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Abstract: A common privacy issue in traditional machine learning is that data needs to be disclosed
for the training procedures. In situations with highly sensitive data such as healthcare records,
accessing this information is challenging and often prohibited. Luckily, privacy-preserving technolo-
gies have been developed to overcome this hurdle by distributing the computation of the training
and ensuring the data privacy to their owners. The distribution of the computation to multiple
participating entities introduces new privacy complications and risks. In this paper, we present a
privacy-preserving decentralised workflow that facilitates trusted federated learning among par-
ticipants. Our proof-of-concept defines a trust framework instantiated using decentralised identity
technologies being developed under Hyperledger projects Aries/Indy/Ursa. Only entities in pos-
session of Verifiable Credentials issued from the appropriate authorities are able to establish secure,
authenticated communication channels authorised to participate in a federated learning workflow
related to mental health data.
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1. Introduction

Machine Learning (ML) and Deep Neural Networks (DNN) gained popularity in
the last few years due to technology advancement. ML and DNN infrastructures can
analyse a vast amount of information to predict a certain case [1-3]. DNN is a part of
ML that tries to replicate a human’s brain neurons’ functionalities to achieve a prediction.
This analysis and prediction functionalities can deal with complex problems that were
previously considered to be unsolvable. ML predictions become more valuable when
the analysis involves highly sensitive private data such as health records. Consequently,
data holders cannot simply share their private data with ML algorithms and experts [4].
Many defensive techniques proposed in the past as countermeasures to the information
leakage of sensitive data, such as anonymisation and obfuscation techniques [5]. Other
research focused on non-iterative Artificial Neural Network (ANN) approaches for data
security [6,7]. Nevertheless, due to the advancement of technology, similar techniques
cannot anymore guarantee the privacy of the underlying data [8,9]. Malicious users are
able to reverse and reconstruct, anonymised and obfuscated data, in order to identify the
identities of the data subjects.

It is common knowledge that data is the most valuable asset of our century. Since
ML algorithms require vast amounts of it, it is frequently targeted by malicious parties.
Several attacks exist that can hack, reconstruct, reverse or poison ML algorithms [10,11].
The common goal of these attacks is to identify the underlying data. Several of them require
access during the ML algorithm training to succeed, while others are able to interfere later
in the testing or publication phase. In the literature, there are several defensive methods
and techniques proposed against the aforementioned mistreats. However, when reinforcing
a ML algorithm with security and privacy features against adversarial attacks, there is
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an impact on efficiency, thus ending up with the produced predictions not related to the
associated tasks and with often a lower accuracy. Hence, a balance between tolerable
defence and usability is a critical point of interest that many researchers are trying to solve.
Most of the aforementioned attacks are applicable and target centralised ML infrastructures,
in which the model owners have access and acquire all the training data [12].

Due to the importance of the ML field and the associated privacy risks, a new division
of ML was created, namely Privacy-Preserving ML (PPML) [13]. This area is focused on
the advancement and development of countermeasures against information leakage in ML,
by shedding light on the privacy of the underlying data subjects. When a few of these ML
risks and attacks were introduced, they were purely theoretical; hence, due to the rapid
advancement and evolution of ML, attackers led to the exploitation of those weaknesses in
order to breach, steal, and profit from this data. Several techniques and countermeasures
were proposed in the PPML field. It is a common belief that if data never leave their holders
possession to be used from a ML algorithm, then the data privacy is higher. The most
extended and researched area related to this is Federated Learning (FL) [14-17].

In a FL scenario, the ML model owners are able to send their model to the data holders
for training. From a high-level perspective, this scenario is secure; however, there are still
many security flaws that need to be solved [10]. For example, the ML model owners could
reverse their model and identify the underlying training data [18,19]. A suggested solution
is to use a secure aggregator, often an automated procedure or program, as a middle-
ware, which aggregates all the participants’ trained models and then sends the updates
to the ML model owners [20]. This solution is robust against several attacks [18,19,21-23],
but still involves issues, such as the possibility of a Man-In-The-Middle (MITM) attack
that is able to interfere and trick both parties or even the scenario where one or more
participants are malicious. In the latter scenario, malicious data providers can poison the
ML model [24-26] in order to miss-classify specific predictions in its final testing phase;
thus, the ML model owner could never distinguish a poisoned model from a benign. This
model poisoning scenario could happen in a healthcare auditing scheme, where the trusted
auditing organisation uses a ML algorithm to audit other healthcare institutions to predict
financial profits and losses in the future. A potential malicious healthcare institution is able
to poison the ML model using indistinguishable data that could lead to false predictions
from the final trained model by miss-classifying the economic losses of the healthcare
institution and approve its operation, as usual.

The aforementioned attacks share some common issues and concerns such as the
lack of trust between the participating parties, or the lack of a secure communication
channel to transmit private ML model updates. In this work, we redefine the privacy
and trust in federated machine learning by creating a Trusted Federated Learning (TFL)
framework as an extension of the privacy-preserving technique to facilitate trust amongst
federated machine learning participants [27]. In our scheme, the ML participants need to
get a certification before their participation, from a trusted governmental body such as the
National Health Service (NHS) Trust in the United Kingdom. Following, the ML training
procedure is distributed among the participants similarly to FL. The main difference is that
the model updates are being sent through a secure communication end-to-end encrypted
channel. Before learning commences, the respective parties must authenticate themselves
against some predetermined policy. Policies can be flexibly determined based on the
ecosystem, trusted entities and associated risk; this paper gives an example of using a
healthcare scenario. The proof-of-concept developed in this paper is built using open-
source Hyperledger technologies such as Aries/Indy/Ursa [28-30] and developed within
the PyDentity-Aries FL project [31,32] of the OpenMined open-source privacy-preserving
machine learning organisation. Our scheme is based on advanced privacy-enhancing
attribute-based credential cryptography [33,34] and is aligned with emerging decentralised
identity standards; Decentralized Identifiers (DIDs) [35], Verifiable Credentials (VCs) [36]
and DID Communication [37]. The implementation enables participating entities mutually
authenticate digitally signed attestations (Credentials), issued by trusted entities specific to
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the use-case. The presented authentication mechanisms could be applied to any regulatory
workflow, data collection, and data processing and are not limited solely to the healthcare
domain. The contributions of our work could be summarised as follows:

*  We enable stakeholders in the learning process to define and enforce a trust model
for their domain through the application of decentralised identity standards. We also
extended the credentialing and authentication system by separating Hyperledger
Aries agents and controllers into isolated entities.

¢ We present a decentralised peer-to-peer infrastructure, namely TFL, which uses DIDs
and VCs in order to perform mutual authentication and federated machine learning
specific to a healthcare trust infrastructure. Development and evaluation of explicitly
designed libraries for federated machine learning through secure Hyperledger Aries
communication channels.

*  We demonstrate performance improvement upon our previous trusted federated learn-
ing state-of-the-art without sacrificing the privacy guarantees of the authentication
techniques and privacy-preserving workflows.

Section 2 provides the background knowledge and describes the related literature.
Furthermore, Section 3 outlines our implementation overview and architecture, followed
by Section 4, in which we provide an extensive security and performance evaluation of our
system. Finally, our work concludes with Section 5 that draws the conclusions, limitations,
and outlines approaches for future work.

2. Background Knowledge and Related Work

Recent ML advancements can accurately predict specific circumstances using relevant
data. Hence, that led businesses and organisations to collect vast amounts of data to predict
a situation before their competitors. The rationale is often to analyse people’s behaviour
patterns to predict the next trend they will follow [38]. However, the European Union tried
to minimise and constrain this massive collection of data with the General Data Protection
Regulation (GDPR) legislation [39].

Another field that can take advantage of the recent ML progression is the healthcare
sector. However, in that case, the underlying data used for ML training is sensitive
and private. Thus, its privacy must be ensured first prior to the improvement of its ML
predictions. The aforementioned procedure’s complexity raises when it is being outsourced
to a third-party organisation specialising on the ML task; since the ML practitioners
have the expertise to solve the task, but a healthcare organisation is holding the required
sensitive data.

2.1. Trust and the Data Industry

The notion of trust has been defined as domain and context-specific since it specifies
the amount of control a party provides to another [40,41]. It is often represented as a
calculation of risk since it can only be restrained and not fully eradicated [42]. Accordingly,
patients trust healthcare institutions when giving their consent to collect their data. How-
ever, huge volumes of medical data can be valuable in-context to ML algorithms that aim
to predict particular cures or conditions.

