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Abstract: The diffused practice of pre-training Convolutional Neural Networks (CNNs) on large
natural image datasets such as ImageNet causes the automatic learning of invariance to object scale
variations. This, however, can be detrimental in medical imaging, where pixel spacing has a known
physical correspondence and size is crucial to the diagnosis, for example, the size of lesions, tumors or
cell nuclei. In this paper, we use deep learning interpretability to identify at what intermediate layers
such invariance is learned. We train and evaluate different regression models on the PASCAL-VOC
(Pattern Analysis, Statistical modeling and ComputAtional Learning-Visual Object Classes) annotated
data to (i) separate the effects of the closely related yet different notions of image size and object
scale, (ii) quantify the presence of scale information in the CNN in terms of the layer-wise correlation
between input scale and feature maps in InceptionV3 and ResNet50, and (iii) develop a pruning
strategy that reduces the invariance to object scale of the learned features. Results indicate that scale
information peaks at central CNN layers and drops close to the softmax, where the invariance is
reached. Our pruning strategy uses this to obtain features that preserve scale information. We show
that the pruning significantly improves the performance on medical tasks where scale is a relevant
factor, for example for the regression of breast histology image magnification. These results show that
the presence of scale information at intermediate layers legitimates transfer learning in applications
that require scale covariance rather than invariance and that the performance on these tasks can be
improved by pruning off the layers where the invariance is learned. All experiments are performed
on publicly available data and the code is available on GitHub.

Keywords: scale invariance; deep learning; interpretability; medical imaging

1. Introduction

Computer vision algorithms trained on natural images must achieve scale invariance
for optimal robustness to viewpoint changes. Multi-scale scale invariant approaches are
popular in both image processing (e.g., local descriptors, filter banks, wavelets and pyramid
scale space [1]) and in recent deep learning techniques [2–5]. Deep Convolutional Neural
Networks (CNNs) [6,7] achieve state-of-the-art performance in object recognition tasks with
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scale variations (e.g., ImageNet [8]) by implicitly learning scale invariance even without a
pre-defined invariant design [9]. Such invariance, together with other learned features of
color, edges and textures [10,11], is transferred to other tasks when pretrained models are
used to learn from limited training data [12]. Training from scratch is sometimes a preferred
alternative to introduce desired invariances in the learned features [13,14]. Scratch training
is adopted by scale covariant [4] and multi-scale designs [15–18].

This work is based on the assumption that the scale invariance implicitly learned from
pretraining on ImageNet can be detrimental to the transfer to applications for which scale
is a relevant feature. With a controlled viewpoint and known voxel spacing dimensions,
scale is informative (and often decisive) in some medical imaging tasks (e.g., size of
lesions, tumoral regions or cell nuclei, as illustrated in Figure 1. The other transferred
features such as shape, color and texture, however, are beneficial to the medical tasks, in
particular for learning from limited data and improving the model accuracy and speed
of convergence [10,19–21]. We therefore formulate the hypothesis that a specific design
retaining helpful features from pretraining while discarding scale invariance can perform
better than both a standard transfer and training from scratch. The experiments in this
paper focus on validating this hypothesis by identifying the network layers where the
invariance to scale is learned and by proposing a way to isolate and remove this unwanted
behavior while maintaining the beneficial impact of transfer.

(a) unknown viewpoint (b) fixed viewpoint

Figure 1. Illustration of (a) an unknown and varying viewpoint typical in natural images that requires
scale-invariant analysis and (b) a controlled viewpoint in which a difference in size carries crucial
information that is discarded by a scale invariant analysis.

We make use of deep learning interpretability to preserve the scale covariance of
the deep features [22]. The network layers where invariance to scale is learned are iden-
tified by applying Regression Concept Vectors (RCVs) [23], a post-hoc interpretability
method that uses linear probes [24,25] to determine the presence of a given concept in
the network features. This information is used to optimize the transfer by developing a
pruning strategy that maintains scale-covariant features without requiring the re-training
from scratch in [13,14] or any specific network design. The experiments in this paper
extend results, discussions and visualizations of our published research in the Workshop
on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC) at the In-
ternational Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI2020) [22] with new in-depth analyses and results. The additional contributions
of this paper are stated in the following. New analyses including experiments on image
resizing in Section 4.1 and inputs of random noise in Section 4.2 are used to show that
object scale and input size have dissociated representations in the CNN layers. While the
former is learned from the input data, the latter is shown to be intrinsically captured by
the architecture (see Section 4.2). The results on the scale quantification are validated for
multiple ImageNet object categories in Section 4.3. The significance of the results on the
histopathology task is evaluated by statistical testing in Section 4.4. An additional study
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is performed on models trained from scratch for this task, showing that our proposed
pruning strategy outperforms both models and pretrained networks in Section 4.4.

