha, D. Simple Fast Algorithms for the Editing Distance Between Trees and Related Problems. SICOMP 1989,

18, 1245–1262. [CrossRef]
41. Zhang, K.; Wang, J.T.L.; Shasha, D. On the editing distance between undirected acyclic graphs. Int. J. Found. Comput. Sci. 1996,

7, 43–58. [CrossRef]
42. Zhang, K.; Statman, R.; Shasha, D. On the editing distance between unordered labeled trees. Inf. Process. Lett. 1996, 42, 133–139.

[CrossRef]
43. Zhang, K. A Constrained Edit Distance Between Unordered Labeled Trees. Algorithmica 1996, 15, 205–222. [CrossRef]
44. Lu, C.L.; Su, Z.Y.; Tang, G.Y. A New Measure of Edit Distance between Labeled Trees. In Lecture Notes in Computer Science;

Springer: Berlin/Heidelberg, Germany, 2001; Volume 2108, pp. 338–348.
45. Wang, J.T.L.; Zhang, K. Finding similar consensus between trees: An algorithm and a distance hierarchy. Pattern Recognit. 2001,

34, 127–137. [CrossRef]
46. Kuboyama, T.; Shin, K.; Miyahara, T.; Yasuda, H. A theoretical analysis of alignment and edit problems for trees. In Proceedings

of the Theoretical Computer Science, The 9th Italian Conference, Siena, Italy, 12–14 October 2005; pp. 323–337.
47. Neuhaus, M.; Bunke, H. Bridging the Gap between Graph Edit Distance and Kernel Machines; World Scientific: Singapore, 2007.
48. Klein, P.N. Computing the edit-distance between unrooted ordered trees. LNCS 1998, 1461, 91–102.
49. Dulucq, S.; Touzet, H. Analysis of tree edit distance algorithms. In Proceedings of the 14th Annual Symposium on Combinatorial

Pattern Matching (CPM), Michoacan, Mexico, 25–27 June 2003; pp. 83–95.
50. Demaine, E.D.; Mozes, S.; Rossman, B.; Weimann, O. An Optimal Decomposition Algorithm for Tree Edit Distance. ACM Trans.

Algo. 2006, 6, 2.
51. Pawlik, M.; Augsten, N. RTED: A Robust Algorithm for the Tree Edit Distance. VLDB Endow. 2011, 5, 334–345. [CrossRef]
52. Zhang, K. Algorithms for the constrained editing distance between ordered labeled trees and related problems. Pattern Recognit.

1995, 28, 463–474. [CrossRef]
53. Richter, T. A New Measure of the Distance between Ordered Trees and Its Applications; Technical Report 85166-CS; Dept. of Computer

Science, Univ. of Bonn: Bonn, Germany, 1997.
54. Bille, P. A survey on tree edit distance and related problems. Theor. Comput. Sci. 2005, 337, 217–239. [CrossRef]

http://dx.doi.org/10.1109/ICCUBEA.2017.8463818
http://dx.doi.org/10.2307/25750686
http://dx.doi.org/10.17705/1jais.00399
http://dx.doi.org/10.1007/s10472-015-9467-5
http://dx.doi.org/10.1093/biomet/75.2.383
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://dx.doi.org/10.1016/j.procs.2015.06.017
http://dx.doi.org/10.1109/SPIN.2018.8474040
http://dx.doi.org/10.1016/0304-3975(95)80029-9
http://dx.doi.org/10.1137/0218082
http://dx.doi.org/10.1142/S0129054196000051
http://dx.doi.org/10.1016/0020-0190(92)90136-J
http://dx.doi.org/10.1007/BF01975866
http://dx.doi.org/10.1016/S0031-3203(99)00199-5
http://dx.doi.org/10.14778/2095686.2095692
http://dx.doi.org/10.1016/0031-3203(94)00109-Y
http://dx.doi.org/10.1016/j.tcs.2004.12.030

	Introduction
	The Data Used in Our Research
	Positive Examples—Fake Sites
	Negative Examples—Authentic Sites
	Partition into a Training and Validation Datasets

	Similarity Measures for DOM Trees
	Measures Based on Shallow Features
	Measures Based on Deep Features
	Prior Work on Tree Mapping Kernels
	Positive Definite Mapping Kernels
	Tree Mapping Kernels
	A Comparison of Tree Mapping Kernels

	Conclusion on Kernel Selection

	The Subpath Kernel
	Efficient Computing of the Subpath Kernel
	Extraction of Suffixes
	Generation of Least Common Prefix Arrays

	Understanding the Decay Factor

	The Proposed Method
	The Entire Picture
	Suffixes Extraction
	Gram Matrix Generation
	Hyper-Parameter Optimization
	Prediction
	Comparison in Accuracy Performance

	Conclusions
	A Theory of Positive Definite Kernels
	Rooted Ordered Trees
	Edit Distances for Trees
	Taï Distance and Its Variations
	Mappings Associated with Edit Paths
	The Constrained Distance
	The Degree-Two Distance

	Divergences
	Positive Definite Kernels and RKHS
	Properties of of Positive Definite Kernels
	RKHS for Finite Sets

	References