In 2015, Royal Free London NHS Trust outsourced patients sensitive data to a third-
party ML company, particularly DeepMind, to train ML algorithms for the early detection
of kidney failure [43,44]. However, this sensitive data usage was not regulated, raised
concerns about data privacy and later judged as illegal by the Information Commissioner’s
Office [45]. This misbehaviour did not cause other researchers to use sensitive data for
ML predictions and led them to obtain proper authorisation from the Health Research
Authority first and then use the sensitive medical records to analyse retinal imaging
automatically [46], and the segmentation of tumour volumes and organs of risk [47].
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2.2. Decentralised Identifiers

Recently, Decentralised Identifiers (DIDs) were established as a digital identifier in
a World Wide Web Consortium (W3C) working group [35], that can magnify trust in dis-
tributed environments. DIDs can be controlled solely by their owners and grant a person
the ability to be authenticated similar to a login system, but without relying on a trusted
third-party company. Consequently, DIDs are often stored in distributed ledgers such as
blockchain ledgers, which are not managed by a single authority. Distributed storage sys-
tems such as Ethereum, Bitcoin and Sovrin ledgers, or InterPlanetary File System (IPFS) are
often used to store DID specifications, each with their own resolution method [48]. An out-
line of a DID document that would have been resolved from did:example:123456789abcdefghi,
using the DID method example and the identifier 12345678%abcdefghi, can be seen in Listing 1.
A DID document consists of:

¢ ID-the DID that resolves to this document
e Public key

*  Authentication protocols

*  Service endpoints

Listing 1. An example DID document.

1

2 "@context": "https://example.org/example-method/v1",

3 "id": "did:example:123456789 abcdefghi”,

4 "publicKey": [{

5 "id": "did:example:123456789 abcdefghi#keys—-1",

6 "type": "RsaVerificationKey2018",

7 "controller": "did:example:123456789abcdefghi”,

8 "publicKeyPem": "————— BEGIN PUBLIC KEY...END PUBLIC KEY-———— \r\n"
9 H
10 "authentication": [

Jy
—

"did :example:123456789 abcdefghi#keys-1",

Ja
N

1,
"service": [{
"id": "did:example:123456789 abcdefghi#agent”,
"type": "AgentService",
"serviceEndpoint": "https://agent.example.com/8377464"
1

e
® NN O G = W

}

DID specifications assure the interoperability across the DID schemes in order to inter-
act and resolve a DID from any storage system. Nonetheless, Peer DIDs implementations
are used in peer-to-peer connections that do not require any storage system, in which each
peer stores and maintains their own list of DID documents [49].

Decentralised Identifiers Communication Protocol

Hyperledger Aries is an open-source project [28], that uses decentralised identifiers to
provide a public key infrastructure for a set of privacy-enhancing attribute-based credential
protocols [34]. Hyperledger Aries implements DID Communication (DIDComm) [37],
a communication protocol similar to one first outlined by David Chaum [50]. DIDComm
is an asynchronous encrypted communication protocol that uses information from the
DID document, such as the public key and their associated endpoint, in order to exchange
secure messages; the authenticity and integrity of the messages are verifiable. DIDComm
protocol is actively developed by the Decentralised Identity Foundation [51].

An example using the DIDComm protocol can be seen in Algorithm 1, in which Alice
and Bob want to communicate securely and privately. Alice encrypts and signs a message
for Bob. Alice’s endpoint sends the signature and the encrypted message to Bob’s endpoint.
Bob can verify the message’s integrity by resolving the DID and checking if it corresponds
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to Alice’s public key, decrypt and read the message. All the associated information required
for this interaction are defined in each person’s respective DID document. The encryption
techniques used by DIDComm include ElGamal [52], RSA [53] and elliptic curve-based [54].

Algorithm 1 DID Communication Between Alice and Bob [27]

1: Alice has a private key sk, and a DID Document for Bob containing an endpoint
(endpointyyp) and a public key (pky).

2: Bob has a private key (sk;), and a DID Document for Alice containing her public key

(pka).

Alice encrypts plaintext message () using pk;, and creates an encrypted message (e;).

Alice signs ej, using her private key (sk,) and creates a signature ().

Alice sends (ey, o) to endpointygy.

Bob receives the message from Alice at endpointyp.

Bob verifies ¢ using Alice’s public key pk,

if Verify(c, e, pk,) = 1 then

Bob decrypts e, using sky,.
10:  Bob reads the plaintext message (1) sent by Alice
11: end if

2.3. Verifiable Credentials

Verifiable Credentials (VCs) [36], is a set of tamper-proof claims that used by three
different entities, Issuers, Holders and Verifiers, as it can be seen in Figure 1. VC model
specification became a W3C standard in November 2019. A distributed ledger is often used
for the storage of the credential schemes, DIDs, and Issuers’” DID documents.

Issuer Ealqer Verifier
Issues Issue O TES, Send Requests, Verifies
. . Stores, Presents .
Credentials Presentation
— _/
Register
Identifiers and
Use Schemas

 J

Verify Identifiers
and Use Schemas

Verify ldentifiers

Verifiable Data Registry ] and Schemas

Maintain Identifiers and Schemas -

Figure 1. Verifiable Credential Roles [36].

The Issuer to create a new credential needs to generate a signature using their private
key corresponded to their public key defined in their DID document. There are three valid
categories of signature schemes such as Camenisch-Lysyanskaya (CL) signatures [33,55],
Linked Data signatures [56] and JSON Web signatures [57]. Hyperledger Aries uses CL
signatures to create a blinded link secret, in which credentials are tied to their intended
entities by including a private number within them, without the Issuers be aware of their
values. It is a production implementation of a cryptographic system for achieving security
without authentication first outlined in 1985 [58].

The Verifier in order to accept the received credential from its Holder needs to confirm
the following:
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1.  The Issuer’s DID can be resolved to a DID document stored on the public ledger.
The DID document contains the public key that can be used to ensure the creden-
tial’s integrity.

2. The credential Holder can prove the blinded linked secret by creating a zero-knowledge
proof to demonstrate it.

3.  Theissuing DID has the authority to issue this kind of credential. The signature solely
proves integrity, but if the Verifier accepts credentials from any Issuers, it would
be prone to obtain fraudulent credentials. It is possible to form a legal document
outlining the operating parameters of the ecosystem [59].

4. The Issuer has not revoked the presented credential. This is done by checking that a
revocation identifier for the credential is not present within a revocation registry (a
cryptographic accumulator [60]) stored on the public ledger.

5. Finally, the Verifier needs to check that the credential attributes meet authorisation
criteria in the system. It is common for a credential attribute to be valid only for a
certain period.

All the communication between the participating entities transmits peer-to-peer
through a DIDComm protocol. It should be noted that a Verifier does not require to
contact the credential’s Issuer to verify a credential.

2.4. Docker Containers

All the participating entities presented in our work, take the form of Docker con-
tainers [61]. Docker containers are lightweight, autonomous, virtualised systems similar
to virtual machines [62]. The main difference between virtual machines is that Docker
containers use the host’s underlying operating system and bridge the network traffic in a
virtual network card instead of being fully isolated. Moreover, Docker containers are being
developed into deployable images that are executed and operate as expected invariably in
any system that supports the Docker environment. Hence, applications that could be built
using Docker containers are favourable for reproducibility and code replication purposes.
However, since Docker containers use a virtual network card in their host machine’s to
redirect the network traffic, a security testing in their ecosystem varies [63].

2.5. Federated Machine Learning

FL can be expressed as the decentralisation of the ML. Opposed to centralised ML,
in a FL scenario, the training data remain at their respective owners instead of transmitting
to a central location to be used by a ML practitioner. There are several FL variations such as
Vanilla FL, Trusted Model Aggregator, and Secure Multi-Party Aggregation [10,20,27,64].
Consequently, the ML model is primarily distributed among the data holders, who train
it using their private data, and then send it back to the ML model owner. ML training
decentralisation permits data holders with sensitive data such as healthcare institutions
to train useful ML algorithms to predict a cure or a disease. One of the FL advancements,
namely Secure Multi-Party Aggregation, developed to further enhance the system’s security
by encrypting the models into multiple shares and aggregating all the trained models to
eliminate the possibility of a malicious ML model owner [17,65].

To measure the accuracy of FL algorithm is similar to the traditional ML. Four metrics
described in the list below [66,67], are used for the calculation as follows:

1.  True positive (TP): the model correctly predicts the positive prediction; correct
2. True negative (TN): the model correctly predicts the negative prediction; correct
3. False positive (FP): the model incorrectly predicts the positive prediction; false
4.  False negative (FN): the model incorrectly predicts the negative prediction; false
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The accuracy of the model is calculated from the number of TPs and TN, divided by
the total number of outcomes, as you can see in Equation (1).