The results from this work increase our understanding of scale information in feature
reuse. Scale covariance is highest at intermediate layers for all ImageNet object categories,
while the invariance is learned in the last dense prediction layer (Section 4.3). This is
relevant not only in medical imaging but also in other applications with a controlled view-
point. Considering this information about scale may help to build models that predict the
magnification range of images for which the physical dimension of voxels is unknown,
for example, magnification level not reported. For example, remote sensing, defect detec-
tion, material recognition and biometrics (e.g., iris and face recognition with registered
images) [1]. In the medical context, these results may have a positive impact on the use
of large and growing open-access biomedical data repositories such as PubMed Central
(https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/, accessed on 2 April 2021) to ex-
tend existing medical datasets [26].

2. Related Work

Built-in scale covariance (features that are covariant with a transformation are also
referred to as continuous with this transformation.) and invariance in specific CNN designs
have been studied and implemented in the literature [2–5,27,28]. While these methods,
together with other types of inherent covariance, can alleviate the need for pre-training
and large amounts of available data, transfer learning remains extremely common in
deep learning applied to medical imaging [21]. As an attempt to understanding CNN
behavior with respect to scale, manually selected deep activations were shown to respond
to faces viewed at different scales in [29]. Invariance to scale in classic CNN architectures
has been analyzed in [30], where the authors use computer-generated images to control
attributes (concept measures, including scale) of a single object and visualized the effect
on the internal representations. In [9], the regression of geometric image transformations
(e.g., image flips and half-rescaling) was studied in an attempt to learn the homomorphic
transformations in the feature space that account for the transformations of the input. The
authors conclude that scale invariance is implicitly learned on ImageNet as accuracy is not
improved by reversing the scaling transformations in the feature space. While [9] learns
transformations in the feature space of a trained network, an end-to-end supervised method
is proposed in [31] to enforce the disentanglement of transformations including rotations
and scales, providing built-in covariance properties. On another line, the vulnerability of
CNNs to adversarial attacks with transformations including scaling was studied in [32,33].

Network pruning approaches were proposed in [34,35], with medical applications
for PAP smear imaging [36] and Chest X-rays [37]. Pruned networks achieve a similar
performance to, if not better [36] than, that of the original network. The asset of network
pruning is that even if not providing massive increases in network performance it improves
training convergence and it reduces the number of parameters to be trained and thus the
computational complexity of the models [37]. This allows the training and fine-tuning
of the models on smaller datasets, as shown by the study on PAP smears [36]. Pruning
methods mostly focus on identifying the importance of individual elements in the network,
such as individual neurons [34], individual filters and/or feature maps [36,37]. Particularly
in [35], the authors dealt with multiple object scales by specific-design observations that can
make their pruning responsive to multiple object scales. We propose a pruning strategy that,
differently from [34,36], focuses on entire layers and that evaluates the layer importance
in terms of the scale covariance of the extracted features. Our pruning strategy does not
require an explicit design as in [35], nor expensive computations of evolutionary strategies
as in [37]. Our method can be applied to any architecture pre-trained on ImageNet inputs
to understand the scale covariance of intermediate layers and proposes a pruning strategy
that can improve the transfer to applications where object scale is a relevant feature.

Post-hoc interpretability, as defined in the taxonomy of Lipton [38], is particularly
suited to the analyses required by this paper since it does not require adding any additional

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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constraints to the optimization. A post-hoc method can be applied to any model without
the need to re-train the parameters. Linear classifier probes [24] were proposed to analyze
class-separability at intermediate layers in terms of the classification of the class labels by
a linear model. Kim et al. introduced Concept Activation Vectors (CAV) [39] to classify
arbitrary concepts (e.g., striped texture) that can be either present or absent in a set of
sample images. RCVs [23] extended CAVs to continuous concept measures with a linear
regression at intermediate layers of the CNN. This approach led to insightful observations
in general computer vision [25,40] and medical imaging [23,41,42].

3. Materials and Methods

This section outlines the proposed method and the setups used for the experiments.
Section 3.1 introduces the notations in the paper, while Sections 3.2 and 3.3 describe
the datasets and network architectures, respectively. We outline the main approach in
Section 3.4, while the evaluation metrics are defined in Section 3.5. The hypotheses, scope
and methodologies of the multiple experiments are described in Section 3.6.