(CorrectPredictions : TP + TN)
(Outcomes : TP+ TN + FP + FN)

Model's Accuracy = 1)

2.6. Attacks on Federated Learning

Since that in FL, data never leaves their owners’ premises, one could naively assume
that FL is entirely protected against misuses. However, even if FL is more secure than
traditional ML approaches, it is still susceptible to several privacy attacks that aim to
identify the underlying training data or trigger a miss-classification on the final trained
model [10,68].

Model Inversion attack [18,19,69], is the first of its kind that aim to reconstruct the
training data. A potential attacker with access to the target labels can query the final trained
model and exploit the returned classification scores to reconstruct the rest of the data.

In Membership Inference attacks [22,23], the attacker tries to identify if some data was
part of the training. As with model inversion attacks, the attacker exploits the returned
classification scores in order to create several shadow models that have similar classification
boundaries as the original model under attack.

In Model Encoding attacks [21], the attacker with white-box access to the model tries to
identify the training data that have been memorised by the model’s weights. In a black-box
situation, the attacker overfits the original training model in order for it to leak part of the
target labels.

From the other side, Model Stealing attacks [70], present the scenario of a malicious
participant that tries to steal the model. Since the model is being sent to the participants
for training, malicious participants can construct a second model that mimics the original
model’s decision boundaries. In that scenario, the malicious participants could avoid
paying usage fees to the original model’s ML experts or sell the model to third parties.

Likewise, in Model Poisoning attacks [24-26,71], since the malicious participants
contribute to the training of the model, they are able to inject backdoor triggers to the
trained model. According to [24], a negligible number of malicious participants is able
to poison a large model. Hence, the final trained model would seem legitimate to the
ML experts and react maliciously only on the given backdoor trigger inputs. In that case,
the malicious participant could potentially trick the original model when certain inputs are
given. Contrary to the Data Poisoning attacks [12,72-75], in which the poison backdoor
triggers are part of the training data, and the ML model’s accuracy may drop [76].

In Adversarial Examples [77-82], the attacker tries to trick the model in order to
classify falsely a prediction. The threat model for this type of attacks is both white-box
and black-box; thus the attacker does not require access to the training procedure, with a
potential attacking scenario to be a malware that evades the detection of a ML intrusion
detection system.

2.7. Defensive Methods and Techniques

Due to the sensitivity of the underlying training data in ML, there are several defensive
techniques, albeit several of them are still in the theoretical stage and therefore are not
applicable [10,27].

2.7.1. Differential Privacy

The most eminent defensive countermeasure against many privacy attacks in ML is
Differential Privacy (DP), a mathematical guarantee that ensures the ML algorithm’s output,
despite if a particular person’s data used for the training procedure [83,84]. The formal
mathematical proof can be seen in Equation (2), where the probability A for all C that are in
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range (A), is differentially private, if for any two adjusted databases D and D’ that alter in
only one element exists:

P(A(D) € C) < e P(A(D') € C) 2)

DP elaborates noise techniques to protect a ML algorithm from attacks; however, its
accuracy drops significantly according to the designated privacy level [85]. Researchers,
further extended and relaxed this mathematical proof into (e, §)-DP, which introduced an
extra J feature that limits the probability for errors [85-88].

2.7.2. Secure Multi-Party Computation

Secure Multi-Party Computation (SMPC) [89], is a cryptographic function that allows
several participants to compute a procedure mutually, such a ML training procedure.
Only the outcome of the function is disclosed to the participating parties and not the
underlying training information. Using SMPC, gradients and parameters can be computed
and updated encrypted in a decentralised manner. In this case, each data item’s custody
is split into shares to be held by relevant participating entities. SMPC is able to protect
ML algorithms against privacy attacks that target the training procedure; however, attacks
during the testing phase are still viable.

2.7.3. Homomorphic Encryption

Homomorphic Encryption (HE) [90], is a complex cryptographic protocol, which
allows the mathematical computation of encrypted data. The outcome of the computation
is still encrypted. HE is a promising method to protect both the training and testing
procedures; however, such an intensive technique’s high computational cost is not tolerable
in real-world situations. Several HE schemes in the literature propose alterations and
evaluations of the method [10,91-94].

2.8. Related Work

Our work is not another defensive method or technique that mitigates the aforemen-
tioned FL attacks, as seen in Section 2.6. Hence, a comparison with defensive techniques
such as Knowledge Distillation [95,96], Anomaly Detection [21], Privacy Engineering [97],
Privacy-Preserving Record Linkage [98], Adversarial Training [99], ANTIDOTE [100], Acti-
vation Clustering [101], Fine-pruning [102], STRIP [103], or similar, is not comparable and
out of the scope of this paper.

The concern related to the privacy of the stored data has been extensively researched
in the literature. Many researchers proposed and presented novel infrastructures and
concepts that could partially or fully protect data. However, the privacy-preservation of
critical data such as medical records often is more important than the actual procedure that
it has been used, such as the training of a ML algorithm. There are works that presented
the use of another emerging technology such as blockchain, which could be combined
with ML. In the work of [104,105] the authors’ presented infrastructures that could protect
certain private data from the stored records and display of other non-private. However,
the feasibility of performing ML in data stored in their blockchain has not been tested and
remains an open question.

Another state-of-the-art technology that is similar to our work is the Private Set
Intersection (PSI). Using PSI, participants of an infrastructure can compare the private
records they share, without disclosing them to the other participants [106]. There are
applications that use PSI for privacy-preserving contact tracing systems and machine
learning on vertically partitioned datasets [107].

The value of developing an ecosystem and associated governance framework to
facilitate the issuance and verification of integrity assured attributes had been considered
previously in a different setting [108]. This work develops user-led requirements for a staff
passporting system to reduce the administrative burden placed on healthcare professionals
as they interact with different services, employers and educational bodies throughout their
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careers. These domain-specific systems that digitally define trustworthy entities, policies
and information flows have multiple use cases and appear to be a positive indication of the
likelihood of broader adoption of the technologies discussed in this paper.

Achieving privacy-enhancing identity management systems has been a focus of cryp-
tographic research since Chaum published his seminal paper in 1985 [58]. The Hyperledger
technology stack used in this work is an implementation of a set of protocols formalised by
Camenisch and Lysyanskya [33,109] and follows a technical architecture closely aligned
to the one produced as part of an EU grant ABC4Trust [110]. Self-Sovereign Identity (SSI)
has popularised the model of issuer/verifier/holder, with many different projects and
implementations building to the emerging standards in this area [111], although not all
of these projects use privacy-enhancing cryptography. Furthermore, the major focus of
these systems has been the identification and authentication of individuals by issuing and
verifying their credentials within a certain context [108,112].

Our work differentiates from the other approaches since we focus on modelling trust
relationships between organisations using the mental model of SSI and the technology
stack under development in the Hyperledger foundation. More specifically, in our proof-
of-concept, we establish trusted connections among only authorised participants and then
perform FL over secure communication channels. In our previous work [27], we presented
a proof-of-concept that is able to establish trust between the participating parties and
perform FL on their data. Thus, to achieve it, we used the basic messages protocol provided
by Hyperledger Aries, encoded the ML model and updates into text format and sent
it through DIDComm encrypted channels. However, in this paper, we have refactored
this functionality into libraries that developed mutually within the OpenMined open-
source community in PyDentity [31], for that purpose. Additionally, we have thoroughly
presented their communication details in Section 3.2, and have tested their security in
Section 4.1.1.

3. Implementation Overview

In our implementation, we used the Hyperledger Aries framework to create a dis-
tributed FL architecture [27]. The communication between the participating entities takes
place through the DIDComm transport protocol. We present a healthcare trust model in
which each participant is in the form of a Docker container. Our architecture can be seen
in Figure 2 and consists of three Hospitals, one Researcher, one NHS Trust that issues
Hospitals’ credentials, and a regulatory authority that issues the Researcher’s credentials.
The system’s technical specifications are as follows: 3.2 GHZ 8th generation Intel Core i7
CPU, with 32 GB RAM and 512 GB SSD. Each Docker container functions as a Hyperledger
Aries agent and built using the open-source Hyperledger Aries cloud agent in Python
programming language, developed by the Verifiable Organizations Network (VON) team
at the Province of British Columbia [113].

3.1. Establishing Trust

We create a domain-specific trust architecture by using DIDs and VCs issued by trusted
participants, as presented in Section 3. Furthermore, during the connection establishment
between the Hospitals and the Researcher, they need to follow a mutual authentication
procedure, in which they present their issued credentials as proof that they are legitimate.
The other party can then verify if the received credential has been issued by the public DID
of the regulatory authority or the NHS Trust and approve the connection. The credential
schema and the DIDs of the credential issuers are written to a public ledger; we used British
Columbia VON'’s [114] development ledger.
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Figure 2. ML Healthcare Trust Model [27].