3.1. Notations

We consider an input image X ∈ Rw×h, where w is the image width and h is the height.
The function φ(·), defined as φ : Rh×w → Rd maps the input image to a vector of arbitrary
dimension d. At intermediate layers, the d scalars are obtained from averaged feature maps.
At the final fully-connected layer, φ(·) transforms X into a set of predictions. As further
explained in Section 3.4, we analyze the scale information using covariance, defined as
the transformation g′ : Rd → Rd that predicts the transformation g : Rh×w → Rh×w of the
input image X in the feature space obtained by φ(g(X)). The scaling transformations are
expressed as gσ(·), being parameterized by a scale factor σ. We consider images of original
size So = ho × wo containing a single object that is annotated by a bounding box of size
Sb = hb × wb. ho and wo are respectively the original image width and height. The images
for which the size of the object bounding box is approximately equal to the original image
size (Sb ≈ So) are referred to as filled images.

3.2. Datasets

The experiments in this paper involve two datasets since the scale analysis is per-
formed on inputs of natural images and the proposed final architecture is evaluated on
a medical image analysis task. For the scale quantification part, images with manual
annotations of bounding boxes are selected from the publicly available PASCAL-VOC
dataset [43]. We restrict our analysis to three object categories and images containing a
single bounding box, chosen among the available annotated classes. These are albatross
(ID: n02058221, 441 images), kite (ID: n01608432, 406 images) and racing car (ID: n04037443,
365 images).

For the histopathology application, the data consist of 141 Whole Slide Images (WSI) of
Estrogen Receptor-positive Breast Cancer (ERBCa+). For these images of 2000× 2000 pixels,
manual annotations of 12,000 nuclei are available [44]. Smaller image regions are extracted
as image patches from the WSIs. A total of 69,019 patches with nuclei segmentation
masks were split into training, validation and test partitions (approximately 60%, 20%, 20%
respectively) as shown in Table 1. To not introduce bias, all the patches from a single image
were assigned to the same data partition. The imbalance in the magnification categories is
due to the area covered by each magnification level. The average nuclei area is extracted
for each input image by computing the average number of pixels in the relative nuclei
segmentation mask. Example images with overlaid segmentation masks are displayed in
Figure 2.
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Table 1. Number of Estrogen Receptor-positive Breast Cancer (ERBCa+) patches extracted per
magnification and partition.

Split/#
Patches 5X 8X 10X 15X 20X 30X 40X Total

Train 94 2174 4141 7293 9002 10,736 11,638 45,078
Validation 8 588 1197 2132 2604 3504 3150 12,733

Test 36 428 900 1728 2198 2802 3166 11,208

Total 138 3190 6238 11,153 13,804 16,592 17,904 69,019

(a) 10X (b) 15X (c) 40X

Figure 2. Examples of histopathology images at 10, 15 and 40X with nuclei segmentations.

3.3. Network Architectures

InceptionV3 [6] and ResNet50 [7] are used for the analysis with pre-trained Ima-
geNet weights. The networks produce a vector of probabilities f (X) ∈ [0, 1]1000, where
∑1000

i=1 f (X)[i] = 1. Transfer to the histopathology data is performed from both the orig-
inal and pruned architectures. To predict the average nucleus area, a single-unit dense
layer is trained to minimize the mean squared error loss between the true areas and the
predicted ones. The nuclei area is expressed for each image as the average number of
pixels within the segmentation of the nuclei present in the image. The magnification
category is also obtained from the average nuclei areas. The predicted areas are mapped
to the magnification category that has the closest mean average value of the nuclei ar-
eas in the training set. This mapping approach was used since it outperforms the direct
classification of the magnification in [17]. The networks are implemented in Keras and
trained for five epochs with an Adam optimizer and standard hyperparameters (learning
rate 1× 10−4, batch size 32 and default values of the exponential decay rates). The full
pipeline is shown in Figure 3 and the source code is available on github for reproducibility
(https://github.com/medgift/scale_covariant_pruning) (acessed on 2 April 2021).

3.4. Quantification of the Scale and Pruning Strategy

Our method quantifies object scale in the input and in the representation space. The
act of scaling is defined in image processing as a transformation gσ(·) that generates a new
image with a larger or smaller number of pixels, depending on the scaling factor σ.

In the input space, one may intuitively think of gσ(·) as a reshaping operation. This
transformation, however, causes the ”train-test” resolution discrepancy in [45] during
network inference. We focus this work on images containing a single object, for which we
can define image scale as the solid angle of the object in the image, namely the proportion
of the field of view occupied by the object [46]. Since a small bounding box corresponds
to a smaller space in the field of view of the camera and thus a smaller solid angle, we
measure scale in function of the bounding box area Sb. Scale measures are thus defined
as the ratio r = Sb

So
= hb×wb

ho×wo
, where hb and wb are the bounding box height and width.

https://github.com/medgift/scale_covariant_pruning
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Figure 3 (left) shows two examples of scale measures on input images from the same class
appearing at different scales.