To create our testbed infrastructure, the steps described in Algorithm 2 followed.
After the authentication is completed, the Researcher can initiate a FL. mechanism, in which
the ML model is being sent encrypted to each Hospital from the list of approved connections
sequentially. Each Hospital trains this model using its mental health dataset and sends the
model back to the Researcher. Then, the Researcher validates the trained model using its
validation dataset and sends it to the next Hospital. The presented procedure continues
until all the participants train the ML model. At the end of the training, the Researcher
holds a ML model trained by multiple Hospitals that validated using its validation dataset
to calculate the model’s accuracy and loss. The model’s parameters and updates are being
sent using the DIDComm transport protocol, the security and performance evaluation of it
have been presented and discussed in Section 4.

3.2. Communication Protocol

As presented in Section 3 and Figure 2, our implementation consists of three Hospitals,
one Researcher that coordinates the training procedure, an NHS Trust and a Regulator
that issue credentials for the Hospitals and the Researcher accordingly. Each participating
entity is configured as a Docker container instead of a real-world situation in which each
participant would run on their own network. Communication between entities only
happens using the DIDComm protocol adding an authenticated encryption layer (see
Algorithm 1) on top of the underlying transport protocol, in this case, Hypertext Transfer
Protocol (HTTP) at a specified public port. Internally the entity can be represented as a
controller and an agent; the controller sends HTTP requests to the agent defined by the
admin-API Received requests act as commands often resulting in the agent sending a
DIDComm protocol message to an external agent, for example issuing a credential. Agents
that receive a message from another entity post a webhook internally over HTTP, allowing
the controller to respond appropriately. Note this can include requesting the agent to send
further messages in reply. More details can be seen in Figure 3 and Table 1.
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Algorithm 2 Establishing Trusted Connections [27]

1: Researcher agent exchanges DIDs with the Regulator agent to establish a DIDComm

channel.

2: Regulator offers an Audited Researcher-Coordinator credential over this channel.
3: Researcher accepts and stores the credential in their wallet.

4: for each Hospital agent do

5. Initiate DID Exchange with NHS Trust agent to establish DIDComm channel.
6. NHS Trust offers Verified Hospital credentials over DIDComm.

7. Hospital accepts and stores the credential.

8: end for

9: for each Hospital agent do

10:  Hospital initiates DID Exchange with Researcher to establish DIDComm channel.

11:  Researcher requests proof of Verified Hospital credential issued and signed by the NHS
Trust.

12:  Hospitals generate a valid proof from their Verified Hospital credential and respond to
the Researcher.

13:  Researcher verifies the proof by first checking the DID against the known DID they
have stored for the NHS Trust, then resolve the DID to locate the keys and verify the
signature.

14:  if Hospitals can prove they have a valid Verified Hospital credential then

15: Researcher adds the connection identifier to their list of Trusted Connections.

16:  end if

17:  Hospital requests proof of Audited Researcher credential from the Researcher.

18:  Researcher uses Audited Researcher credential to generate a valid proof and responds.

19:  Hospital verifies the proof, by checking the signature and DID of the Issuer.

20:  if Researcher produces a valid proof of Audited Researcher then

21 Hospital saves connection identifier as a trusted connection.

22:  end if

23: end for

Controller

Webhook
| 8052 |<—

Hospital 1 Network

Webhook
) f —>| 8042 |
Agent 8050 [@ 8040 Agent Controller
——— | 8051 8041
Admin-API Admin-API

Researcher Network

did:peer:1234

did:peer:e123

Figure 3. Networking communication architecture.
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Table 1. Participating entities communication details.

Name HTTP Port Admin-API Port Webhook Port
Hospital 1 8050 8051 8052
Hospital 2 8060 8061 8062
Hospital 3 8070 8071 8072
Researcher 8040 8041 8042
NHS Trust 8020 8021 8022
Regulator 8030 8031 8032

3.3. Federated Learning Procedure

The FL procedure described in our proof-of-concept is in its most basic form, in which
the model and the updates are being sent sequentially to each trusted connection [15,115-117].
In a real-world scenario, this FL process would happen simultaneously, and the model
updates would be sent to a secure aggregator to perform a Federated Averaging method [15]
to improve the security of the system further. Before the training, the Researcher holds a ML
model and a validation dataset, and each Hospital holds its own training dataset. The datasets
are from an open-source mental health survey that “that measures attitudes towards mental
health and frequency of mental health disorders in the tech workplace” [118], which are
pre-processed into appropriate training data and validation data; the original dataset split
into four partitions, three training datasets, one for each Hospital and one validation dataset
for the Researcher.

Furthermore, we evaluated our infrastructure’s performance related to the model’s ac-
curacy and measured the required resources. Our FL workflow can be seen in Algorithm 3.
The focus of this paper is to demonstrate that FL is applicable over Hyperledger Aries
agents through the DIDComm protocol in a trusted architecture scenario. Therefore, the ML
procedure, classification and parameter-tuning are out of the scope of this paper.

However, the combination of these two emerging fields, private identities and FL,
allowed us to mitigate a few existing FL limitations caused by the training participants’ lack
of trust. Specifically, these were: (1) Training provided by a malevolent Hospital to corrupt
the ML model’s accuracy, and (2) Malicious models being sent to legitimate Hospitals to
leak information about the training data.

Algorithm 3 Our Federated Learning workflow [27]

1: Researcher has validation data and a ML model, Hospitals have training data.

2: while Hospitals have not trained their training data do

3:  Researcher benchmarks the model’s performance against validation data and sends the
model to the next Hospital.

4:  Hospital trains the model with their data and then sends the resulting model back to
the Researcher.

5: end while

6: Researcher benchmarks the final model against validation data.

4. Evaluation
4.1. Security Evaluation

As presented in our implementation in Section 3, our testbed infrastructure achieves a
domain-specific trust framework using verifiable credentials. Hence, the training process
involves only authenticated Hospitals and Researchers that communicate through en-
crypted channels. Our work does not prevent the aforementioned attacks from happening;
however, it minimises the possibility of occurring by establishing a trust framework among
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the participants. Malicious entities could be checked on their registration to the system and
removed on ill behaviour.

A potential threat in our test environment is the possibility of the participants’ com-
puter systems getting compromised. In such scenarios, the trusted credential issuers could
create legitimate credentials to malicious participants, or a compromised hospital could
corrupt the ML training; both scenarios lead to a malicious participant controlling a valid
VC for the infrastructure. Another concern is the possibility that a compromised participant
may try a Distributed Denial of Service (DDoS) attack [119], which can be mitigated by
setting a timeout process within each participant, after several unsuccessful invitations.
Several cybersecurity procedures could be in-place within the participants’ computer sys-
tems that make security concerns and breaches unlikely. OWASP provides several secure
practices and guidelines in order to mitigate cybersecurity threats [120]; hence, further
defensive mechanisms could be used to extend further the security of the system, such as
Intrusion Detection and Prevention Systems (IDPS) [121]. However, this type of attack is
out of the scope of this paper.

To evaluate our proof-of-concept’s security, we created malicious agents that attempt
to take part in the ML procedure by connecting to one of the trusted credential issuers. Any
agent without the appropriate VCs, either a verified Hospital or an audited Researcher
credential, could not establish an authenticated channel with the other party, as seen in
Figure 2. The unauthorised connection requests and the self-signed VC are automatically
being rejected. The reason is because they had not been signed by a trusted authority
whose DID was known by the entity requesting the proof. The mechanism of the mutual
authentication of the VC between participants is not domain-specific to ML and can be
expanded to any context [27].

However, our paper is focused on the trust establishment and FL in a distributed DID-
based healthcare ecosystem. It is assumed that there is a governance-oriented framework
in which the key-stakeholders have a DID written to an integrity-assured blockchain ledger.
Identifying the appropriate DIDs and the participating entities related to a particular
architecture is out-of-scope of this paper. This paper explores how peer DID connections
facilitate participation in the established healthcare ecosystem. Another platform could be
developed for the secure distribution of the DIDs between the participating agents [27].

4.1.1. Security Testing

In our implementation, the ML model and its updates are being sent to the Hospi-
tals and the Researcher is using the DIDComm messaging protocol [51]. To verify these
communication channels were encrypted, we used network packet sniffers such as the
Wireshark and Tepdump [122], to capture the traffic during the training procedure. As pre-
sented in Section 2.4, since the participating entities in our implementation take the form
of Docker containers, the captured traffic obtained from a virtual network card in the host
machine [63]. During the security testing of our implementation, we observed that when
the participating entities connect and provide their proofs to the other party in order to
authenticate, information such as the name of the participant, its DID and the provided
proof are encrypted. Only in case that the Hyperledger Aries agent and controller reside
within the same Docker container, then the information related to the connection estab-
lishment sent internally in plain .json format (Appendix A, Figure Al). However, this
finding is irrelevant in production environments since each participant, its controller and
agent would be physical machines or private networks and not Docker containers. We
demonstrated this separation of controllers and agents, by executing each one in their own
respective Jupyter Notebook [123], as described in Section 3.2.