Figure 3. Pipeline of scale quantification in ImageNet pretrained networks and consequent network pruning for better
transfer to the medical domain. The bounding boxes for the image of the ImageNet class albatross and the segmentation
masks for the ERBCa+ inputs are overlaid in yellow on the images. The bounding box ratios r are reported on top of the
ImageNet inputs. ERBCa+ images are shown at magnifications 10X and 40X. The layer evidenced in yellow is the most
informative about scale according to our quantification of scale invariance. The pruned network drops the layers after this
for solving the medical task. Best seen on screen.

In the feature space, we aim at finding a linear transformation g′σ(·) that is a predictable
transformation of gσ(·) in the input space. We start by using the definitions of invariance
(1) and covariance (2) of a mapping φ(·) to a transformation g(·) as follows

φ(g(·)) = φ(·), (1)

φ(g(·)) = g′(φ(·)). (2)

In our analysis, we consider functions of the input image X. We evaluate the covariance
of the function φ(X), that is, whether we can find a transformation g′ : Rd → Rd in the
feature space that predicts a transformation g : Rh×w → Rh×w of the input image (In these
terms, equivariance is a particular case of covariance, when g′(·) = g(·). The equivariance
implies that the function φ(·) maps an input image to a function in the same domain,
not relevant in our scenario). φ(X) consists of d scalars representing either the averaged
feature maps of intermediate layers or the activations of fully-connected layers. To find the
transformation g′σ(·), we search a regression vector v (i.e., the RCV [23]) in the feature space
to predict the scaling factor σ as (For simplicity, we omit the intercept. In Equation (3), the
intercept is v0 with φ0(gσ(X)) = 1.):

σ = ∑
i

viφi(gσ(X)) = v · φ(gσ(X)). (3)

We then have that g′σ(·) can be represented as a translation matrix (in Rd) by σ along
v, so that g′σ(φ(X)) = φ(X) + v · σ. The proposed pruning strategy compares the test R2

(determination coefficient) of the regression vectors obtained at multiple depths to identify
the layer where the scale covariance is the highest. The layer with the highest test R2 (the
yellow layer in Figure 3) is where the scale covariance is the highest. Layers deeper than
this one are pruned off the architecture and a GAP operation is added to obtain a vector of
aggregated features.

3.5. Evaluation

In Section 4.1, the network performance is monitored in terms of top-5 accuracy and
average probability of the correct class for a set of N inputs, that is, p = 1

N ∑N
j=1 f (Xj)

[
yj
]
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for ground-truth labels yj. The regression of image size in Section 4.2 and the RCV of scale
in Section 4.3 are evaluated on held-out images using the R2 determination coefficient

(We compute R2 = 1− ∑N
i=1(si−ŝi)

2

∑N
i=1(si−s̄)2 , were N is the number of test data samples, ŝi is the

size predicted by the regression model, s̄ is the mean of the true sizes {si}N
i=1. A similar

formulation applies to the evaluation of the regression of the scale ratio r). To keep the test
R2 within a [0,1] range for visualization and comparison, we report the normalized test

R2 = eR2

e = eR2−1, for which values below 1
e ≈ 0.37 evidence bad performance.

The transfer learning experiments on the histopathology task in Section 4.4 are evalu-
ated by the Mean Average Error (MAE) and Cohen’s kappa coefficient. MAE is used to
evaluate the regression of the average nuclei areas, while Cohen’s kappa coefficient is used
to measure the inter-rater reliability of the prediction of the magnification classes.

3.6. Experimental Setups

In the following, we clarify the objectives and setups of the performed experiments.
The experiments in Section 4.1 address the main hypothesis that CNNs pretrained on
ImageNet are invariant to transformations of the input size. We want to show, in particular,
that this behavior is also true for images containing objects that naturally appear at various
scales due to varying viewpoints (for which an example is given in Figure 4). To show this,
we set up two related experiments. In the first experiment, we use filled images containing
only one object covering the entire space in the image (i.e., Sb ≈ So), which are selected
manually from the pool of ImageNet validation images. In the experiment, each filled
image is reshaped to a squared input of arbitrary size and the network output is monitored
by checking the probability of the correct class (top-1 accuracy) and the top-5 accuracy. We
use the Lanczos interpolation (Similar results were obtained using bilinear, nearest, bicubic
and Lanczos interpolations.) to reshape the images to a squared input of Si = si × si, with
si ranging from 75 to 500 pixels. A total of 69 images of size So = 500× 500 and other
69 of smaller original size (mean S̄o = 285× 285) were used. In the first set, images are
either reduced or increased in size by the interpolation, whereas in the latter they are only
reduced. In the second experiment, we separate the impact of input size Si from that of
object size Sb. We do not use filled images anymore and we release the condition Sb ≈ So.
In other words, we compare images that are resized to the same sizes Si, but that contain
objects of different sizes.

Section 4.2 further analyses the difference between changing input size and object scale.
We formulate the main hypothesis that the scaling operation gσ(·) cannot be performed as
a simple input reshaping operation because the CNN features encode information about
image size differently from object scale. We hypothesize that information about image size
is encoded in the features from the padding effect of early convolutional layers. To verify
this, we introduce the corrected Global Average Pooling (GAP) illustrated in Figure 5. This
operation averages only the activations of the neurons with a receptive field contained
entirely in the input image. This is in practice equivalent to discarding the activations at
the border of the feature maps that are affected by padding operations. Images of white
noise of different sizes are used for this experiment, since they do not contain any object
nor related scale. These images are generated by sampling pixel values from a uniform
distribution in the range [0, 255]. The experiment aims at regressing the image size for these
noise inputs in the intermediate layers of the CNN. If the network encodes information
about the image size differently from object scale, then we should be able to regress the
size from the noise inputs. If this information is encoded from the padding at early layers,
then the regression with the corrected GAP should fail as this operation discards the edges
of the feature maps. We thus compare the regression of image scale with and without the
corrected GAP to show that current state-of-the-art CNN architectures encode information
about the image size. The regression vector v in Equation (3) is sought to regress the
image width si. Since the receptive fields grow throughout the network, the region of
activations unimpacted by the paddings reduces up to a point where no activation remains
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for the corrected GAP. Because of this limitation, we can only use this method to show the
impact of zero-padding but we cannot use it for the analysis of scale invariance throughout
the network.

(a) r = 0.006 (b) r = 0.154 (c) r = 0.524 (d) r = 0.975

Figure 4. Examples of albatross images and their respective scale concept measures r = Sb
So

used for learning the regression.

Figure 5. Illustration of the working principle of the corrected Global Average Pooling . The colored
receptive fields in the input image (left) are associated with the colored neurons in the feature maps
(center). In the Convolutional Neural Network (CNN), activations used for the corrected GAP (top)
are displayed in white that is, activations of the neurons with a receptive field contained in the input
image. All activations are used for the regular GAP (bottom). Best viewed in color.

In the next experiments, we use images with fixed input size to Si = 299 × 299
because of our hypothesis that input size and object scale are learned in different ways.
The measures of scale are based on the ratio r defined in Section 3.4. The experiments in
Section 4.3 focus on the regression of scale measures in ImageNet pretrained models for the
object categories albatross (ID: n02058221), race car (ID: n04037443) and kite (ID: n01608432).

We use 70% of the input class images to learn the regression, while the remaining
images are held out for evaluating the determination coefficient. Examples of images
and their corresponding scale concept measures r are shown in Figure 4 for the alba-
tross class. Finally, we run experiments on the transfer to the histopathology task in
Section 4.4. The information extracted in the previous experiments is used to improve
the transfer of pretrained features to the medical imaging task in [17]. This is obtained by
implementing the pruning pipeline summarized in Figure 3. The medical task in these
experiments is the regression of the average area of the nuclei in histopathology images.
The pruning of network layers is performed by comparing the test R2 on the natural images
(Figures 8a and 9 for InceptionV3 and Figure 8b for ResNet50) to identify the layer where
the scale covariance is the highest. This evaluation is averaged across object categories to
remove the dependence on the class of the inputs (see Appendix A.1, Figure A2).
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4. Results
4.1. Invariance of the Predictions to Resizing

This section contains the results of the first two experiments described in Section 3.6.
The CNN predictions for reshaping transformations of the filled images are reported in
Figure 6. The two subsets of images being used do not report marked differences.

Figure 6. Average probability p of correct class and top-5 accuracy vs. input size si for 69 filled images
with So = 500× 500 and 69 filled images with So < 500× 500 (S̄o = 285× 285). The 95% confidence
intervals are reported.

The results of the second experiment are not reported for brevity and because they
are very similar to those in Figure 6. The predictions resulted in only slightly better results
with filled images (Sb ≈ So) and we did not notice a shift of lower probabilities towards
smaller input sizes when the objects are smaller (Sb < So). This shows that Si is more
relevant for the predictions than the object size Sb, as expected.

4.2. Experiments on Noise Inputs

In this section, we use input of white noise that does not contain any object nor scale
information. The regression of si is learned from five noise images (We intentionally use
a small number of images to illustrate the simple linear correlation. Similar results are
obtained when using more images.) and evaluated on 20 held-out images.