Furthermore, other critical findings were observed during the training procedure. All
the traffic was fully encrypted between all the parties, in each stage of the FL training
(Appendix A, Figure A2). We used unsuccessfully various cybersecurity tools such as the
Government Communications Headquarters (GCHQ) CyberChef [124] in order to reverse
the encrypted content and obtain some information about the training data or the ML
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model. That is re-assuring since the traffic related to the training procedure may contain
information about the sensitive underlying training data.

4.2. Performance Evaluation

Performance evaluation metrics for each host were recorded during the operation of
our workflow. Figure 4a) shows the CPU usage of each agent involved in the learning work-
flow. The CPU usage of the Researcher raises each time it sends the model to the Hospitals,
and the CPU usage of the Hospitals raises when they train the model with their private data.
This result is expected and follows the execution of Algorithm 3 successfully. The mem-
ory and network bandwidth follow a similar pattern, as it is illustrated in Figure 4b—d).
The main difference is that since the Researcher averages and validates each model against
the training dataset every time, the memory and network bandwidth increase over time.
In these metrics, the ML training procedure transmitted through DIDComm protocols but
does not use the designed federated learning libraries.

In Figure 5, we compared the FL training performance with and without the DID-
Comm protocol. Both architectures are identical, with their only difference in Figure 5a)
where the Researcher sends the ML model to each Hospital sequentially through the
DIDComm protocol, opposed to Figure 5b), in which the DIDComm protocol is not used,
and the ML model is shared among the Hospitals to train it sequentially. We did not plot
the memory and network metrics for this experiment since they follow the same pattern
with negligible differences as in Figure 4.

Our work aims to demonstrate that since the proposed trust framework is distributed,
it is possible to establish a FL workflow. Therefore, we do not focus on improving this
FL process and tuning the hyperparameters for more reliable predictions, apart from
developing the FL libraries designed for this purpose. The FL training procedure consists
of the following hyperparameters: learning rate of 0.01 for 10 training epochs using one-
third of the training dataset in batches of size 8. Moreover, we present the ML model’s
confusion matrix using the Researcher’s validation data after each federated training batch,
as shown in Tables 2 and 3. That confirms that our ML model was successfully trained
at each stage using our distributed mental health dataset [118]. To calculate the model’s
accuracy, Equation (1) has been used. The two tables provide a comparison between two
different activation functions. In Table 2, the Sigmoid linear activation function has been
used, as opposed to Table 3, in which we implemented the Rectified Linear activation
function (ReLu) [125,126].

Table 2. Classifier’s accuracy without hyperparameters’ optimisation over training batches using
Sigmoid activation function on the original federated learning architecture of [27].

Batch 0 1 2 3
True Positives 0 109 120 134
False Positives 0 30 37 41
True Negatives 114 84 77 73

False Negatives 144 35 24 10
Accuracy 44.1% 74.8% 76.3% 80.2%

Table 3. Classifier’s accuracy without hyperparameters’ optimisation over training batches using
ReLu activation function.

Batch 0 1 2 3
True Positives 144 121 121 108
False Positives 0 23 23 36
True Negatives 114 34 33 39

False Negatives 0 80 81 75

Accuracy 100% 60% 59,6% 57%
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Figure 4. CPU, Memory usage and Network use of Docker container agents during workflow using
the original federated learning architecture [27].

Moreover, we also compared the FL procedure’s accuracy when the ML model is
being transmitted through and without the DIDComm protocol, and presented the results
in Tables 4 and 5.

Table 4. Classifier’s accuracy without hyperparameters’ optimisation over training batches through

the DIDComm protocol.
Batch 0 1 2 3
True Positives 0 115 120 135
False Positives 0 29 24 9
True Negatives 113 30 39 44
False Negatives 145 84 75 70
Accuracy 43.7% 56.2% 61.6% 69.3%

Table 5. Classifier’s accuracy without hyperparameters’ optimisation over training batches without

the DIDComm protocol.
Batch 0 1 2 3
True Positives 0 113 120 133
False Positives 0 31 24 11
True Negatives 116 35 43 45
False Negatives 142 79 71 69

Accuracy 44.9% 57.3% 63.1% 69%




Mach. Learn. Knowl. Extr. 2021, 3

348

[

3

£ 604 — Researcher
% Hospital 1
3 —— Hospital 2
2 40 — Hospital 3
o

20 A

0 20 40 60 80 100
Time (seconds)

(a) CPU Usage (%) during workflow and transmission of
the model through the DIDComm protocol

100 A

N W
S
< 60 —— Researcher
% Hospital 1
3 —— Hospital 2
2 40 — Hospital 3
o

20 A

o4 -d I\ dl AN d
0 20 40 60 80 100

Time (seconds)

(b) CPU (%) during workflow without the use of the DID-
Comm protocol

Figure 5. CPU Usage comparison of Docker containers during workflow using our novel federated
learning libraries.

5. Conclusions and Future Work

In this paper, we extended our previous work [27] by merging the privacy-preserving
ML field with VCs and DIDs while addressing trust concerns within the data industry.
These areas focus on people’s security, privacy and especially on the protection of their
sensitive data. In our work, we presented a trusted FL process for a mental health dataset
distributed among hospitals. We proved that it is possible to use the established secure
channels to obtain a digitally signed contract for ML training or manage pointer communi-
cations on remote data [17].

This extension of our previous work [27] retains the same high-level architecture of the
participating entities, but the proof-of-concept is a complete refactor of our experimental
setup. More specifically, as described in Section 4.1.1, each participant’s controller and
agent entities are separated into their own isolated Docker containers. That separation
is adjacent to a real-world scenario in which each controller and agent reside in different
systems (Appendix A). Furthermore, in our technical codebase, we now use our novel
libraries written in Python programming language and demonstrated thoroughly using
Jupyter notebooks. We further performed an extensive security and performance evaluation
in each stage of our proposed infrastructure, which was lacking in our previous work,
and our findings are presented in Section 4. The performance metrics identified that the
performance of our trusted FL procedure and the accuracy of the ML model are similar,
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albeit the model is transmitted through the encrypted DIDcomm protocol. Additionally,
using our designed FL libraries, the ML training process completes faster. It should be
noted that there are no conflicts with other defensive methods and techniques, and they
could be incorporated into our framework and libraries.

While FL is vulnerable to attacks as described in Section 4.1, the purpose of this work
is to develop a proof-of-concept for the demonstration that distributed ML can be achieved
through the same encrypted communication channels used to establish domain-specific
trust. We exhibited how this distributed trust framework could be used by other fields and
not FL explicitly. This will allow the application of the trust framework to a wide range of
privacy-preserving workflows. Additionally, it allows us to enforce trust, mitigating FL
attacks using differentially private training mechanisms [84,85,88]. Various techniques can
be incorporated to our framework in order to train a differentially private model; such as
Opacus [127], PyDP [128], PyVacy [129] and LATENT [130]. To reduce the model stealing
and training data inference risks, the SMPC can be leveraged to split data and model
parameters into shares [131].

Our proof-of-concept detailed the established architecture between three hospitals,
a researcher, a hospital trust and a regulatory authority. Firstly, the hospitals and the
researcher need to obtain a VC from their corresponding trust or regulatory authority,
and then follow a mutual authentication process in order to exchange information. Further,
the researcher instantiates a basic FL procedure between only the authenticated and trusted
hospitals, we refer to this process as Vanilla FL, and then transmits the ML model through
the encrypted communication channels using Hyperledger Aries framework. Each hospital
receives the model, trains it using their private dataset and sends it back to the researcher.
The researcher validates the trained model using its validation dataset to calculate its
accuracy. One of the limitations of this work is that the presented Vanilla FL process
acts only as a proof-of-concept to demonstrate that FL is possible through the encrypted
DIDComm channels. However, to incorporate it in a production environment, it should
be extended and introduce a secure aggregator entity, placed in-between the researcher
and the hospitals that would act as a mediator of the ML model and updates. In that
production environment, the researcher entity would simultaneously send the ML model
to all the authorised participants and not have a validation dataset. This is a crucial future
improvement we need to undertake to help the research community further. Another
potential limitation of our work is training a large-scale convolutional neural network,
which left as out-of-scope, but needs to be tested.