The results show that we can regress the size for the model with the regular GAP in
deep layers, with the R2 close to one in Figure 7a. On the contrary, Figure 7b shows that we
cannot regress the size information when aggregating the feature maps using the corrected
GAP (R2 < 0).

In light of these results and those in Section 4.1, we do not associate the input size to
the measure of object scale in the analyses of the next section.
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(a) regression with regular GAP (b) regression with corrected GAP

Figure 7. Regression of size si with noise inputs: (a) Regression at layer mixed0 for regular GAP; (b) Regression at layer
mixed0 for corrected GAP. The regression is evaluated as the R2 of the prediction of scale measures on held-out noise images.

4.3. Layer-wise Quantification of Scale Covariance

In this section, we start by focusing on 441 images of the albatross class containing a
single object bounding box. Later in the section, the experiments are extended to the race
car and kite classes.

In Figure 8a, we compare the scale regression in a randomly initialized InceptionV3
with one trained on ImageNet. We regress the scale concept measures in activations at
different depths, as explained in Section 3.4. We also compare to a baseline in which the
regression is trained with random concept measures, that is, shuffling the scale concept

measures before regression. As explained in Section 3.5, we report the fraction eR2

e to
visualize positive values in the presence of large variations in negative values (as low as
−11,077). The detailed values of R2 are reported in Table A1 of the Appendix A.2. Values
of R2 close to one reflect the linear covariance of the intermediate layers to object scale as
defined in Section 3.4. Values below zero reflect the invariance to scale.

(a) InceptionV3 (b) ResNet50

Figure 8. Comparison of regression (RCV) of scale measures at different layers on the albatross ImageNet class (ID:

n02058221). The regression is evaluated as the R2 of the prediction of scale measures on held-out images and eR2

e is plotted
for better visualization. Values above the red line R2 = 0 show a predictive regression better than the average of ratios r.
Average and standard deviations are reported for 25 runs.
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The results are similar on the other two classes, for which the results in InceptionV3
are reported in Figure 9. The results on the ResNet50 architecture are also similar and can
be seen in Figure 8b and in Figure A1 of the Appendix A.1.

(a) Race Car (b) Kite

Figure 9. Comparison of regression (RCV) of scale measures at different InceptionV3 layers on the two classes (a) race car

(ID: n04037443) and (b) kite (ID: n01608432). The regression is evaluated as the eR2

e of held-out images. Values above the red
line R2 = 0 show a predictive regression better than the average of the scale ratios r. Average and standard deviations are
reported for 25 runs.

4.4. Improvement of Transfer to Histopathology

The original InceptionV3 and ResNet50 networks are compared to their pruned
counterparts in terms of performance in the nuclei area and magnification prediction
in Table 2. We report the Mean Average Error (MAE) across ten repetitions (different
seeds were used to initialize the dense connections to the last prediction layer.)and the
relative standard deviation for the prediction of the average area. We also report Cohen’s
kappa coefficient for the prediction of the magnification category. For both evaluated
networks and both tasks (area and magnification prediction) the results show significant
improvements when the networks are pruned at the relevant layer, validating the proposed
scale invariance analysis in the previous sections. The non-parametric Wilcoxon signed-
rank test was used to evaluate the statistical significance (p-value < 0.001 for the MAE
and kappa with both networks). The average MAE (standard deviations reported in
brackets) between the true nuclei areas and those predicted by the pruned Inception V3
are respectively 55.33 (31.16) for 5X images, 42.15 (11.39) for 8X, 34.65 (0.15) for 10X, 33.28
(0.69) for 15X, 48.38 (5.26) for 20X and 81.05 (15.67) for 40X images.

Table 2. Mean Average Error (MAE) of the nuclei area regression (in pixels) and Cohen’s kappa
coefficient between the true and predicted magnification categories. Results are averaged across ten
repetitions; the standard deviation is reported in brackets.

Model Layer MAE (std) Kappa (std)

pretrained IV3 mixed10 81.85 (11.08) 0.435 (0.02)
from scratch IV3 mixed10 82.30 (17.92) 0.560 (0.09)

pruned IV3 mixed8 54.93 (4.32) 0.571 (0.05)

pretrained ResNet50 add16 70.08 (12.49) 0.610 (0.03)
from scratch ResNet50 add16 95.66 (21.39) 0.461 (0.09)

pruned ResNet50 add15 54.76 (3.10) 0.623 (0.04)
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5. Discussion

In this section, we discuss the results and give further insights regarding their inter-
pretation, referring to previous studies in the field that support our hypotheses.

We first analyze the relationship between image size and object scale. Our first
experiment in Section 4.1 reported in Figure 6 shows that the average probability for the
correct class is approximately invariant to input sizes in the range [175, 300]. Images in this
range are likely seen during training since 299 is the size used to train the classification task
on ImageNet. The top-5 accuracy is the maximum and unlike p plateaus for si > 200. This
is explained by probabilities being more spread across classes, yet highest probabilities
are still given to the correct classes. The invariance of the predictions to the upsizing or
downsizing of the original image size, also discussed in this section, confirms that the
interpolation used for down and up-sampling has a neglectable influence on the predictions
(bilinear, nearest, bicubic or Lanczos). The experiment with resized images containing
objects of multiple sizes shows that the information of input size prevails on the one of
scale when these two are not correctly separated. A similar yet less detailed analysis
performed in [45] showed an increase of top-1 accuracy when training and testing sizes
approximately match. The strong encoding of information about the input size within the
network is attributed by the authors in [45] to the change in the distributions of the ReLU
activations of deep layers for smaller input images. We further support our analysis with
the experiments on noise inputs in Section 4.2. The white noise images do not contain any
object and the information about image size is captured also in these images (as shown by
the results in Figure 7a). By introducing the corrected GAP, we show that the regression of
image scale in noise images is mostly due to the padding effects at early convolution layers
that encode information about the input size. In Figure 7b, we confirm this hypothesis by
showing the poor performance of the linear regression when removing the information on
input size by manually correcting the GAP.

From the quantification of scale covariance in Section 4.3, we observe that information
about scale is present at intermediate layers, and that invariance is reached only towards
the last layers before softmax. Comparing the regression in the intermediate CNN layers
of real concept measures (reported in blue in Figure 8a,b) and those of random concept
measures (reported in green in the same figures), we conclude that the scale information
is present at intermediate layers. We can linearly regress the true scale ratios better than
random values of scale, with R2 close to one. The R2 of the randomly initialized model
weights are close to the ones obtained with random concept measures and less than zero
for almost all layers. This shows that an architecture with random weights does not contain
information of scale and that this information is learned during network training. The low
R2 in the early layers of the trained networks seems to be due to the size of the receptive
field, which is too narrow for correctly regressing the input scale. This was also supported
by the previous results in [47,48], which suggest that early layers focus on local textures
and small object parts. We show this further in the Appendix A in Figure A3, by visualizing
the internal features at different depths. Primitive features of color and texture are not
sufficient for regressing the object scale. The more complex features of object parts learned
after the mixed2 layer, enable this regression. Finally, the drop in the regression prediction
at the end of the trained network shows that scale invariance is learned in deep layers,
mostly in the last dense layer (pre- and post-softmax).

The task analyzed in the final experiment for improving the transfer of the learned
weights to histopathology data represents an important problem in this field. Many
open access repositories (e.g., PubMed Central) do not provide information about the
magnification level of the images, which become thus difficult to integrate with other
datasets. Data from open access repositories or social networks can provide examples
of rare and under-represented cases since these images are often presented for visual
comparison and discussion among experts [26]. The proposed pruning strategy drops
the layers with scale-invariant features to improve the transfer and better regress the
magnification level of histopathology images. For InceptionV3, the pruned features are
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a result of a GAP on top of the mixed8 features. As shown in Table 2, the MAE = 54.93 of
the nuclei area regression in mixed8 is significantly lower than the MAE = 81.85 in mixed10.
This corresponds to a better prediction of the magnification range, hence to a higher kappa
coefficient. The pruned architectures provide a reduction in complexity, requiring the
training of 51% and 19% less of parameters respectively for InceptionV3 and ResNet50.

6. Conclusions

In this paper, we designed and used an experimental approach to analyze the covari-
ance to object scale in CNNs trained on ImageNet. We then used the analysis of state-of-art
CNNs to improve the transfer of these pre-trained networks on a medical task. We made
the main distinction between input size and object scale, showing that these two measures
should be properly separated to interpret the scale covariance of CNN features. Our scale
quantification with the regression of scale ratios represents an intuitive and easy-to-apply
method to determine the invariance to scale of intermediate network features. We showed
that deep features (up to the penultimate layer) are linearly scale-covariant. These pre-
trained features can therefore safely be used either as feature extractor or fine-tuning for
tasks in which the scale provides crucial information.

Our network pruning strategy can improve transfer by maintaining the scale-covariance
of the features without requiring any explicit design or retraining of the network weights
and can thus be applied to state-of-the-art CNNs pre-trained on ImageNet. The proposed
pruning largely improves the prediction of magnification in histopathology images.