Future work also includes integrating the Hyperledger Aries communication protocols,
which enables the trust model demonstrated in this work, into an existing framework for
facilitating distributed learning within the OpenMined open-source organisation such
as PySyft, Duet and PyGrid [17,132,133]. Our focus is to extend the Hyperledger Aries
functionalities, the libraries designed for ML communication, and distribute this framework
as open-source to the academic and industrial community on the PyDentity project [31]. We
hope that our work can motivate more people to work on the same subject. Additionally,
our scope is to incorporate and evaluate further PPML techniques to create a fully trusted
and secure environment for ML computations.
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Appendix A. Security Testing

Traffic exchanged across DIDComm channel is always encrypted, as in Figure A2.
Only the internal traffic during the connection establishment in a single network, such as in-
formation exchange between the hospital’s agent and controller is not encrypted, as shown
in Figure A1. This is not considered an issue since we separated the agent and controller
entities to simulate a real-world scenario in which those entities are individual machines.

[{"cred_info": {"referent™: "3e@8cBed-89dc-41cf-9ec7-5b8cB8@54b7aa", "attrs": {"hospital name"”: "St Thomas's Hospital", "date": "2821-81-12"},
"schema_id": "DukExq9foGb5DjDoRXxB8G8:2:Verified Hospital schema:74.42.54", "cred_def_id": "DukExq9foGbSDjDoRXx8G8:3:CL:3945:default™,
"rev_reg_id": null, “cred_rev_id": null}, "interval”: null, “"presentation_referents™: ["@_hospital name_uuid”, "8 _date_uuid"]}]POST /present-
proof/records/d@cc59b@-f98f-4858-a787-cd723b8aa%84/send-presentation HTTP/1.1

Host: host.docker.internal:8671

Accept: */*

Accept-Encoding: gzip, deflate

User-Agent: Python/3.6 aiohttp/3.5.4

Content-Length: 267

Content-Type: application/json

{"requested_predicates™: {}, "requested_attributes™: {"8_date_uuid": {"cred_id": "3e88c@e8-89dc-41cf-9ec7-5b8c8@854b7aa", "revealed”: true},
"@_hospital_name_uuid": {"cred_id": "3e88c@ed-89dc-41lcf-9ec7-5b8cB@54b7aa", "revealed": true}}, "self_attested attributes™: {}}HTTP/1.1 288
oK

Content-Type: application/json; charset=utf-8

Content-Length: 5896

Date: Tue, 12 Jan 2821 18:47:46 GMT

server: Python/3.6 aiohttp/3.5.4

{"thread_id": "6588fbf2-98bf-4a7f-874f-cal588bcddfd", "initiator": "external”, "auto_present": false, "updated_at": "2821-81-12
18:47:46.5614187", "presentation_exchange_id": "d@cc59be-fo8f-4858-a787-cd723b8aa%84", “presentation™: {"proof”: {"proofs”

[{"primary_proof™": {"eq_proof”: {"revealed_attrs": {"date™: "18797528622553272758031075333733131562304135744127282393669404927495035677851" ,
"hospital name": “551722964988485494632366586000587972374544874141297288255547@8653127216925176", "a_prime™:
"4629323099073067340861587545784214176958680932111915243188307265084581770000563865834206318371820674344766054860735117414757996937748501259150
767613842534244600978476393498496313728779365394835621174979662426689188699812622875346919512542383360976156236955158367014288484117355258947
812896923714252891393928425188086302531837834159575933673838855773082346753641753491141738785648367588883719208489955367754858488985281823258681
8541801618513509380902135358348384859779255376789472271616794542126724979486532033092280327915705892205377700130648523052871709264674586995161413
3768010@52784497308339370498518825507699623030238785671", "e™:
"4913117179949994603089667066110895797897731321490503580008661322082282546763486574301993385329122591172773227095836454245495809087652348520™ ,
L
"41154430501042665754312614844104560749019365626648240726723971329241104756222430300154027911621391783797622691126609735724470502155732954525
96311789843952224227188114394961168166579836397385975292327482617372754152452884688841349823141155994795241211311136482314767260828630980832519
72980856522397065614695358347515725485537543947295165979889198355502307988342831947684467848961980901129340654649511533408537727560027017233916
B113783894716004567129174853812142742251852389@8559330278109759347130687443863821752113962197112862911398817511898921551927773434520682082612688
922024596508358583611513388176683346218558633463673097172719819486092587573646470642713180948381637428453090923869425885684209320973350078652848284858
BE1294945613598680169353451950497955398985352992272548078493177870828635958194459631 844680860967 5175389467 103543021 208490872763751943558989723988
2669888582653391144813659186013706696696997848538819440084863418127214471634", "m": {"master_secret”:
"99256364806642320468497564408792083603763250945184041252598131589482631833486330958877152408505661695404601812332119521009885215588663864583
70886820549993308126387071521169809296" "}, "m2":
"68851356618288876845398119775750164327750860320829476739324613091002607220133602124209392263681518876502026121209038281272997994243611727602
@341781929996297@237551063499863887192"}, "ge_proofs™: []1}, “non_revoc_proof”: null}], “"aggregated proof”: {"c_hash”
"1713383664788883141719421710751591746514217336453438300625276164816228617095", "c_list": [[1, 11e, 182, 136, 247, 18, 213, 22, 2, 246, 252,
115, 186, 17, 91, 222, 216, 57, 196, 73, 252, 222, 154, 114, 186, 163, 83, 225, 167, 176, 197, 162, 165, 221, 184, 165, 68, 125, 85, 16, 162,
268, 62, 25, 181, 265, 78, 262, 83, 98, 253, 235, 267, 143, 235, 223, 218, 241, 99, 285, 45, 217, 11, 99, 188, 21, 54, 113, 125, 163, 9, 77,
19, 214, 34, 4, 191, 169, 248, 238, 215, 166, 238, 181, 201, 285, 179, 62, 154, 96, 26, 5, 95, 171, 115, 14, 53, 233, 156, 226, 8, 37, 161,
221, 32, 8@, 35, 188, 22, 132, 138, 113, 13@, 133, 238, 38, 245, 53, 58, 13, 161, 13, 33, 251, 121, 1&2, 195, 285, 89, 4, 49, 25, 168, 122,
58, 96, 250, 132, 218, 132, 19, 14, 17, 16, 149, 62, 189, 25, 1, 77, 235, 25@, 128, 23, 186, 174, 18, 69, 198, 15, 199, 53, @, 89, 28, 289,
175, 131, 129, 221, 54, 133, 44, 59, 168, 14, 82, 193, 198, 155, 89, 221, 158, 221, 142, 95, 1@6, 99, 132, 48, 175, 117, 66, 11@, 219, 253,
72, 161, 195, 117, 139, 115, 82, 16, 200, 190, 208, 145, 142, 30, 231, 145, 212, 148, 242, 184, 45, 43, 172, 43, 148, 127, 63, 78, 96, 168,
153, 216, 233, 137, 179, 28, 3@, 29, 195, 253, 192, 1594, 216, 114, 185, 72, 74, 171, 216, 233, 191, 72, 182, 253, 51, 255, 196, 252, 1&88,
176, 135]]}}, “"requested_proof”: {"revealed_attrs": {"@ hospital name_uuid": {"sub_proof_index": @, "raw": "St Thomas's Hospital”, "encoded":
"5517229640884854946323665860005879723745448741412072882555470653127216925176"}, "@_date_uuid": {"sub_proof_index": @, "raw": "2021-81-12",
"encoded”: “18797528622553272758031075333733131562304135744127282303669404027405@35677851"}}, "self attested attrs™: {}, "unrevealed attrs":
{}; "predicates™: {}}, "identifiers": [{"schema_id": "DukExq9foGb5DjDoRXx8G8:2:Verified Hospital schema:74.42.54", "cred_def_id"
"DukExq9foGbSDjDoRXx8G8:3:CL:3945: :default”, "rev_reg_id": null, "timestamp”: null}]}, "presentation_request™: {"name": "Proof of Verified
Hospital™, "wversion™: "1.8", "nonce": "231376535924841821213592488537406547647", "requested_attributes™: {"8_date_uuid": {"name": "date",
"restrictions”: [{"issuer_did": "DukExq9foGbSDjDoRXx8G8"}]}, "@_hospital name_uuid": {"name": "hospital_name”, "restrictions"

[{"issuer_did": "DukExq3foGbSDjDoRXx8G8"}]}}, "requested predicates™: {}}, "state": “presentation_sent”, "created_at™: "2821-01-12
18:47:46.2911367", "connection_id": "8c53ba@c-3faf-41e5-b9T8-2cca@l2cbbla™}

Figure A1l. Communication between agent and controller is not encrypted during the connection establishment.
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POST / HTTP/1.1

Host: host.docker.internal:28678
Content-Type: application/ssi-agent-wire
Accept: */*