We recognize the limitations of the proposed work, including the linearity of the
regression, where information about scale can be present but impossible to regress linearly.
In future work, we will investigate non-linear regression and manifold learning of the
feature space.
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Appendix A

Appendix A.1. Extended Regression Results

We report extended results on the scale regression experiments presented in
Section 4.1. In Figure A1, we report results similar to Figures 8 and 9 obtained with
ResNet50 for the classes race car (365 images) and kite (406 images), not reported in the

www.image-net.org
andrewjanowczyk.com/deep-learning/
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main paper for brevity. In each class, 70% of the images are used for learning the regression,
the remaining 30% are used to evaluate it.

(a) (b)
Figure A1. Comparison of regression (RCV) of scale measures at different ResNet50 layers on the classes: (a) race car (ID:

n04037443), (b) kite (ID: n01608432). The regression is evaluated as eR2

e on held-out images.

In Figure A2, we report the results, averaged across classes, that were used to select
the pruning layer for both architectures. As mentioned in Section 4.4, we remove the
dependency of the evaluation on the image selection (by using multiple splits) and category
(by analyzing multiple classes). We average the results across 10 repetitions for all classes,
with a total of 30 evaluations. The evaluation was performed for ten splits of images.

(a). InceptionV3 (b). ResNet50

Figure A2. Average performance (for all classes) of the regression of scale measures on test data at different layers.

The difference in softmax regression between randomly initialized InceptionV3 and
ResNet50 for all classes is notable. This can be explained by the softmax probabilities of
InceptionV3 being uniformly distributed around 1

1000 for all 1000 classes as opposed to
the sparsely high probabilities of ResNet50. This difference in the probability distribution
is due to the different pixel values normalization used in the input pre-processing of the
networks. Interesting preliminary analyses of the probability distributions further support
these claims, yet this is out of the scope of this paper and will be analyzed in future work.

Appendix A.2. Detailed Determination Coefficients

In Table A1, we report the values of R2 obtained on the regression evaluation of the
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scale measure at different layers of InceptionV3 with images of the albatross class. The R2

values were plotted in Figure 8a as eR2

e due to their range.

Table A1. Details of R2 of scale measure displayed in Figure 8a. Average of the R2 and standard
deviation across 25 runs with InceptionV3 on the albatross class.

Model InceptionV3
ImageNet

InceptionV3
Random Weights

InceptionV3 Random
Scale Measures

mixed0 −0.72 ± 0.47 −283± 1365 −5.75 ± 1.38
mixed1 −2.39 ± 1.21 −331 ± 1082 −20.1 ± 6.96
mixed2 −3.12 ± 0.88 −14.4 ± 26.1 −20.6 ± 11.0
mixed3 0.59 ± 0.06 −0.47 ± 0.30 −1.81 ± 0.48
mixed4 0.69 ± 0.04 −0.41 ± 0.31 −1.66 ± 0.42
mixed5 0.70 ± 0.04 −0.53 ± 0.26 −1.68 ± 0.52
mixed6 0.79 ± 0.03 −0.54 ± 0.29 −1.62 ± 0.41
mixed7 0.73 ± 0.03 −0.66 ± 0.29 −1.45 ± 0.43
mixed8 0.84 ± 0.01 −0.06 ± 0.19 −0.98 ± 0.27
mixed9 0.77 ± 0.02 0.06 ± 0.16 −0.73 ± 0.24
mixed10 0.54 ± 0.05 0.08 ± 0.13 −1.24 ± 0.45
pre-soft. −0.12 ± 0.20 −0.13 ± 0.15 −3.90 ± 0.86
softmax −3861 ± 5729 −0.13 ± 0.15 −11,077 ± 26, 421

Appendix A.3. Visualization of Early Layer Features

As mentioned in the Discussion, early layers focus mostly on local pixel neighbor-
hoods, not extracting sufficient information to regress the scale ratio in Figures 8a and 9. To
support this claim, we use the Lucid toolbox (https://github.com/tensorflow/lucid, ac-
cessed on 2 April 2020) to visualize the internal features of InceptionV3 at different depths.
As shown in Figure A3, early layers in InceptionV3 mostly focus on simple patterns and
colors (see Figure A3a,b). Only at deeper layers it is possible to recognize object parts as in
Figure A3c and entire dog faces in Figure A3d.

(a) Colored pattern from mixed_0. (b) Colored pattern from mixed_1.

Figure A3. Cont.

https://github.com/tensorflow/lucid
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(c) Parts of faces and eyes in mixed_2. (d) Dog faces in mixed_6

Figure A3. Internal visualization of InceptionV3 unit activations at multiple layer depths, obtained with the Lucid toolbox.
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