Accept-Encoding: gzip, deflate
User-Agent: Python/3.6 aichttp/3.5.4
Content-Length: 7349

{"protected”: "eyl1bmMi0il4y2hhY2hhMjBwb2ySMTMWNVIpZXRmIiwidHIwI joiS1dNL zEUMCIsImFsZyI6IkF1dGhjenlwdCIsInI1¥2lwakVudHMiOlt7ImVuY3J5cHRIZFOrZXkinid
1WG1RRIVGN11Y0UdraHVDb@VodVF 4SXAtNko3WEZ 1bUsBb@1BY1 gt c29yMEZFYmS 1idixBNFNia2ceQankNjRUT iwiaGVhZGVy I jp7 ImtpZCI6I jN6eFhqTGpiakt TAEVEb2MISE16NHPERIAT
eXIUV3oxdBVyaFFGTkh5eVkzTiwiaXYi0d IxdGF TUkxnekoosY10@dG5@dWF taXhRWMDNuSWRZcmF1Vy IsInN1bmR1c i I6InRYaGpxYkhrdUsteVIYe IMyX2UxNT IxNGZucURKMWpkQ3 cBOWNAR
UxRSCINZGS5 1UKNTZ 2k zeGOweDVsWVHZ rMjBPUWkodY 1ZqY29kUF c3TEh1d@t4NGIwa 1dkUTdkUGZnSzNKMLIQMjROLXBOOThQe11tU1ZQNINIS1 pwMDAifX1dfQ==", "iv" : " 1Wx_LRyTrlPy3l
MK", "ciphertext™: "n4xV-NBZCpBQLhNoKANxMc VWV zz0 -0EyQewdqZhHd8bMw8a -bMwuorndk_27hS03a-
r3TgELIRE3aW3pbIxyd2HeG_rt0JDUwwHLPIDI2vZB1XbQS1LTOFEQ-2ZNjKEEKKCNIZ1vEidyb7I1ZiZLu-85]IVFBYywiv37QGxIkIGMILMGYmeVMo4EmLCMRI 15asX4QDbdEYBHAgEHZX
1bLRSmkyHL1UczrwllmZpPjocoA3 jKRnaTDLiilyCREr13tzVpDgc JUQKUGERHXUINI syPbGOZA 2VEzV7qIUImM_bsqpMoSI30VEelrheUTS1VZIriTst201kDSVLUPYR-
OHLDR_4n9hVK4T4qzkyahGVMi9HISYCxpgeXQekaljqAuZ zCzXzvPnNSj4nviMPjILDTeztU4ulmFPMeEPCT1fbt_Zp2nhu-
wdDA1qFYHBCcmqQpROWMTEKI581zCFkzUrQjaXghfgNLTVplSa_FUZr-3kXMeReN6hDFyyEwk_GwhSeSLuzRHcuny550004tnYTgRLpHNKPQAFDSBE@2xG0crVIBEOr -
dx1qGgaACsBLEIBL19wpR4 jFantZsTTBUAHS _YxsV-yKcYyxG5q3n__ dvdYed_RscVnIdalllcx6xM6EybyfBAqtqEXI6Q-1YbNYI@U-cbChsI3-WQ5082X5148hcve -
FekgXrmDKKiHKLIbPGVIjtYLiInfgIHFBEgE-

I4WnINIUb4UgBw]dcUG-581cQi3TkwRZEZVm1Xd7 paEBuhXYtvAxHrSh_Bs29BEmfW_tc3Buw7dL4b_0dzsRIHQU_czmeYE9S7-1s25cMtWaldiv_i07Jymg45wqixvUuyvenSaob3YY uo9Nuo
QmQBu651B5 3oXdHEy smu2nsEZRxF LultbeiZZKuUB2VG_a97xATAW2BSZEvmYu91Kw_euNzArHVgqT7_UTIgBTI28sFhiSwdrez13zdMfnQLkEYTzQZUWBHE -
dQXHAIbTMVG_qNwfh77E1ECjv7a-BntKmSkWEKZTIX7c1aPZ22 rVulUl6Ipe0sz 1 THYUSKY -

F11Dvvbep72¥¥Y1cWYBLPAaDTD1hWT 3SHxKSUubIsh16XQh8xQI fmlmOmoy06Dmod hNWov 2exoQema¥ACrcrG3MIX3QFMErA THrABFF1H14507vjbWgebT - KPNIUXbg-
SRIVA@1psQQGEnjSC_Ld-VzwPIkiqyaYbelAb-
iCRhmISkeaj_OPx5p804t1f_tRVAYSubi3alFKo5aMZ1_QM738526PKPebBxLopSpd7 THEEVE tNS1VFbPZeTXYH3g jOmZ 103 rB2y SAKZuureDSAL THWYQUF fr_REEN2UADaKb11roYSOT4rn
nbuC jN-ah3s7bKSwxjH3I0mNakKTwA_E16qe1D6F3ZayUn43068FSk_jzW6-

s2k6Znabghe6lekMggnapofw2ZXehDgsefwlekecmeh8lUiG7TIZSezviwf TNYCGZLIQz xBgvZioUikHbNToZ7Rpey2DACOQpEW] -
L1CiwYnsaVCNkCDyYvHEnf4favu_YsOAUNhLGFI98qscklL jEgIjld2HTI2VqkRaWdQvhTjSFeZ9gT76hAvXNwp3mimd Louwbb@oBMzLWGpA79q3HhUveFoZuHcUt 3rLteUETXPY7FBtUGTVN
W68kx7zSAdst_Vob4@KmUOKfGeddI19TtDgAVNUOZATGYWZIAsuCr3P_eil20YmEVqLkwmQqUXa7W-mlokr958Ahw] cOtBxXFIvkoz EUSVWI26dm-a3dfSxqazlyF8l-dwkels-
hdInJIPxoHDHyubltMsbxRy1RZh-41Gtz1QuXk2In5IATGYZKkqOS-

COWZINWVMZBXI7GD7NTkaltYXNnVZnasaWYUa7klzMI3PIIyRx8_ VUwAmgBsTnZctlU_4KblvVjZYasawf ZmMAUBGDDoxyETSIWBZyud7bpljAwkrha0eUvtomTIBiiriVHBgR1PVGX_QZ57h
-nPIWQS50GuxBexBlzz35eK3y890IdnzQcYpmyfutSxfI-QFCTIS -
BIGPRjcYi6F6z1z981Ejrz611YngIvDFugb79L7NaxI0k2hsFBickIgtk-0He4X1cM5020WFNDZKZyiItewnlygn8toTiQf AmxsBgVGgi425InlPey_ady9C840]AUELB0]SYwieBjkeEdnPd
qU7C_9VnGHxXq6UVuI6wg06ZQy71ZCTLFn_mf3Ap3rjAtt3TxZB7AEVBCH- jx0IXVFBOBdBBWGF cNM-swnZRSFGakM2Vh-Vn-
zUel8yIUB343U7k_BCS_8P@BrsUjblsvebfaQXElxVZgyld8acaGDaaqB7ogogeAn jbnXwlFIBTDMbghS7khXbb3romDL -
IfUbMRwiy1pRIurBKENXBmd@31PWXNSDjIT11SsNIwuGERCRIqEIF_650kxoYVEKS -cd@vr ImTubrBBaldpc-oCpF@43fuesxnhSgaQH-

Vx1X7129B806BLVMyyhaBprql LUEE2vW308aIKCUhPWT ilgwzrewPCodrIlxfnUjNNApnYXpIszZNT 14enkekkSc6sq1b7gAdPuMSh-

GWmEqOqbzuBGeMNBmT_2rGpAuddVal hFu71fj811TglklIFI605d5ut60Xn X4~

j8xLnuhlij20dbQEeBCNILS INPZx@alPRe1DYQyh31iZ6aMr0E6eh6KCUYrCrbf1L6zUBRABCIXDiI8Geeq2VIMNSAbhisFXm_3tPy78MW7 2bEBIxIBnYAhmy 2wd14y4bboSGIHEX(wEi8rn7t3
pAStEFPEGHWRFx-CxCET lmxf_bgyBpPwSzprX205810702a5bDokLkBNOY1EP_nh-

LCKBRujKmrHwlgUJoblh7msfZfg8QHDEGYkQoG3YADSHiaB 3ESUNAVILIV1of pICF rEKRB3MVMLKU7LUI2LBUKAIK 2vExpSyE -
P2UrnozksblE_xpUdsZqClqayQ8cKEFfLPajLPNSGZORX8gdpelb3pnuidc 1dx4BIdAKECUkr_Auv-hSKTtiHumo9q3Tef1Tyd-rgHlgU33n@cdvIN3S4asv2Glvwnl-
IiSkYjiXHEBIDi2b6IYBNLoapCAKhI-3wfBPHIjl46YadtFojhPYBOSFNIOVrAC_7Yka3UYr2UAHaoVEXNg 1T pYQreHmQ_tPPutsRRZbiC_QgIVgAd4rjs_4Z3Nua4BTeCAXBZEF0s53DU3ele
FlixgIcL4 RFKHS3T-rWPLz@MpEpxDOXGiTNQqUQC9XoWa781iISELQIQGrqOItPswWEVPLB33r7W_ac2xwizbggyf7msozBaMA-
gkrdEENi4_XINc78szdAbWEdDE®aFN3MEUZCTID207M3NIqVKCcpxIFXV0oXaMRamT 7 1QDDRxy02e5dbmm I nMBlbxJNt@ZQFhRr117stY1ld YxbIBwf3cnLsTzmoGnewdqDOAgzml43pjhul
3j115Rb-n1Spm3VTyoyyxJbIEBQOXWLXNIOyRvCpnwyCLRyxKz5bPghlDfaQ8PUKIK2dUqe 314ynxDs90EM_E1lWgpBYI4UnBy THFUU0ICSHZqeb@QwHEMIHro-
Hpa8zyQsCUFGKcjOzAK2saHIe2twsmlonn-

iTags_ccalcSxqdemCatUVEzz6TGLhSEpmvIU9ZE9KAlphWBaDBPe jSTaYnsT7mBhAPduwpNrFlrr_XWAoBghQRiF@6S0wpAvauFuMyYaE7LVRPEh4MxcmR4 -9MHUE4ggiNxhEYSblrwefulm2
hwh¥3UmiY7pfGVBTUGXvhE ISUIKK Twimx@TPTVp1bo@uR7 -

NuQlzyjIiXNGAJ5SuAELPBUhOTREAZrFoX@zEtGBUEBTopHVIRNBBEGSKMEEwxacXexyRETZaxknD2tSqkuKe JW6RavwsPBAWSA2EWpqBIDpz6uzYIBIXwI tqRIBq -
hiix_KmpAgBCclvSQlxBjleUFpe7Y1YX8TddUwyQkCivwLVTvkvX7Th5mGixZXIewl EKIL - znRpvHXK7LBMEXThIX flikF -BRhAS -k6YXyh4nnUrmF 25GgFFkKQZqzULY9VG2crjcynzu-
YCgasn3EvPolaFWT1PMbyrSwllinEbBsal73cQ8EHCNwtqPSHFaT TmXToOF F 6w vsFv-4arTTazPaD-2¥shBzYRjAD1 2BPpF5spfhiqYgndugg]Vadbtnx 9L 1XUr JHeRrpokgMyN_ioSao
sOheFEKPw_TENSWAMYD] - q6pou]bSArKRYVNI6Y 1oAHD - 38TXz5qp7al Gz08qK12] 1 PBAWEE Fk3Zuz0K2x6Nkawz G5yR7vadlu-r1eEFUMLo2cP1IMIBI zqpPquMI9R1_74w35HBgUXEYE -
FoEPTp4gbvcAlxnETcgqjzPy75TczHrGEMNYm2tFP_4R5n-tcBm-5bS5ZsVRe -

dKkkkP3TtjNHINSbrxl0chkW_cQd_37uhMLILkSzVZ_QuiWSBdcKL2m)gtzeVHwHEADEP4TaM1Ky9 IPSPNrCrkHLyXSnjTxrMoHyUNa34MgH_3r6phg8D32T6)z2dMUEIpjHEXpa2aSYFMoV
1hmu-i8ul8a@0ImDsQN-aTVHMEYF -0jj@BjevX6axmAREGINIAVINI1Td7KGDCGekbEHrUvrKRCC SAOFIHTONPYS4w1IMIKUS 1G4S -
abSRyteNfCqrPsGr7amCKwjLOmbdqeCUPTHRATIWFiIMI2FXyAVLDLINNRja6BKg_3baF364Y14mxBValle5pwmP@sCfnbfglcapg2veqoyFuxzqMdgyaDrDgaz-
y@Fe6Mbax3ZP015712I8gNHFN19a1rb7nE6ASMAWKRPUGL3NUHTFFrTVEShIQrlqlARrL4zCYTEVZPFQbjrdThabliXjzto-
Nnn885ZFnbdDeZgCivIAv3ySyvivPxBylnTIRsMght5531CVOULKSSON1MnLGLBQAEI4T4R23 -

tsjB6QMLFeg5cFdBfZ7Yil51objvowVKZI5hYnitbz -5ZrRtNnD9gY58VzRGYkfmYXAX9CzvNfyQMj7Ke1aBVTdPNEBqYimQjIqusFwej3b3WlygXB_ILMqYh3Z13§Yjo3¥gzYC5715BNI7zs
GaBafgwpXenRADNX-WU1VIghPg4m0SY7rin1Q_UFWYAhc_OkBunkMtpngbugssem wfyIisQ-

12nsAjPLA3btP@WAMKs1aqdpmYGTEefSXNHxkegXESTOVSYBRP12s ITFC51BvnNkiT6RBkEFAVX3syHss -
TiuDQVjh_medNsI4LNTEIISKkYrTIudntBEImzhs113TKxPh5FKvY15JZnjRYI41cHDa1CI8@Bkt-

MKF1mgfnl64Cdpiilspcet3MPuldvvnLCKHYmaj9ql1VS4usHr 7yS76 16V i Fu2BK ImVwakqhP7cPKijdNj jms IYWdIMQ72Y7nX7bSDkORQQETr r1wvkgSMahHbAKmy42 IShEARFNXq8qC
Fq3ZCaaMgMNwTYSShnISAWBLvAMYGxptwid jI52yGIERQNRIVouS znhp4BM7pkBhsScyTe8ZVUhymI iHFwt Z6153TgT4Xul7nM32U6vX3G3tERbY FQUU2WB cMws_gG-pHstJimel WALhTAM-
vPelxaMpC3h1ThyWPXFX1Bm-1gVUtD3VubujthpAuySLbNeEAVC3QIzubT_BFPP2E28aFol SGWIG L jXGXzbbatABUA4SQH7 Tdpl62FbZf31EORMESCOTXPTHIRXTI7P -

n4U2xnkweBZ0%s 64pmBYZ_HIcMFujglkopI4kDOm2DuT 0wl GCpoBqdalAsY2Thvke 2HRpuk 1FUTA41Z80gbTaTTt19Rsnmac_BlsaceCssSrQtcol SaPUk1Xix3tLuB5aXdoliGE bmmsYEhN
8nek2aak_2hQUGgEY 2HVNDTkuPXR28NSoVs009igZbeiiU624FUPLPj7Tn21dLfqRAMOBMXmNLuWMK 12YiiefqvivzPghyZIve jNrlmK_ImFH7zmOSNT jb88G2Pta5StXYeUScryYaoWaWsGai
TyHIQ287XuUCFiBGjqy3nkivlScHtVENDriUA4rhY_1GP1IfpPY-pcldxil7KKE @s cFEFrni IiXUNXcBe2bxjUBNMICIFROE 1 IUODEWCEhYEOE31Ky4 -
144Bs4I13IPdInSpxV0GqPBwdVGgat65QLUYI15JUXECRIWLCePm2fYNyoNIGriPFWPmaBRWbKHDLTFTfrhWbaldsYJCePML1ipsUgS1dNbTuhkQxULhZAvid- LHANT LNy GREMHNDmYNP FwDii
d6CRE6exKjNSomrvRvTxphidbfCt5Ttsr1GgGwnLCvoyq_mkXIYNe]Ss8gIUEQMGYBZkOwhupoXTHXz J53hEreJqNQBNCHAQVNXBoDi tQ1HFpehdzlxUpDewmvgeQkL jSq-5Mm574ViSQHIcMDp
is5d9aal20xwelIr FWEQBVREDSOEPZ - -kSyMEDCFeNYuYi6XTkBhzQk67DeWIeXCOLF 1kSBINKSKORNDVOGY _Lka-dIMlsrXxqalUiZYBwncvbvRUUhciPLxjKV-idWrxELHbréHmeo-
sKIweYTsdlwZrigusesTcOpEWXTbuZhkuTFGE Wxi@1l0nFws_AmDydmT32WSNQso3vDm_ NXASBrRE","tag":"ZVFLPgLaABwdtZPgfVoZ8w=="}HTTP/1.1 288 OK

Content-Length: @

Content-Type: application/octet-stream

Date: Tue, 12 Jan 2821 18:47:53 GMT

Server: Python/3.6 aiohttp/3.5.4

Figure A2. Traffic through the DIDComm protocol is encrypted.
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